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Preface
We are pleased to see the text reach its tenth edition. The

continued support and enthusiasm of its many users

have been most gratifying. Linear algebra is more

exciting now than at almost any time in the past. Its

applications continue to spread to more and more fields.

Largely due to the computer revolution of the last 75

years, linear algebra has risen to a role of prominence in

the mathematical curriculum rivaling that of calculus.

Modern software has also made it possible to

dramatically improve the way the course is taught.

The first edition of this book was published in 1980.

Each of the following editions has seen significant

modifications including the addition of comprehensive

sets of MATLAB computer exercises, a dramatic increase

in the number of applications, and many revisions in the

various sections of the book. We have been fortunate to

have had outstanding reviewers, and their suggestions

have led to many important improvements in the book.

What’s New in the Tenth

Edition?
You may have noticed something new on the cover of the

book. Another author! Yes, after nearly 40 years as a

“solo act,” Steve Leon has a partner. New co-author

Lisette de Pillis is a professor at Harvey Mudd College

and brings her passion for teaching and solving real-

world problems to this revision.

The focus of this revision was transforming it from a

primarily print-based learning tool to a digital learning



tool. The eText is therefore filled with content and tools

that will help bring the entire course to life for students

in new ways and help you improve instruction.

Specifically,

Interactive figures and utilities. We have added a number of

opportunities for students to interact with content in a dynamic

manner in order to build and enhance understanding. Interactive

figures allow students to explore concepts geometrically in ways

that are not possible without technology. Examples here include:

In Chapter 3, Visualizing the span of vectors—Figures

3.2.3, 3.2.4, 3.2.6(a), 3.2.6(b)

In Chapter 4, Visualizing linear transformations

Simple linear transformations—Figures 4.1.1

through 4.1.4

Dilations, reflections, rotations—Figure 4.2.3

Yaw, pitch, and roll of an airplane—Figure

4.2.5

In Chapter 6, Visualization tools for 2 × 2 matrices

Eigenvectors—Figure 6.1.1

Singular vectors—Figure 6.5.1

Hints. For selected exercises, we’ve included hints for students to

consider if they get stuck.

Notes, Labels, and Highlights. Notes allow instructors to add

their personal teaching style to important topics, call out need-to-

know information, or clarify difficult concepts. Students can make

their eText their own by creating highlights with meaningful labels

and notes, helping them focus on what they need to study. The

customizable Notebook allows students to filter, arrange, and

group their notes in a way that makes sense to them.

Dashboard. Instructors can create reading assignments and see

the time spent in the eText so that they can plan more effective

instruction.

Portability. Portable access lets students read their eText

whenever they have a moment in their day, on Android and iOS

mobile phones and tablets. Even without an Internet connection,

offline reading ensures students never miss a chance to learn.

Ease-of-Use. Straightforward setup makes it easy for instructors

to get their class up and reading quickly on the first day of class. In

addition, Learning Management System (LMS) integration

provides institutions, instructors, and students with single sign-on

access to the eText via many popular LMSs.



Overview of Text
This book is suitable for either a lower or upper division

Linear Algebra course. The student should have some

familiarity with the basics of differential and integral

calculus. This prerequisite can be met by either one

semester or two quarters of elementary calculus.

If the text is used for a lower-level course, the instructor

should probably spend more time on the early chapters

and omit many of the sections in the later chapters. For

more advanced courses, a quick review of the topics in

the first two chapters and then a more complete coverage

of the later chapters would be appropriate. The

explanations in the text are given in sufficient detail so

that beginning students should have little trouble

reading and understanding the material. To further aid

the student, a large number of examples have been

worked out completely. Additionally, computer exercises

at the end of each chapter give students the opportunity

to perform numerical experiments and try to generalize

the results. Applications are presented throughout the

book. These applications can be used to motivate new

material or to illustrate the relevance of material that has

already been covered.

The text contains all the topics recommended by the

National Science Foundation (NSF) sponsored Linear

Algebra Curriculum Study Group (LACSG) and much

more. Although there is more material than can be

covered in a single course, it is our belief that it is easier

for an instructor to leave out or skip material than it is to

supplement a book with outside material. Even if many

topics are omitted, the book should still provide students

with a feeling for the overall scope of the subject matter.

Furthermore, students may use the book later as a

reference and consequently may end up learning omitted

topics on their own.



Suggested Course Outlines
We include here a number of outlines for one-semester

courses at either the lower or upper-division levels, and

with either a matrix-oriented emphasis or a slightly more

theoretical emphasis.

1. One-Semester Lower Division Course

1. Basic Lower Level Course

Chapter 1 Sections 1–6 7 lectures

Chapter 2 Sections 1–2 2 lectures

Chapter 3 Sections 1–6 9 lectures

Chapter 4 Sections 1–3 4 lectures

Chapter 5 Sections 1–6 9 lectures

Chapter 6 Sections 1–3 4 lectures

Total 35 lectures

2. LACSG Matrix-Oriented Course

The core course recommended by the LACSG involves

only the Euclidean vector spaces. Consequently, for this

course you should omit Section 1 of Chapter 3 (on

general vector spaces) and all references and exercises

involving function spaces in Chapters 3 to 6. All the

topics in the LACSG core syllabus are included in the

text. It is not necessary to introduce any supplementary

materials. The LACSG recommended 28 lectures to

cover the core material. This is possible if the class is

taught in lecture format with an additional recitation

section meeting once a week. If the course is taught

without recitations, it is our contention that the

following schedule of 35 lectures is perhaps more

reasonable.

Chapter 1 Sections 1–6 7 lectures



Chapter 2 Sections 1–2 2 lectures

Chapter 3 Sections 2–6 7 lectures

Chapter 4 Sections 1–3 2 lectures

Chapter 5 Sections 1–6 9 lectures

Chapter 6 Sections 1, 3–5 8 lectures

Total 35 lectures

2. One-Semester Upper-Level Courses

The coverage in an upper-division course is dependent on the

background of the students. Following are two possible courses.

Option A: Minimal background in linear algebra

Chapter 1 Sections 1–6 6 lectures

Chapter 2 Sections 1–2 2 lectures

Chapter 3 Sections 1–6 7 lectures

Chapter 5 Sections 1–6 9 lectures

Chapter 6 Sections 1–7, 8* 10 lectures

Chapter 7 Section 4 1 lecture

Total 35 lectures

* If time allows.

Option B: Some background in linear algebra

Review of Topics in 5 lectures

Chapters 1–3

Chapter 4 Sections 1–3 2 lectures



Chapter 5 Sections 1–6 10 lectures

Chapter 6 Sections 1–7, 8* 11 lectures

Chapter 7 Sections 1–3*, 4–7 7 lectures

Chapter 8 Sections 1–2* 2 lectures

Total 37 lectures

* If time allows.

3. Two-Semester Sequence

Although two semesters of linear algebra have been recommended

by the LACSG, it is still not practical at many universities and

colleges. At present, there is no universal agreement on a core

syllabus for a second course. In a two-semester sequence, it is

possible to cover all 43 sections of the book. You might also

consider adding a lecture or two in order to demonstrate how to

use MATLAB.

Computer Exercises
The text contains a section of computing exercises at the

end of each chapter. These exercises are based on the

software package MATLAB. The MATLAB Appendix in

the book explains the basics of using the software.

MATLAB has the advantage that it is a powerful tool for

matrix computations, yet it is easy to learn. After reading

the Appendix, students should be able to do the

computing exercises without having to refer to any other

software books or manuals. To help students get started,

we recommend a one 50-minute classroom

demonstration of the software. The assignments can be

done either as ordinary homework assignments or as

part of a formally scheduled computer laboratory course.

Although the course can be taught without any reference

to a computer, we believe that computer exercises can

greatly enhance student learning and provide a new



dimension to linear algebra education. One of the

recommendations of the LASCG is that technology

should be used in a first course in linear algebra. That

recommendation has been widely accepted, and it is now

common to see mathematical software packages used in

linear algebra courses.
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Chapter 1 Matrices and

Systems of Equations

Full Alternative Text

One of the most important problems in mathematics is

that of solving a system of linear equations. Well over 75

percent of all mathematical problems encountered in

scientific or industrial applications involve solving a

linear system at some stage. By using the methods of

modern mathematics, it is often possible to take a

sophisticated problem and reduce it to a single system of

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_co-01.xhtml#la_co-01


linear equations. Linear systems arise in applications to

such areas as business, economics, sociology, ecology,

demography, genetics, electronics, engineering, and

physics. Therefore, it seems appropriate to begin this

book with a section on linear systems.



1.1 Systems of Linear

Equations
A linear equation in n unknowns is an equation of the

form

a1x1 + a2x2 + ⋯ + anxn = b

where a1, a2, … , an and b are real numbers and 

x1, x2, … , xn are variables. A linear system of m

equations in n unknowns is then a system of the form

(1)

where the aij’s and the bi’s are all real numbers. We will

refer to systems of the form (1) as m × n linear systems.

The following are examples of linear systems:

1. 

2. 

3. 

System (a) is a 2 × 2 system, (b) is a 2 × 3 system, and

(c) is a 3 × 2 system.

By a solution of an m × n system, we mean an ordered

n-tuple of numbers (x1, x2, … , xn) that satisfies all

a11x1 + a12x2 + ⋯ + a1nxn = b1

a21x1 + a22x2 + ⋯ + a2nxn = b2

   ⋮
am1x1 + am2x2 + ⋯ + amnxn = bm

x1 + 2x2 = 5
2x1 + 3x2 = 8

x1 − x2 + x3 = 2
2x1 + x2 − x3 = 4

x1 + x2 = 2
x1 − x2 = 1
x1 = 4



the equations of the system. For example, the ordered

pair (1, 2) is a solution of system (a), since

The ordered triple (2, 0, 0) is a solution of system (b),

since

Actually, system (b) has many solutions. If α is any real

number, it is easily seen that the ordered triple (2, α, α)
is a solution. However, system (c) has no solution. It

follows from the third equation that the first coordinate

of any solution would have to be 4. Using x1 = 4 in the

first two equations, we see that the second coordinate

must satisfy

Since there is no real number that satisfies both of these

equations, the system has no solution. If a linear system

has no solution, we say that the system is inconsistent. If

the system has at least one solution, we say that it is

consistent. Thus, system (c) is inconsistent, while

systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the

solution set of the system. If a system is inconsistent, its

solution set is empty. A consistent system will have a

nonempty solution set. To solve a consistent system, we

must find its solution set.

2 × 2 Systems
Let us examine geometrically a system of the form

1 ⋅ (1) + 2 ⋅ (2) = 5
2 ⋅ (1) + 3 ⋅ (2) = 8

1 ⋅ (2) − 1 ⋅ (0) + 1 ⋅ (0) = 2
2 ⋅ (2) + 1 ⋅ (0) − 1 ⋅ (0) = 4

4 + x2 = 2
4 − x2 = 1

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2



Each equation can be represented graphically as a line in

the plane. The ordered pair (x1, x2) will be a solution of

the system if and only if it lies on both lines. For

example, consider the three systems

1. 

2. 

3. 

The two lines in system (i) intersect at the point (2, 0).

Thus, {(2, 0)} is the solution set of (i). In system (ii), the

two lines are parallel. Therefore, system (ii) is

inconsistent and hence its solution set is empty. The two

equations in system (iii) both represent the same line.

Any point on this line will be a solution of the system

(see Figure 1.1.1).

Figure 1.1.1.

x1 + x2 = 2
x1 − x2 = 2

x1 + x2 = 2
x1 + x2 = 1

x1 + x2 = 2
−x1 − x2 = −2



Figure 1.1.1. Full Alternative Text

In general, there are three possibilities: the lines

intersect at a point, they are parallel, or both equations

represent the same line. The solution set then contains

either one, zero, or infinitely many points.

The situation is the same for m × n systems. An m × n

system may or may not be consistent. If it is consistent, it

must have either exactly one solution or infinitely many

solutions. These are the only possibilities. We will see

why this is so in Section 1.2 when we study the row

echelon form. Of more immediate concern is the

problem of finding all solutions of a given system. To

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig01-01-001.xhtml#la_fig01-01-001


tackle this problem, we introduce the notion of

equivalent systems.

Equivalent Systems
Consider the two systems

1. 

2. 

System (a) is easy to solve because it is clear from the

last two equations that x2 = 3 and x3 = 2. Using these

values in the first equation, we get

Thus, the solution of the system is (−2, 3, 2). System

(b) seems to be more difficult to solve. Actually, system

(b) has the same solution as system (a). To see this, add

the first two equations of the system:

If (x1, x2, x3) is any solution of (b), it must satisfy all

the equations of the system. Thus, it must satisfy any

new equation formed by adding two of its equations.

Therefore, x2 must equal 3. Similarly, (x1, x2, x3) must

satisfy the new equation formed by subtracting the first

equation from the third:

3x1 + 2x2 − x3 = −2
x2 = 3

2x3 = 4

3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

3x1 + 2x2 + x3 = 2

3x1 + 2 ⋅ 3 − 2 = −2
x1 = −2

x2 = 3

3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

2x3 = 2

3x1 + 2x2 + x3 = 2
3x1 + 2x2 − x3 = −2



Therefore, any solution of system (b) must also be a

solution of system (a). By a similar argument, it can be

shown that any solution of (a) is also a solution of (b).

This can be done by subtracting the first equation from

the second:

Then add the first and third equations:

Thus, (x1, x2, x3) is a solution of system (b) if and only

if it is a solution of system (a). Therefore, both systems

have the same solution set, {(−2, 3, 2)}.

Definition
Two systems of equations involving the same variables

are said to be equivalent if they have the same solution

set.

If we interchange the order in which two equations of a

system are written, this will have no effect on the

solution set. The reordered system will be equivalent to

the original system. For example, the systems

both involve the same three equations and, consequently,

they must have the same solution set.

If one equation of a system is multiplied through by a

nonzero real number, this will have no effect on the

solution set, and the new system will be equivalent to the

original system. For example, the systems

x2 = 3
3x1 + 2x2 − x3 = −2

−3x1 − x2 + x3 = 5

3x1 + 2x2 − x3 = −2

3x1 + 2x2 + x3 = 2

2x3 = 4

x1 + 2x2 = 4 4x1 + x2 = 6
3x1 − x2 = 2     and     3x1 − x2 = 2
4x1 + x2 = 6 x1 + 2x2 = 4



are equivalent.

If a multiple of one equation is added to another

equation, the new system will be equivalent to the

original system. This follows since the n-tuple 

(x1, … , xn) will satisfy the two equations

if and only if it satisfies the equations

To summarize, there are three operations that can be

used on a system to obtain an equivalent system:

1. The order in which any two equations are written may be

interchanged.

2. Both sides of an equation may be multiplied by the same nonzero

real number.

3. A multiple of one equation may be added to (or subtracted from)

another.

Given a system of equations, we may use these

operations to obtain an equivalent system that is easier

to solve.

n × n Systems
Let us restrict ourselves to n × n systems for the

remainder of this section. We will show that if an n × n

system has exactly one solution, then operations I and

III can be used to obtain an equivalent “strictly

triangular system.”

x1 + x2 + x3 = 3 2x1 + 2x2 + 2x3 = 6

−2x1 − x2 + 4x3 = 1 −2x1 − x2 + 4x3 = 1
    and    

ai1x1 + ⋯ + ainxn = bi

aj1x1 + ⋯ + ajnxn = bj

ai1x1 + ⋯ + ainxn = bi

(aj1 + αai1)x1 + ⋯ + (ajn + αain)xn = bj + αbi



Definition
A system is said to be in strict triangular form if, in

the kth equation, the coefficients of the first k − 1
variables are all zero and the coefficient of xk is nonzero 

(k = 1, … , n).

Example 1
The system

is in strict triangular form, since in the second equation

the coefficients are 0, 1,  − 1, respectively, and in the

third equation the coefficients are 0, 0, 2, respectively.

Because of the strict triangular form, the system is easy

to solve. It follows from the third equation that x3 = 2.

Using this value in the second equation, we obtain

Using x2 = 4, x3 = 2 in the first equation, we end up

with

Thus, the solution of the system is (−3, 4, 2).

Any n × n strictly triangular system can be solved in the

same manner as the last example. First, the nth equation

is solved for the value of xn. This value is used in the 

(n − 1)st equation to solve for xn−1. The values xn and 

xn−1 are used in the (n − 2)nd equation to solve for 

xn−2, and so on. We will refer to this method of solving a

strictly triangular system as back substitution.

3x1 + 2x2 + x3 = 1
x2 − x3 = 2

2x3 = 4

x2 − 2 = 2     or     x2 = 4

3x1 + 2 ⋅ 4 + 2 = 1
x1 = −3



Example 2
Solve the system

SOLUTION

Using back substitution, we obtain

Thus, the solution is (1, −1, 0, 1).

In general, given a system of n linear equations in n

unknowns, we will use operations I and III to try to

obtain an equivalent system that is strictly triangular.

(We will see in the next section of the book that it is not

possible to reduce the system to strictly triangular form

in the cases where the system does not have a unique

solution.)

Example 3
Solve the system

Solution

Subtracting 3 times the first row from the second row

yields

−7x2 − 6x3 = −10

2x1 − x2 + 3x3 − 2x4 = 1
x2 − 2x3 + 3x4 = 2

4x3 + 3x4 = 3
4x4 = 4

4x4 = 4 x4 = 1
4x3 + 3 ⋅ 1 = 3 x3 = 0

x2 − 2 ⋅ 0 + 3 ⋅ 1 = 2 x2 = −1
2x1 − (−1) + 3 ⋅ 0 − 2 ⋅ 1 = 1 x1 = 1

x1 + 2x2 + x3 = 3
3x1 − x2 − 3x3 = −1
2x1 + 3x2 + x3 = 4



Subtracting 2 times the first row from the third row

yields

−x2 − x3 = −2

If the second and third equations of our system,

respectively, are replaced by these new equations, we

obtain the equivalent system

If the third equation of this system is replaced by the

sum of the third equation and −
1
7

 times the second

equation, we end up with the following strictly triangular

system:

Using back substitution, we get

Let us look back at the system of equations in the last

example. We can associate with that system a 3 × 3
array of numbers whose entries are the coefficients of the

xi’s:

We will refer to this array as the coefficient matrix of the

system. The term matrix means a rectangular array of

numbers. A matrix having m rows and n columns is said

to be m × n. A matrix is said to be square if it has the

same number of rows and columns, that is, if m = n.

If we attach to the coefficient matrix an additional

column whose entries are the numbers on the right-hand

side of the system, we obtain the new matrix

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10
−x2 − x3 = − 2

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10

− 1
7 x3 =   − 4

7

x3 = 4, x2 = −2, x1 = 3

⎡⎢⎣ 1 2 1
3 −1 −3
2 3 1

⎤⎥⎦



We will refer to this new matrix as the augmented

matrix. In general, when an m × r matrix B is attached

to an m × n matrix A in this way, the augmented matrix

is denoted by (A|B). Thus, if

then

(A|B) =

With each system of equations, we may associate an

augmented matrix of the form

The system can be solved by performing operations on

the augmented matrix. The xi’s are placeholders that

can be omitted until the end of the computation.

Corresponding to the three operations used to obtain

equivalent systems, the following row operations may be

applied to the augmented matrix:

Elementary Row Operations

1. Interchange two rows.

2. Multiply a row by a nonzero real number.

3. Replace a row by the sum of that row and a multiple of another

row.

⎡⎢⎣ 1 2 1
3 −1 −3
2 3 1∣ 3

−1
4

⎤⎥⎦A = ,      B =

⎡⎢⎣ a11 a12 … a1n

a21 a22 … a2n

⋮
am1 am2 … amn

⎤⎥⎦ ⎡⎢⎣ b11 b12 … b1r

b21 b22 … b2r

⋮
bm1 bm2 … bmr

⎤⎥⎦⎡⎢⎣ a11 … a1n

⋮
am1 … amn∣ b11 … b1r

⋮
bm1 … bmr

⎤⎥⎦⎡⎢⎣ a11 … a1n

⋮
am1 … amn∣b1

⋮
bm

⎤⎥⎦



Returning to the example, we find that the first row is

used to eliminate the elements in the first column of the

remaining rows. We refer to the first row as the pivotal

row. For emphasis, the entries in the pivotal row are all

in bold type and the entire row is color shaded. The first

nonzero entry in the pivotal row is called the pivot.

1.1-1 Full Alternative Text

By using row operation III, 3 times the first row is

subtracted from the second row and 2 times the first row

is subtracted from the third. When this is done, we end

up with the matrix

At this step, we choose the second row as our new pivotal

row and apply row operation III to eliminate the last

element in the second column. This time the pivot is −7
and the quotient 

−1
−7 = 1

7  is the multiple of the pivotal

row that is subtracted from the third row. We end up

with the matrix

This is the augmented matrix for the strictly triangular

system, which is equivalent to the original system. The

solution of the system is easily obtained by back

substitution.

⎡⎢⎣ 1 2 1
0 −7 −6

0 0 − 1
7 ∣ 3

−10

− 4
7

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-001.xhtml#la_unfig01-001


Example 4
Solve the system

SOLUTION

The augmented matrix for this system is

Since it is not possible to eliminate any entries by using 0

as a pivot element, we will use row operation I to

interchange the first two rows of the augmented matrix.

The new first row will be the pivotal row and the pivot

element will be 1:

1.1-3 Full Alternative Text

Row operation III is then used twice to eliminate the two

nonzero entries in the first column:

− x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 6

2x1 + 4x2 + x3 − 2x4 = −1
3x1 + x2 − 2x3 + 2x4 = 3

⎡⎢⎣ 0 −1 −1 1
1 1 1 1
2 4 1 −2
3 1 −2 2∣ 0

6
−1

3

⎤⎥⎦
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1.1-4 Full Alternative Text

Next, the second row is used as the pivotal row to

eliminate the entries in the second column below the

pivot element −1:

1.1-5 Full Alternative Text

Finally, the third row is used as the pivotal row to

eliminate the last element in the third column:

This augmented matrix represents a strictly triangular

system. Solving by back substitution, we obtain the

solution (2,  − 1, 3, 2).

In general, if an n × n linear system can be reduced to

strictly triangular form, then it will have a unique

solution that can be obtained by performing back

substitution on the triangular system. We can think of

⎡⎢⎣ 1 1 1 1
0 −1 −1 1
0 0 −3 −2
0 0 0 −1∣ 6

0
−13
−2

⎤⎥⎦
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the reduction process as an algorithm involving n − 1
steps. At the first step, a pivot element is chosen from

among the nonzero entries in the first column of the

matrix. The row containing the pivot element is called

the pivotal row. We interchange rows (if necessary) so

that the pivotal row is the new first row. Multiples of the

pivotal row are then subtracted from each of the

remaining n − 1 rows so as to obtain 0’s in the first

entries of rows 2 through n. At the second step, a pivot

element is chosen from the nonzero entries in column 2,

rows 2 through n, of the matrix. The row containing the

pivot is then interchanged with the second row of the

matrix and is used as the new pivotal row. Multiples of

the pivotal row are then subtracted from the remaining 

n − 2 rows so as to eliminate all entries below the pivot

in the second column. The same procedure is repeated

for columns 3 through n − 1. Note that at the second

step row 1 and column 1 remain unchanged, at the third

step the first two rows and first two columns remain

unchanged, and so on. At each step, the overall

dimensions of the system are effectively reduced by 1

(see Figure 1.1.2).

Figure 1.1.2.



Figure 1.1.2. Full Alternative Text

If the elimination process can be carried out as

described, we will arrive at an equivalent strictly

triangular system after n − 1 steps. However, the

procedure will break down if, at any step, all possible

choices for a pivot element are equal to 0. When this

happens, the alternative is to reduce the system to

certain special echelon, or staircase-shaped, forms.

These echelon forms will be studied in the next section.
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They will also be used for m × n systems, where m ≠ n

.



Section 1.1 Exercises

1. Use back substitution to solve each of the following systems of

equations:

1. 

2. 

3. 

4. 

2. Write out the coefficient matrix for each of the systems in Exercise

1.

3. In each of the following systems, interpret each equation as a line

in the plane. For each system, graph the lines and determine

geometrically the number of solutions.

1. 

2. 

3. 

x1 − 3x2 = 2

2x2 = 6

x1 + x2 + x3 = 8

2x2 + x3 = 5

3x3 = 9

x1 + 2x2 + 2x3 + x4 = 5

3x2 + x3 − 2x4 = 1

−x3 + 2x4 = −1

4x4 = 4

x1 + x2 + x3 + x4 + x5 = 5

2x2 + x3 − 2x4 + x5 = 1

4x3 + x4 − 2x5 = 1

x4 − 3x5 = 0

2x5 = 2

x1 + x2 = 4

x1 − x2 = 2

x1 + 2x2 = 4

−2x1 − 4x2 = 4

2x1 − x2 = 3

−4x1 + 2x2 = −6



4. 

4. Write an augmented matrix for each of the systems in Exercise 3.

5. Write out the system of equations that corresponds to each of the

following augmented matrices:

1. [ ]

2. [ ]

3. 

4. 

6. Solve each of the following systems:

1. 

2. 

3. 

4. 

5. 

6. 

x1 + x2 = 1

x1 − x2 = 1

−x1 + 3x2 = 3

3 2

1 5∣875 −2 1

2 3 −4∣30⎡⎢⎣ 2 1 4

4 −2 3

5 2 6∣−1

4

−1

⎤⎥⎦⎡⎢⎣ 4 −3 1 2

3 1 −5 6

1 1 2 4

5 1 3 −2∣4587⎤⎥⎦x1 − 2x2 = 5

3x1 + x2 = 1

2x1 + x2 = 8

4x1 − 3x2 = 6

4x1 + 3x2 = 4
2
3

x1 + 4x2 = 3

x1 + 2x2 − x3 = 1

2x1 − x2 + x3 = 3

−x1 + 2x2 + 3x3 = 7

2x1 + x2 + 3x3 = 1

4x1 + 3x2 + 5x3 = 1

6x1 + 5x2 + 5x3 = −3

3x1 + 2x2 + x3 = 0

−2x1 + x2 − x3 = 2

2x1 − x2 + 2x3 = −1



7. 

8. 

7. The two systems

have the same coefficient matrix but different right-hand sides.

Solve both systems simultaneously by eliminating the first entry in

the second row of the augmented matrix:

[ ]

and then performing back substitutions for each of the columns

corresponding to the right-hand sides.

8. Solve the two systems

by doing elimination on a 3 × 5 augmented matrix and then

performing two back substitutions.

9. Given a system of the form

where m1, m2, b1, and b2 are constants:

1. Show that the system will have a unique solution if 

m1 ≠ m2.

2. Show that if m1 = m2, then the system will be

consistent only if b1 = b2.

3. Give a geometric interpretation of parts (a) and (b).

10. Consider a system of the form

1
3

x1 + 2
3

x2 + 2x3 = −1

x1 + 2x2 + 3
2

x3 = 3
2

1
2

x1 + 2x2 + 12
5

x3 = 1
10

x2 + x3 + x4 = 0

3x1 + 3x3 − 4x4 = 7

x1 + x2 + x3 + 2x4 = 6

2x1 + 3x2 + x3 + 3x4 = 6

   and   
2x1 + x2 = 3

4x1 + 3x2 = 5

2x1 + x2 = −1

4x1 + 3x2 = 1

2 1

4 3∣3 −1

5 1

x1 + 2x2 − 2x3 = 1

2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = 9

x1 + 2x2 − 2x3 = 9

2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = −2

−m1x1 + x2 = b1

−m2x1 + x2 = b2

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0



where a11, a12, a21, and a22 are constants. Explain why a system

of this form must be consistent.

11. Give a geometrical interpretation of a linear equation in three

unknowns. Give a geometrical description of the possible solution

sets for a 3 × 3 linear system.



1.2 Row Echelon Form
In Section 1.1, we learned a method for reducing an 

n × n linear system to strict triangular form. However,

this method will fail if, at any stage of the reduction

process, all the possible choices for a pivot element in a

given column are 0.

Example 1
Consider the system represented by the augmented

matrix

1.3-6 Full Alternative Text

If row operation III is used to eliminate the nonzero

entries in the last four rows of the first column, the

resulting matrix will be
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1.3-7 Full Alternative Text

At this stage, the reduction to strict triangular form

breaks down. All four possible choices for the pivot

element in the second column are 0. How do we proceed

from here? Since our goal is to simplify the system as

much as possible, it seems natural to move over to the

third column and eliminate the last three entries:

1.3-8 Full Alternative Text

In the fourth column, all the choices for a pivot element

are 0; so again, we move on to the next column. If we use

the third row as the pivotal row, the last two entries in

the fifth column are eliminated and we end up with the

matrix
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1.3-9 Full Alternative Text

The coefficient matrix that we end up with is not in strict

triangular form; it is in staircase, or echelon, form. The

horizontal and vertical line segments in the array for the

coefficient matrix indicate the structure of the staircase

form. Note that the vertical drop is 1 for each step, but

the horizontal span for a step can be more than 1. The

equations represented by the last two rows are

Since there are no 5-tuples that could satisfy these

equations, the system is inconsistent.

Suppose now that we change the right-hand side of the

system in the last example so as to obtain a consistent

system. For example, if we start with

then the reduction process will yield the echelon-form

augmented matrix

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −4

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −3

⎡⎢⎣ 1 1 1 1 1

−1 −1 0 0 1

−2 −2 0 0 3

0 0 1 1 3

1 1 2 2 4∣ 1

−1

1

3

4

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-008.xhtml#la_unfig01-008


1.3-10 Full Alternative Text

The last two equations of the reduced system will be

satisfied for any 5-tuple. Thus, the solution set will be the

set of all 5-tuples satisfying the first three equations.

(1)

The variables corresponding to the first nonzero

elements in each row of the reduced matrix will be

referred to as lead variables. Thus, x1, x3, and x5 are

the lead variables. The remaining variables

corresponding to the columns skipped in the reduction

process will be referred to as free variables. Hence, x2

and x4 are the free variables. If we transfer the free

variables over to the right-hand side in (1), we obtain the

system

(2)

System (2) is strictly triangular in the unknowns x1, x3,

and x5. Thus, for each pair of values assigned to x2 and 

x4, there will be a unique solution. For example, if 

x1 + x2 + x3 + x4 + x5 = 1

x3 + x4 + 2x5 = 0

x5 = 3

x1 + x3 + x5 = 1 − x2 − x4

x3 + 2x5 = −x4

x5 = 3
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x2 = x4 = 0, then x5 = 3, x3 = −6, and x1 = 4, and

hence (4, 0, −6, 0, 3) is a solution of the system.

Definition
A matrix is said to be in row echelon form if

1. The first nonzero entry in each nonzero row is 1.

2. If row k does not consist entirely of zeros, the number of leading

zero entries in row k + 1 is greater than the number of leading

zero entries in row k.

3. If there are rows whose entries are all zero, they are below the

rows having nonzero entries.

Example 2
The following matrices are in row echelon form:

Example 3
The following matrices are not in row echelon form:

The first matrix does not satisfy condition (i). The

second matrix fails to satisfy condition (iii), and the

third matrix fails to satisfy condition (ii).

Definition

,     ,    
⎡⎢⎣ 1 4 2

0 1 3

0 0 1

⎤⎥⎦ ⎡⎢⎣ 1 2 3

0 0 1

0 0 0

⎤⎥⎦ ⎡⎢⎣ 1 3 1 0

0 0 1 3

0 0 0 0

⎤⎥⎦,     [ ],     [ ]
⎡⎢⎣ 2 4 6

0 3 5

0 0 4

⎤⎥⎦ 0 0 0

0 1 0

0 1

1 0



The process of using row operations I, II, and III to

transform a linear system into one whose augmented

matrix is in row echelon form is called Gaussian

elimination.

Note that row operation II is necessary in order to scale

the rows so that the leading coefficients are all 1. If the

row echelon form of the augmented matrix contains a

row of the form

[ |1]

the system is inconsistent. Otherwise, the system will be

consistent. If the system is consistent and the nonzero

rows of the row echelon form of the matrix form a strictly

triangular system, the system will have a unique

solution.

Overdetermined Systems
A linear system is said to be overdetermined if there are

more equations than unknowns. Overdetermined

systems are usually (but not always) inconsistent.

Example 4
Solve each of the following overdetermined systems:

1. 

2. 

0 0 … 0

x1 + x2 = 1

x1 − x2 = 3

−x1 + 2x2 = −2

x1 + 2x2 + x3 = 1

2x1 − x2 + x3 = 2

4x1 + 3x2 + 3x3 = 4

2x1 − x2 + 3x3 = 5



3. 

SOLUTION

Gaussian elimination was applied to put these systems

into row-echelon form (steps not shown). Thus, we may

write

   →   

The last row of the reduced matrix tells us that 

0x1 + 0x2 = 1. Since this is never possible, the system

must be inconsistent. The three equations in system (a)

represent lines in the plane. The first two lines intersect

at the point (2, −1). However, the third line does not

pass through this point. Thus, there are no points that lie

on all three lines (see Figure 1.2.1).

Figure 1.2.1.

x2 + 2x2 + x3 = 1

2x1 − x2 + x3 = 2

4x1 + 3x2 + 3x3 = 4

3x1 + x2 + 2x3 = 3

System (a) :    
⎡⎢⎣ 1 1

1 −1

−1 2∣ 1

3

−2

⎤⎥⎦ ⎡⎢⎣ 1 1

0 1

0 0∣ 1

−1

1

⎤⎥⎦



Figure 1.2.1. Full Alternative Text

   →   

Using back substitution, we see that system (b) has

exactly one solution (0.1, −0.3, 1.5). The solution is

System (b) :    

⎡⎢⎣ 1 2 1

2 −1 1

4 3 3

2 −1 3∣1245⎤⎥⎦ ⎡⎢⎣ 1 2 1

0 1 1
5

0 0 1

0 0 0 ∣ 1

0
3
2

0

⎤⎥⎦
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unique because the nonzero rows of the reduced matrix

form a strictly triangular system.

   →   

Solving for x2 and x1 in terms of x3, we obtain

It follows that the solution set consists of all ordered

triples of the form (1 − 0.6α, −0.2α, α), where α is a

real number. This system is consistent and has infinitely

many solutions because of the free variable x3.

Underdetermined Systems
A system of m linear equations in n unknowns is said to

be underdetermined if there are fewer equations than

unknowns (m < n). Although it is possible for

underdetermined systems to be inconsistent, they are

usually consistent with infinitely many solutions. It is not

possible for an underdetermined system to have a unique

solution. The reason for this is that any row echelon form

of the coefficient matrix will involve r ≤ m nonzero

rows. Thus, there will be r lead variables and n − r free

variables, where n − r ≥ n − m > 0. If the system is

consistent, we can assign the free variables arbitrary

values and solve for the lead variables. Therefore, a

consistent underdetermined system will have infinitely

many solutions.

Example 5
Solve the following underdetermined systems:

System (c) :    

⎡⎢⎣ 1 2 1

2 −1 1

4 3 3

2 −1 2∣1243⎤⎥⎦ ⎡⎢⎣ 1 2 1

0 1 1
5

0 0 0

0 0 0 ∣1000⎤⎥⎦x2 = −0.2x3

x1 = 1 − 2x2 − x3 = 1 − 0.6x3



1. 

2. 

SOLUTION

System (a) is inconsistent. We can think of the two

equations in system (a) as representing planes in 3-

space. Usually, two planes intersect in a line; however, in

this case the planes are parallel.

   →   

System (b) is consistent, and since there are two free

variables, the system will have infinitely many solutions.

In cases such as these, it is convenient to continue the

elimination process and simplify the form of the reduced

matrix even further. We continue eliminating until all

the terms above the leading 1 in each column have been

eliminated. Thus, for system (b), we will continue and

eliminate the first two entries in the fifth column and

then the first element in the fourth column.

 x1 + 2x2 + x3 = 1

2x1 + 4x2 + 2x3 = 3

x1 + x2 + x3 + x4 + x5 = 2

x1 + x2 + x3 + 2x4 + 2x5 = 3

x1 + x2 + x3 + 2x4 + 3x5 = 2

System (a) :     [ ]   →   [ ]
1 2 1

2 4 2∣13 1 2 1

0 0 0∣11System (b) :    
⎡⎢⎣ 1 1 1 1 1

1 1 1 2 2

1 1 1 2 3∣232⎤⎥⎦ ⎡⎢⎣ 1 1 1 1 1

0 0 0 1 1

0 0 0 0 1∣ 2

1

−1

⎤⎥⎦



1.3-11 Full Alternative Text

If we put the free variables over on the right-hand side, it

follows that

Thus, for any real numbers α and β, the 5-tuple

(1 − α − β, α, β, 2, −1)

is a solution of the system.

In the case where the row echelon form of a consistent

system has free variables, the standard procedure is to

continue the elimination process until all the entries

above the leading 1 in each column have been eliminated,

as in system (b) of the previous example. The resulting

reduced matrix is said to be in reduced row echelon

form.

Reduced Row Echelon Form

x1 = 1 − x2 − x3

x4 = 2

x5 = −1
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Definition
A matrix is said to be in reduced row echelon form if

1. The matrix is in row echelon form.

2. The first nonzero entry in each row is the only nonzero entry in its

column.

The following matrices are in reduced row echelon form:

The process of using elementary row operations to

transform a matrix into reduced row echelon form is

called Gauss–Jordan reduction.

Example 6
Use Gauss–Jordan reduction to solve the system

SOLUTION

[ ],      ,      ,     
1 0

0 1

⎡⎢⎣ 1 0 0 3

0 1 0 2

0 0 1 1

⎤⎥⎦ ⎡⎢⎣ 0 1 2 0

0 0 0 1

0 0 0 0

⎤⎥⎦ ⎡⎢⎣ 1 2 0 1

0 0 1 3

0 0 0 0

⎤⎥⎦−x1 + x2 − x3 + 3x4 = 0

3x1 + x2 − x3 − x4 = 0

2x1 − x2 − 2x3 − x4 = 0



1.3-12 Full Alternative Text

If we set x4 equal to any real number α, then 

x1 = α, x2 = −α, and x3 = α. Thus, all ordered 4-

tuples of the form (α, −α, α, α) are solutions of the

system.

Application 1
Traffic Flow
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In the downtown section of a certain city, two sets of

one-way streets intersect as shown in Figure 1.2.2. The

average hourly volume of traffic entering and leaving this

section during rush hour is given in the diagram.

Determine the amount of traffic between each of the four

intersections.

Figure 1.2.2.





Figure 1.2.2. Full Alternative Text

Solution
At each intersection, the number of automobiles entering

must be the same as the number leaving. For example, at

intersection A, the number of automobiles entering is 

x1 + 450 and the number leaving is x2 + 610. Thus,

Similarly,

The augmented matrix for the system is

The reduced row echelon form for this matrix is

The system is consistent, and since there is a free

variable, there are many possible solutions. The traffic

flow diagram does not give enough information to

determine x1, x2, x3, and x4 uniquely. If the amount of

traffic were known between any pair of intersections, the

traffic on the remaining arteries could easily be

calculated. For example, if the amount of traffic between

intersections C and D averages 200 automobiles per

hour, then x4 = 200. Using this value, we can then solve

for x1, x2, and x3:

x1 + 450 = x2 + 610 (intersection A)

x2 + 520 = x3 + 480 (intersection B)

x3 + 390 = x4 + 600 (intersection C)

x4 + 640 = x1 + 310 (intersection D)

⎡⎢⎣ 1 −1 0 0

0 1 −1 0

0 0 1 −1

−1 0 0 1∣ 160

−40

210

−330

⎤⎥⎦⎡⎢⎣ 1 0 0 −1

0 1 0 −1

0 0 1 −1

0 0 0 0∣330

170

210

0

⎤⎥⎦
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Application 2
Electrical Networks

In an electrical network, it is possible to determine the

amount of current in each branch in terms of the

resistances and the voltages. An example of a typical

circuit is given in Figure 1.2.3.

Figure 1.2.3.

x1 = x4 + 330 = 530

x2 = x4 + 170 = 370

x3 = x4 + 210 = 410



Figure 1.2.3. Full Alternative Text

The symbols in the figure have the following meanings:

1.3-13 Full Alternative Text
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The electrical source is usually a battery with a voltage

(measured in volts) that drives a charge and produces a

current. The current will flow out from the terminal of

the battery that is represented by the longer vertical line.

The resistances are measured in ohms. The letters

represent nodes and the i’s represent the currents

between the nodes. The currents are measured in

amperes. The arrows show the direction of the currents.

If, however, one of the currents, say, i2, turns out to be

negative, this would mean that the current along that

branch is in the direction opposite that of the arrow.

To determine the currents, the following rules are used.

Kirchhoff’s Laws

1. At every node, the sum of the incoming currents equals the sum of

the outgoing currents.

2. Around every closed loop, the algebraic sum of the voltage gains

must equal the algebraic sum of the voltage drops.

The voltage drops E for each resistor are given by Ohm’s

law:

E = iR

where i represents the current in amperes and R the

resistance in ohms.

Let us find the currents in the network pictured in Figure

1.2.3. From the first law, we have

By the second law,

The network can be represented by the augmented

matrix

i1 − i2 + i3 = 0     (node A)

−i1 + i2 − i3 = 0     (node B)

4i1 + 2i2 = 8     (top loop)

2i2 + 5i3 = 9     (bottom loop)



This matrix is easily reduced to the row echelon form

Solving by back substitution, we see that i1 = 1, i2 = 2,

and i3 = 2.

Homogeneous Systems
A system of linear equations is said to be homogeneous if

the constants on the right-hand side are all zero.

Homogeneous systems are always consistent. It is

straightforward to find a solution; just set all the

variables equal to zero. Thus, if an m × n homogeneous

system has a unique solution, it must be the trivial

solution (0, 0, … , 0). The homogeneous system in

Example 6 consisted of m = 3 equations in n = 4
unknowns. In the case that n > m, there will always be

free variables and, consequently, additional nontrivial

solutions. This result has essentially been proved in our

discussion of underdetermined systems, but, because of

its importance, we state it as a theorem.

Theorem 1.2.1
An m × n homogeneous system of linear equations has

a nontrivial solution if n > m.

Proof

⎡⎢⎣ 1 −1 1

−1 1 −1

4 2 0

0 2 5∣0089⎤⎥⎦⎡⎢⎣ 1 −1 1

0 1 − 2
3

0 0 1

0 0 0∣0
4
3

1

0

⎤⎥⎦



A homogeneous system is always consistent. The row

echelon form of the matrix can have at most m nonzero

rows. Thus, there are at most m lead variables. Since

there are n variables altogether and n > m, there must

be some free variables. The free variables can be assigned

arbitrary values. For each assignment of values to the

free variables, there is a solution of the system.

∎

Application 3
Chemical Equations

In the process of photosynthesis, plants use radiant

energy from sunlight to convert carbon dioxide (CO2)
and water (H2O) into glucose (C6H12O6) and oxygen 

(O2). The chemical equation of the reaction is of the

form

x1CO2 + x2H2O → x3O2 + x4C6H12O6

To balance the equation, we must choose x1, x2, x3, and 

x4 so that the numbers of carbon, hydrogen, and oxygen

atoms are the same on each side of the equation. Since

carbon dioxide contains one carbon atom and glucose

contains six, to balance the carbon atoms we require that

x1 = 6x4

Similarly, to balance the oxygen, we need

2x1 + x2 = 2x3 + 6x4

and finally, to balance the hydrogen, we need

2x2 = 12x4

If we move all the unknowns to the left-hand sides of the

three equations, we end up with the homogeneous linear

system



By Theorem 1.2.1, the system has nontrivial solutions. To

balance the equation, we must find solutions (x1, x2, x3,

x4) whose entries are nonnegative integers. If we solve

the system in the usual way, we see that x4 is a free

variable and

x1 = x2 = x3 = 6x4

In particular, if we take x4 = 2, then 

x1 = x2 = x3 = 6 and the equation takes the form

6CO2 + 6H2O → 6O2 + C6H12O6

Application 4
Economic Models for Exchange of Goods

Suppose that in a primitive society the members of a

tribe are engaged in three occupations: farming,

manufacturing of tools and utensils, and weaving and

sewing of clothing. Assume that initially the tribe has no

monetary system and that all goods and services are

bartered. Let us denote the three groups by F, M, and C,

and suppose that the directed graph in Figure 1.2.4

indicates how the bartering system works in practice.

Figure 1.2.4.

x1 − 6x4 = 0

2x1 + x2 − 2x3 − 6x4 = 0

2x2 − 12x4 = 0



Figure 1.2.4. Full Alternative Text
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The figure indicates that the farmers keep half of their

produce and give one-fourth of their produce to the

manufacturers and one-fourth to the clothing producers.

The manufacturers divide the goods evenly among the

three groups, one-third going to each group. The group

producing clothes gives half of the clothes to the farmers

and divides the other half evenly between the

manufacturers and themselves. The result is summarized

in the following table:

The first column of the table indicates the distribution of

the goods produced by the farmers, the second column

indicates the distribution of the manufactured goods,

and the third column indicates the distribution of the

clothing.

As the size of the tribe grows, the system of bartering

becomes too cumbersome and, consequently, the tribe

decides to institute a monetary system of exchange. For

this simple economic system, we assume that there will

be no accumulation of capital or debt and that the prices

for each of the three types of goods will reflect the values

of the existing bartering system. The question is how to

assign values to the three types of goods that fairly

represent the current bartering system.



The problem can be turned into a linear system of

equations using an economic model that was originally

developed by the Nobel Prize–winning economist

Wassily Leontief. For this model, we will let x1 be the

monetary value of the goods produced by the farmers, x2

be the value of the manufactured goods, and x3 be the

value of all the clothing produced. According to the first

row of the table, the value of the goods received by the

farmers amounts to half the value of the farm goods

produced, plus one-third the value of the manufactured

products, and half the value of the clothing goods. Thus,

the total value of goods received by the farmer is 

1
2 x1 + 1

3 x2 + 1
2 x3. If the system is fair, the total value

of goods received by the farmers should equal x1, the

total value of the farm goods produced. Hence, we have

the linear equation

1

2
x1 +

1

3
x2 +

1

2
x3 = x1

Using the second row of the table and equating the value

of the goods produced and received by the

manufacturers, we obtain a second equation:

1

4
x1 +

1

3
x2 +

1

4
x3 = x2

Finally, using the third row of the table, we get

1

4
x1 +

1

3
x2 +

1

4
x3 = x3

These equations can be rewritten as a homogeneous

system:

The reduced row echelon form of the augmented matrix

for this system is

− 1
2

x1 + 1
3

x2 + 1
2

x3 = 0
1
4

x1 − 2
3

x2 + 1
4

x3 = 0
1
4

x1 + 1
3

x2 − 3
4

x3 = 0



There is one free variable: x3. Setting x3 = 3, we obtain

the solution (5, 3, 3), and the general solution consists of

all multiples of (5, 3, 3). It follows that the variables x1, 

x2, and x3 should be assigned values in the ratio

x1 : x2 : x3 = 5 : 3 : 3

This simple system is an example of the closed Leontief

input–output model. Leontief’s models are fundamental

to our understanding of economic systems. Modern

applications would involve thousands of industries and

lead to very large linear systems. The Leontief models

will be studied in greater detail later in Section 6.8 of the

book.

⎡⎢⎣ 1 0 − 5
3

0 1 −1

0 0 0 ∣000⎤⎥⎦



Section 1.2 Exercises

1. Which of the matrices that follow are in row echelon form? Which

are in reduced row echelon form?

1. 

[ ]

2. 

3. 

4. 

5. 

6. 

7. 

8. 

2. The augmented matrices that follow are in row echelon form. For

each case, indicate whether the corresponding linear system is

consistent. If the system has a unique solution, find it.

1 2 3 4

0 0 1 2

⎡⎢⎣ 1 0 0

0 0 0

0 0 1

⎤⎥⎦⎡⎢⎣ 1 3 0

0 0 1

0 0 0

⎤⎥⎦⎡⎢⎣ 0 1

0 0

0 0

⎤⎥⎦⎡⎢⎣ 1 1 1

0 1 2

0 0 3

⎤⎥⎦⎡⎢⎣ 1 4 6

0 0 1

0 1 3

⎤⎥⎦⎡⎢⎣ 1 0 0 1 2

0 1 0 2 4

0 0 1 3 6

⎤⎥⎦⎡⎢⎣ 0 1 3 4

0 0 1 3

0 0 0 0

⎤⎥⎦



1. 

2. 

3. 

4. 

5. 

6. 

3. The augmented matrices that follow are in reduced row echelon

form. In each case, find the solution set to the corresponding

linear system.

1. 

2. 

3. 

4. 

[ ]

⎡⎢⎣ 1 2

0 1

0 0∣431⎤⎥⎦⎡⎢⎣ 1 3

0 1

0 0∣ 1

−1

0

⎤⎥⎦⎡⎢⎣ 1 −2 4

0 0 1

0 0 0∣130⎤⎥⎦⎡⎢⎣ 1 −2 2

0 1 −1

0 0 1∣−2

3

2

⎤⎥⎦⎡⎢⎣ 1 3 2

0 0 1

0 0 0∣−2

4

1

⎤⎥⎦⎡⎢⎣ 1 −1 3

0 1 2

0 0 1

0 0 0∣8720⎤⎥⎦⎡⎢⎣ 1 0 0

0 1 0

0 0 1∣−2

5

3

⎤⎥⎦⎡⎢⎣ 1 4 0

0 0 1

0 0 0∣231⎤⎥⎦⎡⎢⎣ 1 −3 0

0 0 1

0 0 0∣ 2

−2

0

⎤⎥⎦1 2 0 1

0 0 1 3∣54



5. 

6. 

4. For each of the systems in Exercise 3, make a list of the lead

variables and a second list of the free variables.

5. For each of the systems of equations that follow, use Gaussian

elimination to obtain an equivalent system whose coefficient

matrix is in row echelon form. Indicate whether the system is

consistent. If the system is consistent and involves no free

variables, use back substitution to find the unique solution. If the

system is consistent and there are free variables, transform it to

reduced row echelon form and find all solutions.

1. 

2. 

3. 

4. 

5. 

6. 

⎡⎢⎣ 1 5 −2 0

0 0 0 1

0 0 0 0

0 0 0 0∣3600⎤⎥⎦⎡⎢⎣ 0 1 0

0 0 1

0 0 0∣ 2

−1

0

⎤⎥⎦x1 − 2x2 = 3

2x1 − x2 = 9

2x1 − 3x2 = 5

−4x1 + 6x2 = 8

x1 + x2 = 0

2x1 + 3x2 = 0

3x1 − 2x2 = 0

3x1 + 2x2 − x3 = 4

x1 − 2x2 + 2x3 = 1

11x1 + 2x2 + x3 = 14

2x1 + 3x2 + x3 = 1

x1 + x2 + x3 = 3

3x1 + 4x2 + 2x3 = 4

x1 − x2 + 2x3 = 4

2x1 + 3x2 − x3 = 1

7x1 + 3x2 + 4x3 = 7



7. 

8. 

9. 

10. 

11. 

12. 

6. Use Gauss–Jordan reduction to solve each of the following

systems:

1. 

2. 

3. 

4. 

x1 + x2 + x3 + x4 = 0

2x1 + 3x2 − x3 − x4 = 2

3x1 + 2x2 + x3 + x4 = 5

3x1 + 6x2 − x3 − x4 = 4

x1 − 2x2 = 3

2x1 + x2 = 1

−5x1 + 8x2 = 4

−x1 + 2x2 − x3 = 2

−2x1 + 2x2 + x3 = 4

3x1 + 2x2 + 2x3 = 5

−3x1 + 8x2 + 5x3 = 17

x1 + 2x2 − 3x3 + x4 = 1

−x1 − x2 + 4x3 − x4 = 6

−2x1 − 4x2 + 7x3 − x4 = 1

x1 + 3x2 + x3 + x4 = 3

2x1 − 2x2 + x3 + 2x4 = 8

x1 − 5x2 + x4 = 5

x1 − 3x2 + x3 = 1

2x1 + x2 − x3 = 2

x1 + 4x2 − 2x3 = 1

5x1 − 8x2 + 2x3 = 5

x1 + x2 = −1

4x1 − 3x2 = 3

x1 + 3x2 + x3 + x4 = 3

2x1 − 2x2 + x3 + 2x4 = 8

3x1 + x2 + 2x3 − x4 = −1

x1 + x2 + x3 = 0

x1 − x2 − x3 = 0

x1 + x2 + x3 + x4 = 0

2x1 + x2 − x3 + 3x4 = 0

x1 − 2x2 + x3 + x4 = 0



7. Give a geometric explanation of why a homogeneous linear system

consisting of two equations in three unknowns must have

infinitely many solutions. What are the possible numbers of

solutions of a nonhomogeneous 2 × 3 linear system? Give a

geometric explanation of your answer.

8. Consider a linear system whose augmented matrix is of the form

For what values of a will the system have a unique solution?

9. Consider a linear system whose augmented matrix is of the form

1. Is it possible for the system to be inconsistent? Explain.

2. For what values of β will the system have infinitely many

solutions?

10. Consider a linear system whose augmented matrix is of the form

1. For what values of a and b will the system have infinitely

many solutions?

2. For what values of a and b will the system be

inconsistent?

11. Given the linear systems

1. 

2. 

solve both systems by incorporating the right-hand sides into a 

2 × 2 matrix B and computing the reduced row echelon form of

(A|B) = [ ]

12. Given the linear systems

⎡⎢⎣ 1 2 1

−1 4 3

2 −2 a∣123⎤⎥⎦⎡⎢⎣ 1 2 1

2 5 3

−1 1 β∣000⎤⎥⎦⎡⎢⎣ 1 1 3

1 2 4

1 3 a∣23b⎤⎥⎦x1 + 2x2 = 2

3x1 + 7x2 = 8

x1 + 2x2 = 1

3x1 + 7x2 = 7

1 2

3 7∣2 1

8 7



1. 

2. 

solve both systems by computing the row echelon form of an

augmented matrix (A|B) and performing back substitution twice.

13. Given a homogeneous system of linear equations, if the system is

overdetermined, what are the possibilities as to the number of

solutions? Explain.

14. Given a nonhomogeneous system of linear equations, if the system

is underdetermined, what are the possibilities as to the number of

solutions? Explain.

15. Determine the values of x1, x2, x3, x4 for the following traffic flow

diagram:

x1 + 2x2 + x3 = 2

−x1 − x2 + 2x3 = 3

2x1 + 3x2 = 0

x1 + 2x2 + x3 = −1

−x1 − x2 + 2x3 = 2

2x1 + 3x2 = −2



1.4-15 Full Alternative Text

16. Consider the traffic flow diagram that follows, where a1, a2, a3, a4

, b1, b2, b3, b4 are fixed positive integers. Set up a linear system in

the unknowns x1, x2, x3, x4 and show that the system will be

consistent if and only if

b b b b
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a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

What can you conclude about the number of automobiles entering

and leaving the traffic network?

1.4-16 Full Alternative Text

17. Let (c1, c2) be a solution of the 2 × 2 system
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Show that for any real number α, the ordered pair (αc1, αc2) is

also a solution.

18. In Application 3, the solution (6, 6, 6, 1) was obtained by setting

the free variable x4 = 1.

1. Determine the solution corresponding to x4 = 0. What

information, if any, does this solution give about the

chemical reaction? Is the term “trivial solution”

appropriate in this case?

2. Choose some other values of x4, such as 2, 4, or 5, and

determine the corresponding solutions. How are these

nontrivial solutions related?

19. Liquid benzene burns in the atmosphere. If a cold object is placed

directly over the benzene, water will condense on the object and a

deposit of soot (carbon) will also form on the object. The chemical

equation for this reaction is of the form

x1C6H6 + x2O2 → x3C + x4H2O

Determine values of x1, x2, x3, and x4 to balance the equation.

20. Nitric acid is prepared commercially by a series of three chemical

reactions. In the first reaction, nitrogen (N2) is combined with

hydrogen (H2) to form ammonia (NH3). Next, the ammonia is

combined with oxygen (O2) to form nitrogen dioxide (NO2) and

water. Finally, the NO  reacts with some of the water to form nitric

acid (HNO3) and nitric oxide (NO). The amounts of each of the

components of these reactions are measured in moles (a standard

unit of measurement for chemical reactions). How many moles of

nitrogen, hydrogen, and oxygen are necessary to produce eight

moles of nitric acid?

21. In Application 4, determine the relative values of x1, x2, and x3 if

the distribution of goods is as described in the following table:

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

2



22. Determine the amount of each current for the following networks:

1.  

1.4-18 Full Alternative Text
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2.  

1.4-19 Full Alternative Text

3.  
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1.4-20 Full Alternative Text
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1.3 Matrix Arithmetic
In this section, we introduce the standard notations used

for matrices and vectors and define arithmetic

operations (addition, subtraction, and multiplication)

with matrices. We will also introduce two additional

operations: scalar multiplication and transposition. We

will see how to represent linear systems as equations

involving matrices and vectors and then derive a

theorem characterizing when a linear system is

consistent.

The entries of a matrix are called scalars. They are

usually either real or complex numbers. For the most

part, we will be working with matrices whose entries are

real numbers. Throughout the first five chapters of the

book, the reader may assume that the term scalar refers

to a real number. However, in Chapter 6 there will be

occasions when we will use the set of complex numbers

as our scalar field.

Matrix Notation
If we wish to refer to matrices without specifically

writing out all their entries, we will use uppercase A, B,

C, and so on. In general, aij will denote the entry of the

matrix A that is in the ith row and the jth column. We

will refer to this entry as the (i, j) entry of A. Thus, if A is

an m × n matrix, then

A =

⎡⎢⎣ a11 a12 … a1n

a21 a22 … a2n

⋮
am1 am2 … amn

⎤⎥⎦



We will sometimes shorten this to A = (aij). Similarly,

a matrix B may be referred to as (bij), a matrix C as (cij),

and so on.

Vectors
Matrices that have only one row or one column are of

special interest, since they are used to represent

solutions of linear systems. A solution of a system of m

linear equations in n unknowns is an n-tuple of real

numbers. We will refer to an n-tuple of real numbers as a

vector. If an n-tuple is represented in terms of a 1 × n

matrix, then we will refer to it as a row vector.

Alternatively, if the n-tuple is represented by an n × 1
matrix, then we will refer to it as a column vector. For

example, the solution of the linear system

can be represented by the row vector (2, 1) or the column

vector [ ].

In working with matrix equations, it is generally more

convenient to represent the solutions in terms of column

vectors (n × 1 matrices). The set of all n × 1 matrices

of real numbers is called Euclidean n-space and is

usually denoted by Rn
. Since we will be working almost

exclusively with column vectors in the future, we will

generally omit the word “column” and refer to the

elements of Rn
 as simply vectors, rather than as column

vectors. The standard notation for a column vector is a

boldface lowercase letter, as in

x =

x1 + x2 = 3
x1 − x2 = 1

2
1

⎡⎢⎣ x1

x2

⋮
xn

⎤⎥⎦



(1)

For row vectors, there is no universal standard notation.

In this book, we will represent both row and column

vectors with boldface lowercase letters and to distinguish

a row vector from a column vector we will place a

horizontal arrow above the letter. Thus, the horizontal

arrow indicates an horizontal array (row vector) rather

than a vertical array (column vector). For example,

are row and column vectors, respectively, with four

entries each.

Given an m × n matrix A, it is often necessary to refer

to a particular row or column. The standard notation for

the jth column vector of A is aj. There is no universally

accepted standard notation for the ith row vector of a

matrix A. In this book, since we use horizontal arrows to

indicate row vectors, we denote the ith row vector of A by

→ai.

If A is an m × n matrix, then the row vectors of A are

given by

and the column vectors are given by

The matrix A can be represented in terms of either its

column vectors or its row vectors:

→x = (x1, x2, x3, x4)   and   y =

⎡⎢⎣ y1

y2

y3

y4

⎤⎥⎦→ai = (ai1, ai2, … , ain) i = 1, … , m

aj =     j = 1, … , n

⎡⎢⎣ a1j

a2j

⋮
amj

⎤⎥⎦



Similarly, if B is an n × r matrix, then

B = (b1, b2, … , br) =

Example 1
If

A = [ ]

then

and

Equality
For two matrices to be equal, they must have the same

dimensions and their corresponding entries must agree.

Definition
Two m × n matrices A and B are said to be equal if 

aij = bij for each i and j.

A = (a1, a2, … , an)    or    A =

⎡⎢⎣ →a1

→a1

⋮
→am

⎤⎥⎦⎡⎢⎣ →b1

→b2

⋮
→bn

⎤⎥⎦3 2 5
−1 8 4

a1 = [ ], a2 = [ ], a3 = [ ]
3

−1
2
8

5
4

→a1 = (3, 2, 5), →a2 = (−1, 8, 4)



Scalar Multiplication
If A is a matrix and α is a scalar, then αA is the matrix

formed by multiplying each of the entries of A by α.

Definition
If A is an m × n matrix and α is a scalar, then αA is the 

m × n matrix whose (i, j) entry is αaij.

For example, if

A = [ ]

then

Matrix Addition
Two matrices with the same dimensions can be added by

adding their corresponding entries.

Definition
If A = (aij) and B = (bij) are both m × n matrices,

then the sum A + B is the m × n matrix whose (i, j)
entry is aij + bij for each ordered pair (i, j).

For example,

4 8 2
6 8 10

1
2

A = [ ]    and    3A = [ ]
2 4 1
3 4 5

12 24 6
18 24 30

[ ] + [ ] = [ ]

+ =

3 2 1
4 5 6

2 2 2
1 2 3

5 4 3
5 7 9

⎡⎢⎣ 2
1
8

⎤⎥⎦ ⎡⎢⎣ −8
3
2

⎤⎥⎦ ⎡⎢⎣ −6
4

10

⎤⎥⎦



If we define A − B to be A + (−1)B, then it turns out

that A − B is formed by subtracting the corresponding

entry of B from each entry of A. Thus,

If O represents the matrix, with the same dimensions as

A, whose entries are all 0, then

A + O = O + A = A

We will refer to O as the zero matrix. It acts as an

additive identity on the set of all m × n matrices.

Furthermore, each m × n matrix A has an additive

inverse. Indeed,

A + (−1)A = O = (−1)A + A

It is customary to denote the additive inverse by −A.

Thus,

−A = (−1)A

Matrix Multiplication and

Linear Systems
We have yet to define the most important operation: the

multiplication of two matrices. Much of the motivation

behind the definition comes from the applications to

linear systems of equations. If we have a system of one

linear equation in one unknown, it can be written in the

form

ax = b

(2)

[ ] − [ ] = [ ] + (−1)[ ]

= [ ] + [ ]

= [ ]

= [ ]

2 4
3 1

4 5
2 3

2 4
3 1

4 5
2 3

2 4
3 1

−4 −5
−2 −3

2 − 4 4 − 5
3 − 2 1 − 3
−2 −1

1 −2



We generally think of a, x, and b as being scalars;

however, they could also be treated as 1 × 1 matrices.

Our goal now is to generalize equation (2) so that we can

represent an m × n linear system by a single matrix

equation of the form

Ax = b

where A is an m × n matrix, x is an unknown vector in 

Rn
, and b is in Rm

. We consider first the case of one

equation in several unknowns.

Case 1. One Equation in Several Unknowns

Let us begin by examining the case of one equation in

several variables. Consider, for example, the equation

3x1 + 2x2 + 5x3 = 4

If we set

and define the product Ax by

Ax = [ ]    = 3x1 + 2x2 + 5x3

then the equation 3x1 + 2x2 + 5x3 = 4 can be written

as the matrix equation

Ax = 4

For a linear equation with n unknowns of the form

a1x1 + a2x2 + ⋯ + anxn = b

if we let

A = [ ]    and    x =3 2 5
⎡⎢⎣ x1

x2

x3

⎤⎥⎦3 2 5
⎡⎢⎣ x1

x2

x3

⎤⎥⎦A = [ ]   and   x =a1 a2 … an

⎡⎢⎣ x1

x2

⋮
xn

⎤⎥⎦



and define the product Ax by

Ax = a1x1 + a2x2 + ⋯ + anxn

then the system can be written in the form Ax = b.

For example, if

then

Ax = 2 ⋅ 3 + 1 ⋅ 2 + (−3) ⋅ 1 + 4 ⋅ (−2) = −3

Note that the result of multiplying a row vector on the

left by a column vector on the right is a scalar.

Consequently, this type of multiplication is often referred

to as a scalar product.

Case 2. M Equations in N Unknowns

Consider now an m × n linear system

(3)

It is desirable to write the system (3) in a form similar to

(2), that is, as a matrix equation

Ax = b

(4)

where A = (aij) is known, x is an n × 1 matrix of

unknowns, and b is an m × 1 matrix representing the

right-hand side of the system. Thus, if we set

A = [ ]   and   x =2 1 −3 4

⎡⎢⎣ 3
2
1

−2

⎤⎥⎦a11x1 + a12x2 + ⋯ + a1nxn = b1

a21x1 + a22x2 + ⋯ + a2nxn = b2

⋮
am1x1 + am2x2 + ⋯ + amnxn = bm



and define the product Ax by

Ax =

(5)

then the linear system of equations (3) is equivalent to

the matrix equation (4).

Given an m × n matrix A and a vector x in Rn
, it is

possible to compute a product Ax by (5). The product Ax

will be an m × 1 matrix, that is, a vector in Rm
. The rule

for determining the ith entry of Ax is

ai1x1 + ai2x2 + ⋯ + ainxn

which is equal to →aix, the scalar product of the ith row

vector of A and the column vector x. Thus,

Ax =

Example 2

Example 3

A = ,     x = ,     b =

⎡⎢⎣ a11 a12 … a1n

a21 a22 … a2n

⋮
am1 am2 … amn

⎤⎥⎦ ⎡⎢⎣ x1

x2

⋮
xn

⎤⎥⎦ ⎡⎢⎣ b1

b2

⋮
bm

⎤⎥⎦⎡⎢⎣ a11x1 + a12x2 + ⋯ + a1nxn

a21x1 + a22x2 + ⋯ + a2nxn

⋮
am1x1 + am2x2 + ⋯ + amnxn

⎤⎥⎦⎡⎢⎣ →a1x

→a2x

⋮
→anx

⎤⎥⎦A = [ ],    x =

Ax = [ ]

4 2 1
5 3 7

⎡⎢⎣ x1

x2

x3

⎤⎥⎦4x1 + 2x2 + x3

5x1 + 3x2 + 7x3



Example 4
Write the following system of equations as a matrix

equation of the form Ax = b:

SOLUTION

       =   

An alternative way to represent the linear system (3) as a

matrix equation is to express the product Ax as a sum of

column vectors:

Thus, we have

Ax = x1a1 + x2a2 + ⋯ + xnan

(6)

Using this formula, we can represent the system of

equations (3) as a matrix equation of the form

x1a1 + x2a2 + ⋯ + xnan = b

A = ,      x = [ ]

Ax = =

⎡⎢⎣ −3 1
2 5
4 2

⎤⎥⎦ 2
4

⎡⎢⎣ −3 ⋅ 2 + 1 ⋅ 4
2 ⋅ 2 + 5 ⋅ 4
4 ⋅ 2 + 2 ⋅ 4

⎤⎥⎦ ⎡⎢⎣ −2
24
16

⎤⎥⎦3x1 + 2x2 + x3 = 5
x1 − 2x2 + 5x3 = −2

2x1 + x2 − 3x3 = 1

⎡⎢⎣ 3 2 1
1 −2 5
2 1 −3

⎤⎥⎦ ⎡⎢⎣ x1

x2

x3

⎤⎥⎦ ⎡⎢⎣ 5
−2

1

⎤⎥⎦Ax =

= x1 + x2 + ⋯ + xn

⎡⎢⎣ a11x1 + a12x2 + ⋯ + a1nxn

a21x1 + a22x2 + ⋯ + a2nxn

⋮
am1x1 + am2x2 + ⋯ + amnxn

⎤⎥⎦⎡⎢⎣ a11

a21

⋮
am1

⎤⎥⎦ ⎡⎢⎣ a12

a22

⋮
am2

⎤⎥⎦ ⎡⎢⎣ a1n

a2n

⋮
amn

⎤⎥⎦



(7)

Example 5
The linear system

can be written as a matrix equation

x1[ ] + x2[ ] + x3[ ] = [ ]

Definition
If a1, a2, … , an are vectors in Rm

 and c1, c2, …, cn are

scalars, then a sum of the form

c1a1 + c2a2 + ⋯ + cnan

is said to be a linear combination of the vectors 

a1, a2, … , an.

It follows from equation (6) that the product Ax is a

linear combination of the column vectors of A. Some

books even use this linear combination representation as

the definition of matrix vector multiplication.

If A is an m × n matrix and x is a vector in R
n

, then

Ax = x1a1 + x2a2 + ⋯ + xnan

Example 6
If we choose x1 = 2, x2 = 3, and x3 = 4 in Example 5,

then

[ ] = 2[ ] + 3[ ]+4[ ]

2x1 + 3x2 − 2x3 = 5
5x1 − 4x2 + 2x3 = 6

2
5

3
−4

−2
2

5
6

5
6

2
5

3
−4

−2
2



Thus, the vector [ ] is a linear combination of the three

column vectors of the coefficient matrix. It follows that

the linear system in Example 5 is consistent and

x =

is a solution of the system.

The matrix equation (7) provides a nice way of

characterizing whether a linear system of equations is

consistent. Indeed, the following theorem is a direct

consequence of (7).

Theorem 1.3.1 Consistency

Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b

can be written as a linear combination of the column

vectors of A.

Example 7
The linear system

is inconsistent since the vector [ ] cannot be written as

a linear combination of the column vectors [ ] and [ ]

. Note that any linear combination of these vectors would

be of the form

x1[ ] + x2[ ] = [ ]

5
6

⎡⎢⎣ 2
3
4

⎤⎥⎦x1 + 2x2 = 1
2x1 + 4x2 = 1

1
1

1
2

2
4

1
2

2
4

x1 + 2x2

2x1 + 4x2



and hence the second entry of the vector must be double

the first entry.

Matrix Multiplication
More generally, it is possible to multiply a matrix A times

a matrix B if the number of columns of A equals the

number of rows of B. The first column of the product is

determined by the first column of B; that is, the first

column of AB is Ab1, the second column of AB is Ab2,

and so on. Thus, the product AB is the matrix whose

columns are Ab1, Ab2, … , Abn.

AB = (Ab1, Ab2, … , Abn)

The (i, j) entry of AB is the ith entry of the column vector 

Abj. It is determined by multiplying the ith row vector

of A times the jth column vector of B.

Definition
If A = (aij) is an m × n matrix and B = (bij) is an 

n × r matrix, then the product AB = C = (cij) is the 

m × r matrix whose entries are defined by

cij = →aibj =
n

∑
k=1

aikbkj

Example 8
If

then

A =    and    B = [ ]
⎡⎢⎣ 3 −2

2 4
1 −3

⎤⎥⎦ −2 1 3
4 1 6



1.5-21 Full Alternative Text

The shading indicates how the (2, 3) entry of the product

AB is computed as a scalar product of the second row

vector of A and the third column vector of B. It is also

possible to multiply B times A; however, the resulting

matrix BA is not equal to AB. In fact, AB and BA do not

even have the same dimensions.

Example 9

BA = [ ]

= [ ]

−2 ⋅ 3 + 1 ⋅ 2 + 3 ⋅ 1 −2 ⋅ (−2) + 1 ⋅ 4 + 3 ⋅ (−3)
4 ⋅ 3 + 1 ⋅ 2 + 6 ⋅ 1 4 ⋅ (−2) + 1 ⋅ 4 + 6 ⋅ (−3)

−1 −2
20 −22

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-014.xhtml#la_unfig01-014


If

then it is impossible to multiply A times B, since the

number of columns of A does not equal the number of

rows of B. However, it is possible to multiply B times A.

BA =   [ ] =

If A and B are both n × n matrices, then AB and BA will

also be n × n matrices, but, in general, they will not be

equal. Multiplication of matrices is not commutative.

Example 10
If

then

AB = [ ]  [ ] = [ ]

and

BA = [ ]  [ ] = [ ]

Hence, AB ≠ BA.

Application 1
Production Costs

A = [ ]    and    B =
3 4
1 2

⎡⎢⎣ 1 2
4 5
3 6

⎤⎥⎦⎡⎢⎣ 1 2
4 5
3 6

⎤⎥⎦ 3 4
1 2

⎡⎢⎣ 5 8
17 26
15 24

⎤⎥⎦A = [ ]    and    B = [ ]
1 1
0 0

1 1
2 2

1 1
0 0

1 1
2 2

3 3
0 0

1 1
2 2

1 1
0 0

1 1
2 2



A company manufactures three products. Its production

expenses are divided into three categories. In each

category, an estimate is given for the cost of producing a

single item of each product. An estimate is also made of

the amount of each product to be produced per quarter.

These estimates are given in Tables 1.3.1 and 1.3.2. At its

stockholders’ meeting the company would like to present

a single table showing the total costs for each quarter in

each of the three categories: raw materials, labor, and

overhead.

Table 1.3.1 Production Costs

per Item (dollars)

ExpensesProduct
A B C

Raw materials 0.10 0.30 0.15

Labor 0.30 0.40 0.25

Overhead and miscellaneous 0.10 0.20 0.15

Table 1.3.2 Amount Produced

per Quarter

ProductSeason
SummerFallWinterSpring

A 4000 4500 4500 4000

B 2000 2600 2400 2200

C 5800 6200 6000 6000



Solution
Let us consider the problem in terms of matrices. Each of

the two tables can be represented by a matrix, namely,

M =

and

P =

If we form the product MP, the first column of MP will

represent the costs for the summer quarter:

The costs for the fall quarter are given in the second

column of MP:

Columns 3 and 4 of MP represent the costs for the winter

and spring quarters.

MP =

The entries in row 1 of MP represent the total cost of raw

materials for each of the four quarters. The entries in

rows 2 and 3 represent the total cost for labor and

overhead, respectively, for each of the four quarters. The

yearly expenses in each category may be obtained by

adding the entries in each row. The numbers in each of

the columns may be added to obtain the total production

costs for each quarter. Table 1.3.3 summarizes the total

production costs.

⎡⎢⎣ 0.10 0.30 0.15
0.30 0.40 0.25
0.10 0.20 0.15

⎤⎥⎦⎡⎢⎣ 4000 4500 4500 4000
2000 2600 2400 2200
5800 6200 6000 6000

⎤⎥⎦Raw materials: (0.10)(4000) + (0.30)(2000) + (0.15)(5800) = 1870
Labor: (0.30)(4000) + (0.40)(2000) + (0.25)(5800) = 3450
Overhead and miscellaneous: (0.10)(4000) + (0.20)(2000) + (0.15)(5800) = 1670

Raw materials: (0.10)(4500) + (0.30)(2600) + (0.15)(6200) = 2160
Labor: (0.30)(4500) + (0.40)(2600) + (0.25)(6200) = 3940
Overhead and miscellaneous: (0.10)(4500) + (0.20)(2600) + (0.15)(6200) = 1900

⎡⎢⎣ 1870 2160 2070 1960
3450 3940 3810 3580
1670 1900 1830 1740

⎤⎥⎦



Table 1.3.3

Season
SummerFallWinterSpringYear

Raw materials
187

0

216

0

207

0

196

0
8060

Labor
345

0

394

0

381

0

358

0

14,78

0

Overhead and 

miscellaneous

167

0

190

0

183

0

174

0
7140

Total production costs
699

0

800

0

771

0

728

0

29,98

0

Application 2
Management Science—Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a common

technique that is used for analyzing complex decisions.

The technique was developed by T. L. Saaty during the

1970s. AHP is used in a wide variety of areas including

business, industry, government, education, and health

care. The technique is applied to problems with a specific

goal and a fixed number of alternatives for achieving the

goal. The decision as to which alternative to pick is based

on a list of evaluation criteria. In the case of more

complex decisions, each evaluation criterion could have a

list of subcritera and these, in turn, could also have

subcriteria, and so on. Thus for complex decisions, one

could have a multilayered hierarchy of decision criteria.

To illustrate how AHP actually works, we consider a

simple example. A search and screen committee in the

Mathematics Department of a state university is

conducting a screening process to fill a full professor

position in the department. The committee does a



preliminary round of screening and narrows the pool

down to three candidates: Dr. Gauss, Dr. O’Leary, and

Dr. Taussky. After interviewing the finalists, the

committee must pick the candidate best qualified for the

position. To do this, they must evaluate each of the

candidates in terms of the following criteria: Research,

Teaching Ability, and Professional Activities. The

hierarchal structural of the decision-making process is

illustrated in Figure 1.3.1.

Figure 1.3.1.



Analytic Hierarchy Process

Figure 1.3.1. Full Alternative Text

The first step of the AHP process is to determine the

relative importance of the three areas of evaluation. This

can be done using pairwise comparisons. Suppose, for

example, that the committee decides that Research and

Teaching should be given equal importance and that

both of these categories are twice as important as the

category of Professional Activities. These relative ratings

can be expressed mathematically by assigning the

weights 0.40, 0.40, and 0.20 to the respective categories

of evaluation. Note that the weights of the first two

evaluation criteria are equal and have double the weight

of the third. Note also that the weights are chosen so that

they all add up to 1. The weight vector

w =

provides a numerical representation of the relative

importance of the search criteria.

The next step in the process is to assign relative ratings

or weights to the three candidates for each of the criteria

in our list. Methods for assigning these weights may be

either quantitative or qualitative. For example, one could

do a quantitative evaluation of research using weights

based on the total number of pages published by the

candidates in research journals. Thus if Gauss has

published 500 pages, O’Leary 250 pages, and Taussky

250 pages, then one could obtain weights by dividing

each of these page counts by 1000 (the combined page

count for all three individuals). Thus, the quantitative

weights produced in this manner would be 0.50, 0.25,

and 0.25. The quantitative method does not factor in

differences in the quality of the publications.

Determining qualitative weights involves making some

judgments, but the process need not be entirely

⎡⎢⎣ 0.40
0.40
0.20

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig01-03-001.xhtml#la_fig01-03-001


subjective. Later in the text (in Chapters 5 and 6), we will

revisit this example and discuss how to determine

qualitative weights. The methods we will consider

involve making pairwise comparisons and then using

advanced matrix techniques to assign weights based on

those comparisons.

Another way the committee could refine the search

process would be to break up the research criteria into

two subclasses, quantitative research and qualitative

research. In this case, one would add a subcriteria row to

Figure 1.3.1 directly below the row for criteria. We will

incorporate this refinement later when we revisit the

AHP application in Section 3 of Chapter 5.

For now, let us assume that the search committee has

determined the relative weights for each of the three

criteria and that those weights are specified in Figure

1.3.2. The relative ratings for the candidates for research,

teaching, and professional activities are given by the

vectors

Figure 1.3.2.

a1 = , a2 = , a3 =
⎡⎢⎣ 0.50

0.25
0.25

⎤⎥⎦ ⎡⎢⎣ 0.20
0.50
0.30

⎤⎥⎦ ⎡⎢⎣ 0.25
0.50
0.25

⎤⎥⎦



AHP Diagram with Weights

Figure 1.3.2. Full Alternative Text

To determine the overall ranking for the candidates, we

multiply each of these vectors by the corresponding

weights w1, w2, w3 and add.

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig01-03-002.xhtml#la_fig01-03-002


r = w1a1 + w2a2 + w3a3 = 0.40  + 0.40  + 0.20  =

Note that if we set A = [ ], then the vector r

of relative ratings is determined by multiplying the

matrix A times the vector w.

r = Aw =    =

In this example, the second candidate has the highest

relative rating, so the committee eliminates Gauss and

Taussky and offers the position to O’Leary. If O’Leary

refuses the offer, then next in line is Gauss, the candidate

with the second highest rating.

Reference

1. Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, 1980

Notational Rules
Just as in ordinary algebra, if an expression involves

both multiplication and addition and there are no

parentheses to indicate the order of the operations,

multiplications are carried out before additions. This is

true for both scalar and matrix multiplications. For

example, if

then

A + BC = [ ] + [ ] = [ ]

and

⎡⎢⎣ 0.50
0.25
0.25

⎤⎥⎦ ⎡⎢⎣ 0.20
0.50
0.30

⎤⎥⎦ ⎡⎢⎣ 0.25
0.50
0.25

⎤⎥⎦ ⎡⎢⎣ 0.33
0.40
0.27

⎤⎥⎦a1 a2 a3

⎡⎢⎣ 0.50 0.20 0.25
0.25 0.50 0.50
0.25 0.30 0.25

⎤⎥⎦ ⎡⎢⎣ 0.40
0.40
0.20

⎤⎥⎦ ⎡⎢⎣ 0.33
0.40
0.27

⎤⎥⎦A = [ ] ,  B = [ ] ,  C = [ ]
3 4
1 2

1 3
2 1

−2 1
3 2

3 4
1 2

7 7
−1 4

10 11
0 6



3A + B = [ ] + [ ] = [ ]

The Transpose of a Matrix
Given an m × n matrix A, it is often useful to form a

new n × m matrix whose columns are the rows of A.

Definition
The transpose of an m × n matrix A is the n × m

matrix B defined by

bji = aij

(8)

for j = 1, … , n and i = 1, … , m. The transpose of A

is denoted by AT
.

It follows from (8) that the jth row of AT
 has the same

entries, respectively, as the jth column of A, and the ith

column of AT
 has the same entries, respectively, as the

ith row of A.

Example 11

1. If A = [ ],  then AT = .

2. If B = ,  then BT = .

3. If C = [ ],  then CT = [ ].

The matrix C in Example 11 is its own transpose. This

frequently happens with matrices that arise in

9 12
3 6

1 3
2 1

10 15
5 7

1 2 3
4 5 6

⎡⎢⎣ 1 4
2 5
3 6

⎤⎥⎦⎡⎢⎣ −3 2 1
4 3 2
1 2 5

⎤⎥⎦ ⎡⎢⎣ −3 4 1
2 3 2
1 2 5

⎤⎥⎦1 2
2 3

1 2
2 3



applications.

Definition
An n × n matrix A is said to be symmetric if AT = A.

The following are some examples of symmetric matrices:

Application 3
Information Retrieval

The growth of digital libraries on the Internet has led to

dramatic improvements in the storage and retrieval of

information. Modern retrieval methods are based on

matrix theory and linear algebra.

In a typical situation, a database consists of a collection

of documents and we wish to search the collection and

find the documents that best match some particular

search conditions. Depending on the type of database, we

could search for such items as research articles in

journals, Web pages on the Internet, books in a library,

or movies in a film collection.

To see how the searches are done, let us assume that our

database consists of m documents and that there are n

dictionary words that can be used as keywords for

searches. Not all words are allowable since it would not

be practical to search for common words such as articles

or prepositions. If the key dictionary words are ordered

alphabetically, then we can represent the database by an 

m × n matrix A. Each document is represented by a

column of the matrix. The first entry in the jth column of

[ ]
1 0
0 −4

⎡⎢⎣ 2 3 4
3 1 5
4 5 3

⎤⎥⎦ ⎡⎢⎣ 0 1 2
1 1 −2
2 −2 −3

⎤⎥⎦



A would be a number representing the relative frequency

of the first key dictionary word in the jth document. The

entry a2j represents the relative frequency of the second

word in the jth document, and so on. The list of

keywords to be used in the search is represented by a

vector x in Rm
. The ith entry of x is taken to be 1 if the

ith word in the list of keywords is on our search list;

otherwise, we set xi = 0. To carry out the search, we

simply multiply AT
 times x.

Simple Matching Searches
The simplest type of search determines how many of the

key search words are in each document; it does not take

into account the relative frequencies of the words.

Suppose, for example, that our database consists of these

book titles:

B1. Applied Linear Algebra

B2. Elementary Linear Algebra

B3. Elementary Linear Algebra with Applications

B4. Linear Algebra and Its Applications

B5. Linear Algebra with Applications

B6. Matrix Algebra with Applications

B7. Matrix Theory

The collection of keywords is given by the following

alphabetical list:

algebra, application, elementary, linear, matrix, theory

For a simple matching search, we just use 0’s and 1’s,

rather than relative frequencies, for the entries of the

database matrix. Thus, the (i, j) entry of the matrix will

be 1 if the ith word appears in the title of the jth book and

0 if it does not. We will assume that our search engine is

sophisticated enough to equate various forms of a word.

So, for example, in our list of titles the words applied and



applications are both counted as forms of the word

application. The database matrix for our list of books is

the array defined by Table 1.3.4.

Table 1.3.4 Array

Representation for Database

of Linear Algebra Books

KeywordsBooks
B1B2B3B4B5B6B7

algebra 1 1 1 1 1 1 0

application 1 0 1 1 1 1 0

elementary 0 1 1 0 0 0 0

linear 1 1 1 1 1 0 0

matrix 0 0 0 0 0 1 1

theory 0 0 0 0 0 0 1

If the words we are searching for are applied, linear, and

algebra, then the database matrix and search vector are,

respectively, given by

If we set y = AT x, then

A = ,     x =

⎡⎢⎣ 1 1 1 1 1 1 0
1 0 1 1 1 1 0
0 1 1 0 0 0 0
1 1 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎤⎥⎦ ⎡⎢⎣ 1
1
0
1
0
0

⎤⎥⎦



y =    =

The value of y1 is the number of search word matches in

the title of the first book, the value of y2 is the number of

matches in the second book title, and so on. Since 

y1 = y3 = y4 = y5 = 3, the titles of books B1, B3, B4,

and B5 must contain all three search words. If the search

is set up to find titles matching all search words, then the

search engine will report the titles of the first, third,

fourth, and fifth books.

Relative Frequency Searches
Searches of noncommercial databases generally find all

documents containing the key search words and then

order the documents based on the relative frequency. In

this case, the entries of the database matrix should

represent the relative frequencies of the keywords in the

documents. For example, suppose that in the dictionary

of all keywords of the database, the sixth word is algebra

and the eighth word is applied, where all words are listed

alphabetically. If, say, document 9 in the database

contains a total of 200 occurrences of keywords from the

dictionary, and if the word algebra occurred 10 times in

the document and the word applied occurred 6 times,

then the relative frequencies for these words would be 

10
200  and 

6
200 , and the corresponding entries in the

database matrix would be

To search for these two words, we take our search vector

x to be the vector whose entries x6 and x8 are both equal

⎡⎢⎣ 1 1 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
1 1 0 1 0 0
1 1 0 1 0 0
1 1 0 0 1 0
0 0 0 0 1 1

⎤⎥⎦ ⎡⎢⎣ 1
1
0
1
0
0

⎤⎥⎦ ⎡⎢⎣ 3
2
3
3
3
2
0

⎤⎥⎦
a69 = 0.05 and a89 = 0.03



to 1 and whose remaining entries are all 0. We then

compute

y = AT x

The entry of y corresponding to document 9 is

y9 = a69 ⋅ 1 + a89 ⋅ 1 = 0.08

Note that 16 of the 200 words (8 percent of the words) in

document 9 match the key search words. If yj is the

largest entry of y, this would indicate that the jth

document in the database is the one that contains the

keywords with the greatest relative frequencies.

Advanced Search Methods
A search for the keywords linear and algebra could

easily turn up hundreds of documents, some of which

may not even be about linear algebra. If we were to

increase the number of search words and require that all

search words be matched, then we would run the risk of

excluding some crucial linear algebra documents. Rather

than match all words of the expanded search list, our

database search should give priority to those documents

which match most of the keywords with high relative

frequencies. To accomplish this, we need to find the

columns of the database matrix A that are “closest” to the

search vector x. One way to measure how close two

vectors are is to define the angle between the vectors.

We will do this later in Section 5.1 of the book.

The information retrieval application will also be

revisited after we have learned about the singular value

decomposition (Section 6.5) This decomposition can be

used to find a simpler approximation to the database

matrix, which will speed up the searches dramatically.

Often it has the added advantage of filtering out noise;

that is, using the approximate version of the database

matrix may automatically have the effect of eliminating



documents that use keywords in unwanted contexts. For

example, a dental student and a mathematics student

could both use calculus as one of their search words.

Since the list of mathematics search words does not

contain any other dental terms, a mathematics search

using an approximate database matrix is likely to

eliminate all documents relating to dentistry. Similarly,

the mathematics documents would be filtered out in the

dental student’s search.

Web Searches and Page

Ranking
Modern Web searches could easily involve billions of

documents with hundreds of thousands of keywords.

Indeed, as of July 2008, there were more than 1 trillion

Web pages on the Internet, and it is not uncommon for

search engines to acquire or update as many as 10

million Web pages in a single day. Although the database

matrix for pages on the Internet is extremely large,

searches can be simplified dramatically, since the

matrices and search vectors are sparse; that is, most of

the entries in any column are 0’s.

For Internet searches, the better search engines will do

simple matching searches to find all pages matching the

keywords, but they will not order them on the basis of

the relative frequencies of the keywords. Because of the

commercial nature of the Internet, people who want to

sell products may deliberately make repeated use of

keywords to ensure that their Web site is highly ranked

in any relative-frequency search. In fact, it is easy to

surreptitiously list a keyword hundreds of times. If the

font color of the word matches the background color of

the page, then the viewer will not be aware that the word

is listed repeatedly.



For Web searches, a more sophisticated algorithm is

necessary for ranking the pages that contain all of the key

search words. In Chapter 6, we will study a special type

of matrix model for assigning probabilities in certain

random processes. This type of model is referred to as a

Markov process or a Markov chain. In Section 6.3, we

will see how to use Markov chains to model Web surfing

and obtain rankings of webpages.

Reference
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Section 1.3 Exercises

1. If

compute

1. 2A

2. A + B

3. 2A − 3B

4. (2A)
T

− (3B)
T

5. AB

6. BA

7. ATBT

8. (BA)T

2. For each of the pairs of matrices that follow, determine whether it

is possible to multiply the first matrix times the second. If it is

possible, perform the multiplication.

1. [ ]  

2.   [ ]

3.   

4. [ ]  [ ]

5. [ ]  [ ]

6.   [ ]

A = and B =
⎡⎢⎣ 3 1 4

−2 0 1

1 2 2

⎤⎥⎦ ⎡⎢⎣ 1 0 2

−3 1 1

2 −4 1

⎤⎥⎦3 5 1

−2 0 2

⎡⎢⎣ 2 1

1 3

4 1

⎤⎥⎦⎡⎢⎣ 4 −2

6 −4

8 −6

⎤⎥⎦ 1 2 3

⎡⎢⎣ 1 4 3

0 1 4

0 0 2

⎤⎥⎦ ⎡⎢⎣ 3 2

1 1

4 5

⎤⎥⎦4 6

2 1

3 1 5

4 1 6

4 6 1

2 1 1

3 1 5

4 1 6

⎡⎢⎣ 2

−1

3

⎤⎥⎦ 3 2 4 5



3. For which of the pairs in Exercise 2 is it possible to multiply the

second matrix times the first, and what would the dimension of

the product matrix be?

4. Write each of the following systems of equations as a matrix

equation:

1. 

2. 

3. 

5. If

A =

verify that

1. 5A = 3A + 2A

2. 6A = 3(2A)

3. (AT)T = A

6. If

verify that

1. A + B = B + A

2. 3(A + B) = 3A + 3B

3. (A + B)T = AT + BT

7. If

verify that

3x1 + 2x2 = 1

2x1 − 3x2 = 5

x1 + x2 = 5

2x1 + x2 − x3 = 6

3x1 − 2x2 + 2x3 = 7

2x1 + x2 + x3 = 4

x1 − x2 + 2x3 = 2

3x1 − 2x2 − x3 = 0

⎡⎢⎣ 3 4

1 1

2 7

⎤⎥⎦A = [ ] and B = [ ]
4 1 6

2 3 5

1 3 0

−2 2 −4

A = and B = [ ]
⎡⎢⎣ 2 1

6 3

−2 4

⎤⎥⎦ 2 4

1 6



1. 3(AB) = (3A)B = A(3B),

2. (AB)T = BTAT

8. If

A = [ ] ,    B = [ ] ,    C = [ ]

verify that

1. (A + B) + C = A + (B + C)

2. (AB)C = A(BC)

3. A(B + C) = AB + AC

4. (A + B)C = AC + BC

9. Let

1. Write b as a linear combination of the column vectors a1

and a2.

2. Use the result from part (a) to determine a solution of

the linear system Ax = b. Does the system have any

other solutions? Explain.

3. Write c as a linear combination of the column vectors a1

and a2.

10. For each of the choices of A and b that follow, determine whether

the system Ax = b is consistent by examining how b relates to

the column vectors of A. Explain your answers in each case.

1. 

2. 

3. 

11. Let A be a 5 × 3 matrix. If

b = a1 + a2 = a2 + a3

then what can you conclude about the number of solutions of the

linear system Ax = b? Explain.

12. Let A be a 3 × 4 matrix. If

b

2 4

1 3

−2 1

0 4

3 1

2 1

A = [ ] ,  b = [ ] ,  c = [ ]
1 2

1 −2

4

0

−3

−2

A = [ ] ,  b = [ ]
2 1

−2 −1

3

1

A = [ ] ,  b = [ ]
1 4

2 3

5

5

A = ,  b =
⎡⎢⎣ 3 2 1

3 2 1

3 2 1

⎤⎥⎦ ⎡⎢⎣ −1

1

0
⎤⎥⎦



b = a1 + a2 + a3 + a4

then what can you conclude about the number of solutions to the

linear system Ax = b? Explain.

13. Let Ax = b be a linear system whose augmented matrix (A| b)

has reduced row echelon form

1. Find all solutions to the system.

2. If

determine b.

14. Suppose in the search and screen example in Application 2 the

committee decides that research is actually 1.5 times as important

as teaching and 3 times as important as professional activities. The

committee still rates teaching twice as important as professional

activities. Determine a new weight vector w that reflects these

revised priorities. Determine also a new rating vector r. Will the

new weights have any effect on the overall rankings of the

candidates?

15. Let A be an m × n matrix. Explain why the matrix multiplications

ATA and AA
T

 are possible.

16. A matrix A is said to be skew symmetric if AT = −A. Show that

if a matrix is skew symmetric, then its diagonal entries must all be

0.

17. In Application 3, suppose that we are searching the database of

seven linear algebra books for the search words elementary,

matrix, algebra. Form a search vector x, and then compute a

vector y that represents the results of the search. Explain the

significance of the entries of the vector y.

18. Let A be a 2 × 2 matrix with a11 ≠ 0 and let α = a21/a11. Show

that A can be factored into a product of the form

[ ]  [ ]

What is the value of b?

⎡⎢⎣ 1 2 0 3 1

0 0 1 2 4

0 0 0 0 0

0 0 0 0 0∣−2

5

0

0

⎤⎥⎦a1 = and a3 =

⎡⎢⎣ 1

1

3

4

⎤⎥⎦ ⎡⎢⎣ 2

−1

1

3

⎤⎥⎦1 0

α 1

a11 a12

0 b



1.4 Matrix Algebra
The algebraic rules used for real numbers may or may

not work when matrices are used. For example, if a and b

are real numbers, then

For real numbers, the operations of addition and

multiplication are both commutative. The first of these

algebraic rules works when we replace a and b by square

matrices A and B, that is,

A + B = B + A

However, we have already seen that matrix

multiplication is not commutative. This fact deserves

special emphasis.

WARNING: In general, AB ≠ BA. Matrix

multiplication is not commutative.

In this section, we examine which algebraic rules work

for matrices and which do not.

Algebraic Rules
The following theorem provides some useful rules for

doing matrix algebra.

Theorem 1.4.1
Each of the following statements is valid for any scalars

α and β and for any matrices A, B, and C for which the

indicated operations are defined.

a + b = b + a and ab = ba



1. A + B = B + A

2. (A + B) + C = A + (B + C)

3. (AB)C = A(BC)

4. A(B + C) = AB + AC

5. (A + B)C = AC + BC

6. (αβ)A = α(βA)

7. α(AB) = (αA)B = A(αB)

8. (α + β)A = αA + βA

9. α(A + B) = αA + αB

We will prove two of the rules and leave the rest for the

reader to verify.

Proof of Rule 4

Assume that A = (aij) is an m × n matrix and 

B = (bij) and C = (cij) are both n × r matrices. Let 

D = A(B + C) and E = AB + AC. It follows that

dij =
n

∑
k=1

aik(bkj + ckj)

and

eij =
n

∑
k=1

aikbkj +
n

∑
k=1

aikckj

But

n

∑
k=1

aik(bkj + ckj) =
n

∑
k=1

aikbkj +
n

∑
k=1

aikckj

so that dij = eij and hence A(B + C) = AB + AC.

∎

Proof of Rule 3

Let A be an m × n matrix, B an n × r matrix, and C an 

r × s matrix. Let D = AB and E = BC. We must



show that DC = AE. By the definition of matrix

multiplication,

dil =
n

∑
k=1

aikbkl   and   ekj =
r

∑
l=1

bklclj

The ijth term of DC is

r

∑
l=1

dilclj =
r

∑
l=1

(
n

∑
k=1

aikbkl) clj

and the (i, j) entry of AE is

n

∑
k=1

aikekj =
n

∑
k=1

aik(
r

∑
l=1

bklclj)

Since

r

∑
l=1

(
n

∑
k=1

aikbkl)clj =
r

∑
l=1

(
n

∑
k=1

aikbklclj) =
n

∑
k=1

aik(
r

∑
l=1

bklclj)

it follows that

(AB)C = DC = AE = A(BC)

∎

The algebraic rules given in Theorem 1.4.1 seem quite

natural, since they are similar to the rules that we use

with real numbers. However, there are important

differences between the rules for matrix algebra and the

algebraic rules for real numbers. Some of these

differences are illustrated in Exercises 1 through 5 at the

end of this section.

Example 1
If

A = [ ], B = [ ], and C = [ ]
1 2
3 4

2 1
−3 2

1 0
2 1



verify that A(BC) = (AB)C and 

A(B + C) = AB + AC.

SOLUTION

Thus,

Therefore,

A(B + C) = AB + AC

Notation
Since (AB)C = A(BC), we may simply omit the

parentheses and write ABC. The same is true for a

product of four or more matrices. In the case where an 

n × n matrix is multiplied by itself a number of times, it

is convenient to use exponential notation. Thus, if k is a

positive integer, then

Ak = AA⋯A

k times

Example 2
If

A = [ ]

A(BC) = [ ] [ ] = [ ]

(AB)C = [ ] [ ] = [ ]

1 2
3 4

4 1
1 2

6 5
16 11

−4 5
−6 11

1 0
2 1

6 5
16 11

A(BC) = [ ] = (AB)C

A(B + C) = [ ] [ ] = [ ]

AB + AC = [ ] + [ ] = [ ]

6 5
16 11
1 2
3 4

3 1
−1 3

1 7
5 15

−4 5
−6 11

5 2
11 4

1 7
5 15

  

1 1
1 1



then

and, in general,

An = [ ]

Application 1
A Simple Model for Marital Status Computations

In a certain town, 30 percent of the married women get

divorced each year and 20 percent of the single women

get married each year. There are 8000 married women

and 2000 single women. Assuming that the total

population of women remains constant, how many

married women and how many single women will there

be after one year? After two years?

Solution
Form a matrix A as follows: The entries in the first row of

A will be the percentages of married and single women,

respectively, who are married after one year. The entries

in the second row will be the percentages of women who

are single after one year. Thus,

A = [ ]

If we let x = [ ], the number of married and single

women after one year can be computed by multiplying A

times x.

A2 = [ ] [ ] = [ ]

A3 = AAA = AA2 = [ ] [ ] = [ ]

1 1
1 1

1 1
1 1

2 2
2 2

1 1
1 1

2 2
2 2

4 4
4 4

2n−1 2n−1

2n−1 2n−1

0.70 0.20
0.30 0.80

8000
2000



Ax = [ ] [ ] = [ ]

After one year, there will be 6000 married women and

4000 single women. To find the number of married and

single women after two years, compute

A2
x = A(Ax) = [ ] [ ] = [ ]

After two years, half of the women will be married and

half will be single. In general, the number of married and

single women after n years can be determined by

computing An
x.

Application 2
Ecology: Demographics of the Loggerhead Sea Turtle

The management and preservation of many wildlife

species depend on our ability to model population

dynamics. A standard modeling technique is to divide

the life cycle of a species into a number of stages. The

models assume that the population sizes for each stage

depend only on the female population and that the

probability of survival of an individual female from one

year to the next depends only on the stage of the life cycle

and not on the actual age of an individual. For example,

let us consider a four-stage model for analyzing the

population dynamics of the loggerhead sea turtle (see

Figure 1.4.1).

Figure 1.4.1.

0.70 0.20
0.30 0.80

8000
2000

6000
4000

0.70 0.20
0.30 0.80

6000
4000

5000
5000



Loggerhead Sea Turtle

Figure 1.4.1. Full Alternative Text

At each stage, we estimate the probability of survival

over a one-year period. We also estimate the ability to

reproduce in terms of the expected number of eggs laid

in a given year. The results are summarized in Table

1.4.1. The approximate ages for each stage are listed in

parentheses next to the stage description.

Table 1.4.1 Four-Stage Model

for Loggerhead Sea Turtle

Demographics

Stage 
Number

Description (age in 
years)

Annual 
Survivorship

Eggs Laid per 
Year

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig01-04-001.xhtml#la_fig01-04-001


1 Eggs, hatchlings (<1) 0.67 0

2 Juveniles and subadults (1–21) 0.74 0

3 Novice breeders (22) 0.81 127

4 Mature breeders (23–54) 0.81 79

If di represents the duration of the ith stage and si is the

annual survivorship rate for that stage, then it can be

shown that the proportion remaining in stage i the

following year will be

pi = (
1 − s

di−1
i

1 − s
di
i

) si

(1)

and the proportion of the population that will survive

and move into stage i + 1 the following year will be

qi =
s
di
i (1 − si)

1 − sdii

(2)

If we let ei denote the average number of eggs laid by a

member of stage i (i = 2, 3, 4) in one year and form the

matrix

L =

(3)

then L can be used to predict the turtle populations at

each stage in future years. A matrix of the form (3) is

called a Leslie matrix, and the corresponding population

model is sometimes referred to as a Leslie population

model. Using the figures from Table 1.4.1, the Leslie

matrix for our model is

⎡⎢⎣p1 e2 e3 e4

q1 p2 0 0
0 q2 p3 0
0 0 q3 p4

⎤⎥⎦



L =

Suppose that the initial populations at each stage were

200,000, 300,000, 500, and 1500, respectively. If we

represent these initial populations by a vector x0, the

populations at each stage after one year are determined

by computing

x = Lx0 =   =

(The computations have been rounded to the nearest

integer.) To determine the population vector after two

years, we multiply again by the matrix L.

x2 = Lx1 = L2
x0

In general, the population after k years is determined by

computing xk = Lk
x0. To see longer-range trends, we

compute x10, x25, x50, and x100. The results are

summarized in Table 1.4.2. The model predicts that the

total number of breeding-age turtles will decrease by

approximately 95 percent over a 100-year period.

Table 1.4.2 Loggerhead Sea

Turtle Population Projections

Stage 
Number

Initial 
Population 10 Years25 Years50 Years100 Years

1 200,000 115,403 75,768 37,623 9276

2 300,000 331,274 217,858 108,178 26,673

3 500 215 142 70 17

4 1500 1074 705 350 86

⎡⎢⎣ 0 0 127 79
0.67 0.7394 0 0

0 0.006 0 0
0 0 0.81 0.8097

⎤⎥⎦⎡⎢⎣ 0 0 127 79
0.67 0.7394 0 0

0 0.0006 0 0
0 0 0.81 0.8097

⎤⎥⎦ ⎡⎢⎣200, 000
300, 000

500
1500

⎤⎥⎦ ⎡⎢⎣182, 000
355, 820

180
1620

⎤⎥⎦



A seven-stage model describing the population dynamics

is presented in reference [1] that follows. We will use the

seven-stage model in the computer exercises at the end

of this chapter. Reference [2] is the original paper by

Leslie.
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The Identity Matrix
Just as the number 1 acts as an identity for the

multiplication of real numbers, there is a special matrix I

that acts as an identity for matrix multiplication; that is,

IA = AI = A

(4)

for any n × n matrix A. It is easy to verify that, if we

define I to be an n × n matrix with 1’s on the main

diagonal and 0’s elsewhere, then I satisfies equation (4)

for any n × n matrix A. More formally, we have the

following definition.

Definition
The n × n identity matrix is the matrix I = (δij),

where

δij = {
1 if i = j

0 if i ≠ j



As an example, let us verify equation (4) in the case 

n = 3:

  =

and

  =

In general, if B is any m × n matrix and C is any n × r

matrix, then

The column vectors of the n × n identity matrix I are

the standard vectors used to define a coordinate system

in Euclidean n-space. The standard notation for the jth

column vector of I is ej, rather than the usual ij. Thus,

the n × n identity matrix can be written

I = (e1, e2, … , en)

Matrix Inversion
A real number a is said to have a multiplicative inverse if

there exists a number b such that ab = 1. Any nonzero

number a has a multiplicative inverse b = 1
a

. We

generalize the concept of multiplicative inverses to

matrices with the following definition.

Definition
An n × n matrix A is said to be nonsingular or

invertible if there exists a matrix B such that 

AB = BA = I. The matrix B is said to be a

multiplicative inverse of A.

⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦ ⎡⎢⎣3 4 1
2 6 3
0 1 8

⎤⎥⎦ ⎡⎢⎣3 4 1
2 6 3
0 1 8

⎤⎥⎦⎡⎢⎣3 4 1
2 6 3
0 1 8

⎤⎥⎦ ⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦ ⎡⎢⎣3 4 1
2 6 3
0 1 8

⎤⎥⎦BI = B and IC = C



If B and C are both multiplicative inverses of A, then

B = BI = B(AC) = (BA)C = IC = C

Thus, a matrix can have at most one multiplicative

inverse. We will refer to the multiplicative inverse of a

nonsingular matrix A as simply the inverse of A and

denote it by A−1
.

Example 3
The matrices

are inverses of each other, since

= [ ]

and

= [ ]

Example 4
The 3 × 3 matrices

are inverses, since

=

and

[ ] and [ ]
2 4
3 1

− 1
10

2
5

3
10 − 1

5

[ ]
2 4
3 1

[ ]
− 1

10
2
5

3
10 − 1

5

1 0
0 1

[ ]
− 1

10
2
5

3
10 − 1

5

[ ]
2 4
3 1

1 0
0 1

  and  
⎡⎢⎣1 2 3

0 1 4
0 0 1

⎤⎥⎦ ⎡⎢⎣1 −2 5
0 1 −4
0 0 1

⎤⎥⎦⎡⎢⎣1 2 3
0 1 4
0 0 1

⎤⎥⎦⎡⎢⎣1 −2 5
0 1 −4
0 0 1

⎤⎥⎦ ⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦



=

Example 5
The matrix

A = [ ]

has no inverse. Indeed, if B is any 2 × 2 matrix, then

BA = [ ][ ] = [ ]

Thus, BA cannot equal I.

Definition
An n × n matrix is said to be singular if it does not

have a multiplicative inverse.

Note
Only square matrices have multiplicative inverses. One

should not use the terms singular and nonsingular when

referring to nonsquare matrices.

Often we will be working with products of nonsingular

matrices. It turns out that any product of nonsingular

matrices is nonsingular. The following theorem

characterizes how the inverse of the product of a pair of

nonsingular matrices A and B is related to the inverses of

A and B:

⎡⎢⎣1 −2 5
0 1 −4
0 0 1

⎤⎥⎦⎡⎢⎣1 2 3
0 1 4
0 0 1

⎤⎥⎦ ⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦1 0
0 0

b11 b12

b21 b22

1 0
0 0

b11 0
b21 0



Theorem 1.4.2
If A and B are nonsingular n × n matrices, then AB is

also nonsingular and (AB)−1 = B−1A−1
.

Proof

∎

It follows by induction that, if A1, … ,Ak are all

nonsingular n × n matrices, then the product 

A1A2 …  Ak is nonsingular and

(A1A2 …Ak)−1 = A−1
k

…A−1
2 A−1

1

In the next section, we will learn how to determine

whether a matrix has a multiplicative inverse. We will

also learn a method for computing the inverse of a

nonsingular matrix.

Algebraic Rules for

Transposes
There are four basic algebraic rules involving transposes.

Algebraic Rules for

Transposes

1. (AT)T = A

2. (αA)T = αAT

3. (A + B)T = AT + BT

4. (AB)T = BTAT

(B−1A−1)AB = B−1(A−1A)B = B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I



The first three rules are straightforward. We leave it to

the reader to verify that they are valid. To prove the

fourth rule, we need only show that the (i, j) entries of 

(AB)T  and BTAT
 are equal. If A is an m × n matrix,

then, for the multiplications to be possible, B must have

n rows. The (i, j) entry of (AB)T  is the (j, i) entry of AB.

It is computed by multiplying the jth row vector of A

times the ith column vector of B:

→ajbi = (aj1, aj2, … , ajn)  = aj1b1i + aj2b2i + ⋯ + ajnbni

(5)

The (i, j) entry of BTAT
 is computed by multiplying the

ith row of BT
 times the jth column of AT

. Since the ith

row of BT
 is the transpose of the ith column of B and the

jth column of AT
 is the transpose of the jth row of A, it

follows that the (i, j) entry of BTAT
 is given by

b
T
i →a

T
j = (b1i, b2i, … , bni)  = b1iaj1 + b2iaj2 + ⋯ + bniajn

(6)

It follows from (5) and (6) that the (i, j) entries of 

(AB)T  and BTAT
 are equal.

The next example illustrates the idea behind the last

proof.

Example 6
Let

⎡⎢⎣b1i

b2i

⋮
bni

⎤⎥⎦⎡⎢⎣aj1

aj2

⋮
ajn

⎤⎥⎦A = , B =
⎡⎢⎣1 2 1

3 3 5
2 4 1

⎤⎥⎦ ⎡⎢⎣1 0 2
2 1 1
5 4 1

⎤⎥⎦



Note that, on the one hand, the (3, 2) entry of AB is

computed taking the scalar product of the third row of A

and the second column of B.

1.7-28 Full Alternative Text

When the product is transposed, the (3, 2) entry of AB

becomes the (2, 3) entry of (AB)T .

(AB)T =

On the other hand, the (2, 3) entry of BTAT
 is

computed taking the scalar product of the second row of 

BT
 and the third column of AT

.

1.7-29 Full Alternative Text

In both cases, the arithmetic for computing the (2, 3)

entry is the same.

Symmetric Matrices and

Networks

⎡⎢⎣10 34 15
6 23 8

5 14 9

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-015.xhtml#la_unfig01-015
file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-016.xhtml#la_unfig01-016


Recall that a matrix A is symmetric if AT = A. One type

of application that leads to symmetric matrices is

problems involving networks. These problems are often

solved using the techniques of an area of mathematics

called graph theory.

Application 3
Networks and Graphs

Graph theory is an important area of applied

mathematics. It is used to model problems in virtually all

the applied sciences. Graph theory is particularly useful

in applications involving communications networks.

A graph is defined to be a set of points called vertices,

together with a set of unordered pairs of vertices, which

are referred to as edges. Figure 1.4.2 gives a geometrical

representation of a graph. We can think of the vertices 

V1, V2, V3, V4, and V5 as corresponding to the nodes in a

communications network.

Figure 1.4.2.



Figure 1.4.2. Full Alternative Text

The line segments joining the vertices correspond to the

edges:

{V1 ,  V2} ,  {V2 ,  V5} ,  {V3 ,  V4} ,  {V3 ,  V5} ,  {V4 ,  V5}

Each edge represents a direct communications link

between two nodes of the network.

An actual communications network could involve a large

number of vertices and edges. Indeed, if there are

millions of vertices, a graphical picture of the network

would be quite confusing. An alternative is to use a

matrix representation for the network. If the graph

contains a total of n vertices, we can define an n × n

matrix A by

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig01-04-002.xhtml#la_fig01-04-002


aij = {

The matrix A is called the adjacency matrix of the graph.

The adjacency matrix for the graph in Figure 1.4.2 is

given by

A =

Note that the matrix A is symmetric. Indeed, any

adjacency matrix must be symmetric, for if {Vi,Vj} is

an edge of the graph, then aij = aji = 1 and 

aij = aji = 0 if there is no edge joining Vi and Vj. In

either case, aij = aji.

We can think of a walk in a graph as a sequence of edges

linking one vertex to another. For example, in Figure

1.4.2 the edges {V1,V2} ,  {V2,V5} represent a walk

from vertex V1 to vertex V5. The length of the walk is

said to be 2 since it consists of two edges. A simple way

to describe the walk is to indicate the movement between

vertices by arrows. Thus, V1 → V2 → V5 denotes a walk

of length 2 from V1 to V5. Similarly, 

V4 → V5 → V2 → V1 represents a walk of length 3

from V4 to V1. It is possible to traverse the same edges

more than once in a walk. For example, 

V5 → V3 → V5 → V3 is a walk of length 3 from V5 to 

V3. In general, by taking powers of the adjacency matrix,

we can determine the number of walks of any specified

length between two vertices.

Theorem 1.4.3

If A is an n × n adjacency matrix of a graph and a
(k)
ij

represents the (i, j) entry of Ak
, then a

(k)
ij

 is equal to the

1 if {Vi ,  Vj} is an edge of the graph
0 if there is no edge joining Vi and Vj

⎡⎢⎣0 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

⎤⎥⎦



number of walks of length k from Vi to Vj.

Proof

The proof is by mathematical induction. In the case 

k = 1, it follows from the definition of the adjacency

matrix that aij represents the number of walks of length

1 from Vi to Vj. Assume for some m that each entry of 

Am
 is equal to the number of walks of length m between

the corresponding vertices. Thus, a
(m)
il  is the number of

walks of length m from Vi to Vl. Now on the one hand, if

there is an edge {Vl,Vj}, then a
(m)
il alj = a

(m)
il  is the

number of walks of length m + 1 from Vi to Vj of the

form

Vi → ⋯ → Vl → Vj

On the other hand, if {Vl,Vj} is not an edge, then there

are no walks of length m + 1 of this form from Vi to Vj
and

a
(m)
il alj = a

(m)
il ⋅ 0 = 0

It follows that the total number of walks of length m + 1
from Vi to Vj is given by

a
(m)
i1 a1j + a

(m)
i2 a2j + ⋯ + a

(m)
in anj

But this is just the (i, j) entry of Am+1
.

∎

Example 7
To determine the number of walks of length 3 between

any two vertices of the graph in Figure 1.4.2, we need

only compute



A3 =

Thus, the number of walks of length 3 from V3 to V5 is 

a
(3)
35 = 4. Note that the matrix A3

 is symmetric. This

reflects the fact that there are the same number of walks

of length 3 from Vi to Vj as there are from Vj to Vi.

⎡⎢⎣0 2 1 1 0
2 0 1 1 4
1 1 2 3 4
1 1 3 2 4
0 4 4 4 2

⎤⎥⎦



Section 1.4 Exercises

1. Explain why each of the following algebraic rules will not work, in

general, when the real numbers a and b are replaced by n × n

matrices A and B:

1. (a + b)2 = a2 + 2ab + b2

2. (a + b)(a − b) = a2 − b2

2. Will the rules in Exercise 1 work if a is replaced by an n × n

matrix A and b is replaced by the n × n identity matrix I?

3. Find nonzero 2 × 2 matrices A and B such that AB = O.

4. Find nonzero matrices A, B, and C such that

5. The matrix

A = [ ]

has the property that A2 = O. Is it possible for a nonzero

symmetric 2 × 2 matrix to have this property? Prove your answer.

6. Prove the associative law of multiplication for 2 × 2 matrices; that

is, let

A = [ ],    B = [ ],    C = [ ]

and show that

(AB)C = A(BC)

7. Let

A = [ ]

Compute A2
 and A3

. What will An
 turn out to be?

8. Let

A =

AC = BC   and   A ≠ B

1 −1

1 −1

a11 a12

a21 a22

b11 b12

b21 b22

c11 c12

c21 c22

1
2

− 1
2

− 1
2

1
2

⎡⎢⎣ 1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

⎤⎥⎦



Compute A2
 and A3

. What will A2n
 and A2n+1

 turn out to be?

9. Let

A =

Show that An = O for n ≥ 4.

10. Let A and B be symmetric n × n matrices. For each of the

following, determine whether the given matrix must be symmetric

or could be nonsymmetric:

1. C = A + B

2. D = A2

3. E = AB

4. F = ABA

5. G = AB + BA

6. H = AB − BA

11. Let C be a nonsymmetric n × n matrix. For each of the following,

determine whether the given matrix must necessarily be

symmetric or could possibly be nonsym-metric:

1. A = C + CT

2. B = C − CT

3. D = CTC

4. E = CTC − CCT

5. F = (I + C)(I + CT)

6. G = (I + C)(I − CT)

12. Let

A = [ ]

Show that if d = a11a22 − a21a12 ≠ 0, then

A
−1 =

1

d
[ ]

13. Use the result from Exercise 12 to find the inverse of each of the

following matrices:

1. [ ]

⎡⎢⎣0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎦a11 a12

a21 a22

a22 −a12

−a21 a11

7 2

3 1



2. [ ]

3. [ ]

14. Let A and B be n × n matrices. Show that if

then A must be singular.

15. Let A be a nonsingular matrix. Show that A−1
 is also nonsingular

and (A−1)−1 = A.

16. Prove that if A is nonsingular, then AT
 is nonsingular and

(AT)−1 = (A−1)T

Hint: (AB)T = BTAT
.

17. Let A be an n × n matrix and let x and y be vectors in R
n

. Show

that if Ax = Ay and x ≠ y, then the matrix A must be singular.

18. Let A be a nonsingular n × n matrix. Use mathematical induction

to prove that Am
 is nonsingular and

(Am)−1 = (A−1)m

for m = 1, 2, 3, ….

19. Let A be an n × n matrix. Show that if A2 = O, then I − A is

nonsingular and (I − A)−1 = I + A.

20. Let A be an n × n matrix. Show that if Ak+1 = O, then I − A is

nonsingular and

(I − A)−1 = I + A + A
2 + ⋯ + A

k

21. Given

R = [ ]

show that R is nonsingular and R−1 = RT
.

22. An n × n matrix A is said to be an involution if A2 = I. Show

that if G is any matrix of the form

G = [ ]

then G is an involution.

23. Let u be a unit vector in R
n

 (i.e., u
T

u = 1) and let 

H = I − 2uu
T

. Show that H is an involution.

24. A matrix A is said to be idempotent if A2 = A. Show that each of

the following matrices are idempotent:

3 5

2 3

4 3

2 2

B ≠ IAB = A and

cos  θ − sin  θ

sin  θ cos  θ

cos  θ sin  θ

sin  θ − cos  θ



1. [ ]

2. [ ]

3. 

25. Let A be an idempotent matrix.

1. Show that I − A is also idempotent.

2. Show that I + A is nonsingular and

(I + A)−1 = I −
1

2
A.

26. Let D be an n × n diagonal matrix whose diagonal entries are

either 0 or 1.

1. Show that D is idempotent.

2. Show that if X is a nonsingular matrix and 

A = XDX−1
, then A is idempotent.

27. Let A be an involution matrix and let

Show that B and C are both idempotent and BC = O.

28. Let A be an m × n matrix. Show that ATA and AAT
 are both

symmetric.

29. Let A and B be symmetric n × n matrices. Prove that AB = BA

if and only if AB is also symmetric.

30. Let A be an n × n matrix and let

1. Show that B is symmetric and C is skew symmetric.

2. Show that every n × n matrix can be represented as a

sum of a symmetric matrix and a skew-symmetric

matrix.

31. In Application 1, how many married women and how many single

women will there be after 3 years?

32. Consider the matrix

1 0

1 0

2
3

1
3

2
3

1
3

⎡⎢⎣ 1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

⎤⎥⎦B =
1

2
(I + A) and C =

1

2
(I + A)

B = A + AT and C = A − AT



A =

1. Draw a graph that has A as its adjacency matrix. Be sure

to label the vertices of the graph.

2. By inspecting the graph, determine the number of walks

of length 2 from V2 to V3 and from V2 to V5.

3. Compute the second row of A3
 and use it to determine

the number of walks of length 3 from V2 to V3 and from 

V2 to V5.

33. Consider the graph

1.8-30 Full Alternative Text

1. Determine the adjacency matrix A of the graph.

2. Compute A2
. What do the entries in the first row of A2

tell you about walks of length 2 that start from V1?

3. Compute A3
. How many walks of length 3 are there

from V2 to V4? How many walks of length less than or

equal to 3 are there from V2 to V4?

For each of the conditional statements that follow, answer true if

the statement is always true and answer false otherwise. In the

case of a true statement, explain or prove your answer. In the

⎡⎢⎣0 1 0 1 1

1 0 1 1 0

0 1 0 0 1

1 1 0 0 1

1 0 1 1 0

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-04-001.xhtml#la_unfig01-04-001


case of a false statement, give an example to show that the

statement is not always true.

34. If Ax = Bx for some nonzero vector x, then the matrices A and

B must be equal.

35. If A and B are singular n × n matrices, then A + B is also

singular.

36. If A and B are nonsingular matrices, then (AB)T  is nonsingular

and

((AB)T )−1 = (A−1)T (B−1)T



1.5 Elementary Matrices
In this section, we view the process of solving a linear

system in terms of matrix multiplications rather than

row operations. Given a linear system Ax = b, we can

multiply both sides by a sequence of special matrices to

obtain an equivalent system in row echelon form. The

special matrices we will use are called elementary

matrices. We will use them to see how to compute the

inverse of a nonsingular matrix and also to obtain an

important matrix factorization. We begin by considering

the effects of multiplying both sides of a linear system by

a nonsingular matrix.

Equivalent Systems
Given an m × n linear system Ax = b, we can obtain

an equivalent system by multiplying both sides of the

equation by a nonsingular m × m matrix M:

Ax = b

(1)

MAx = Mb

(2)

Clearly, any solution of (1) will also be a solution of (2).

However, if x̂ is a solution of (2), then

and it follows that the two systems are equivalent.

To obtain an equivalent system that is easier to solve, we

can apply a sequence of nonsingular matrices 

M −1(MAx̂) = M −1(Mb)
Ax̂ = b



E1, … , Ek to both sides of the equation Ax = b to

obtain a simpler system of the form

Ux = c

where U = Ek ⋯ E1A and c = Ek ⋯ E2E1b. The

new system will be equivalent to the original, provided

that M = Ek ⋯ E1 is nonsingular. However, M is

nonsingular since it is a product of nonsingular matrices.

We will show next that any of the three elementary row

operations can be accomplished by multiplying A on the

left by a nonsingular matrix.

Elementary Matrices
If we start with the identity matrix I and then perform

exactly one elementary row operation, the resulting

matrix is called an elementary matrix.

There are three types of elementary matrices

corresponding to the three types of elementary row

operations.

Type I
An elementary matrix of type I is a matrix obtained by

interchanging two rows of I.

Example 1
The matrix

E1 =
⎡⎢⎣ 0 1 0

1 0 0
0 0 1

⎤⎥⎦



is an elementary matrix of type I since it was obtained by

interchanging the first two rows of I. If A is a 3 × 3
matrix, then

Multiplying A on the left by E1 interchanges the first and

second rows of A. Right multiplication of A by E1 is

equivalent to the elementary column operation of

interchanging the first and second columns.

Type II
An elementary matrix of type II is a matrix obtained by

multiplying a row of I by a nonzero constant.

Example 2

E2 =

is an elementary matrix of type II. If A is a 3 × 3 matrix,

then

Multiplication on the left by E2 performs the elementary

row operation of multiplying the third row by 3, while

multiplication on the right by E2 performs the

=

=

E1A =
⎡⎢⎣ 0 1 0

1 0 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎦ ⎡⎢⎣ a21 a22 a23

a11 a12 a13

a31 a32 a33

⎤⎥⎦AE1 =
⎡⎢⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎦ ⎡⎢⎣ 0 1 0
1 0 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ a12 a11 a13

a22 a21 a23

a32 a31 a33

⎤⎥⎦⎡⎢⎣ 1 0 0
0 1 0
0 0 3

⎤⎥⎦ =

=

E2A =
⎡⎢⎣ 1 0 0

0 1 0
0 0 3

⎤⎥⎦ ⎡⎢⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎦ ⎡⎢⎣ a11 a12 a13

a21 a22 a23

3a31 3a32 3a33

⎤⎥⎦AE2 =
⎡⎢⎣ a11 a12 13

a21 a22 a23

a31 a32 a33

a ⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0
0 0 3

⎤⎥⎦ ⎡⎢⎣ a11 a12 3a13

a21 a22 3a23

a31 a32 3a23

⎤⎥⎦



elementary column operation of multiplying the third

column by 3.

Type III
An elementary matrix of type III is a matrix obtained

from I by adding a multiple of one row to another row.

Example 3

E3 =

is an elementary matrix of type III. If A is a 3 × 3
matrix, then

Multiplication on the left by E3 adds 3 times the third

row to the first row. Multiplication on the right adds 3

times the first column to the third column.

In general, suppose that E is an n × n elementary

matrix. We can think of E as being obtained from I by

either a row operation or a column operation. If A is an 

n × r matrix, premultiplying A by E has the effect of

performing that same row operation on A. If B is an 

m × n matrix, postmultiplying B by E is equivalent to

performing that same column operation on B.

Theorem 1.5.1

⎡⎢⎣ 1 0 3
0 1 0
0 0 1

⎤⎥⎦E3A =

AE3 =

⎡⎢⎣ a11 + 3a31 a12 + 3a32 a13 + 3a33

a21 a22 a23

a31 a32 a33

⎤⎥⎦⎡⎢⎣ a11 a12 3a11 + a13

a21 a22 3a21 + a23

a31 a32 3a31 + a33

⎤⎥⎦



If E is an elementary matrix, then E is nonsingular and 

E−1
 is an elementary matrix of the same type.

Proof

If E is the elementary matrix of type I formed from I by

interchanging the ith and jth rows, then E can be

transformed back into I by interchanging these same

rows again. Therefore, EE = I  and hence E is its own

inverse. If E is the elementary matrix of type II formed

by multiplying the ith row of I by a nonzero scalar α,

then E can be transformed into the identity matrix by

multiplying either its ith row or its ith column by 1/α.

Thus,

Finally, if E is the elementary matrix of type III formed

from I by adding m times the ith row to the jth row, that

is,

E =

then E can be transformed back into I either by

subtracting m times the ith row from the jth row or by

subtracting m times the jth column from the ith column.

Thus,

E−1 =   ith row

⎡⎢⎣ 1

⋱ O

1
1/α

1

O ⋱
1

⎤⎥⎦⎡⎢⎣ 1

⋮ ⋱ O

0 ⋯ 1

⋮ ⋱
0 ⋯ m ⋯ 1

⋮ ⋱
0 ⋯ 0 ⋯ 0 ⋯ 1

⎤⎥⎦   jth row

  ith row



E−1 =

∎

Definition
A matrix B is row equivalent to a matrix A if there

exists a finite sequence E1, E2, … , Ek of elementary

matrices such that

B = EkEk−1 ⋯ E1A

In other words, B is row equivalent to A if B can be

obtained from A by a finite number of row operations. In

particular, if two augmented matrices (A|b) and (B|c)
are row equivalent, then Ax = b and Bx = c are

equivalent systems.

The following properties of row equivalent matrices are

easily established:

1. If A is row equivalent to B, then B is row equivalent to A.

2. If A is row equivalent to B, and B is row equivalent to C, then A is

row equivalent to C.

Property (I) can be proved using Theorem 1.5.1. The

details of the proofs of (I) and (II) are left as an exercise

for the reader.

Theorem 1.5.2 Equivalent

Conditions for Nonsingularity

⎡⎢⎣ 1

⋮ ⋱ O

0 ⋯ 1

⋮ ⋱
0 ⋯ −m ⋯ 1

⋮ ⋱
0 ⋯ 0 ⋯ 0 ⋯ 1

⎤⎥⎦



Let A be an n × n matrix. The following are equivalent:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution 0.

3. A is row equivalent to I.

Proof

We prove first that statement (a) implies statement (b).

If A is nonsingular and x̂ is a solution of Ax = 0, then

x̂ = Ix̂ = (A−1A)x̂ = A−1(Ax̂) = A−10 = 0

Thus, Ax = 0 has only the trivial solution. Next, we

show that statement (b) implies statement (c). If we use

elementary row operations, the system can be

transformed into the form Ux = 0, where U is in row

echelon form. If one of the diagonal elements of U were

0, the last row of U would consist entirely of 0’s. But then

Ax = 0 would be equivalent to a system with more

unknowns than equations and hence, by Theorem 1.2.1,

would have a nontrivial solution. Thus, U must be a

strictly triangular matrix with diagonal elements all

equal to 1. It then follows that I is the reduced row

echelon form of A and hence A is row equivalent to I.

Finally, we will show that statement (c) implies

statement (a). If A is row equivalent to I, there exist

elementary matrices E1, E2, … , Ek such that

A = EkEk−1 ⋯ E1I = EkEk−1 ⋯ E1

But since Ei is invertible, i = 1, … , k, the product 

EkEk−1 … E1 is also invertible. Hence, A is

nonsingular and

A−1 = (EkEk−1 ⋯ E1)−1 = E−1
1 E−1

2 ⋯ E−1
k

∎



Corollary 1.5.3
The system Ax = b of n linear equations in n

unknowns has a unique solution if and only if A is

nonsingular.

Proof

If A is nonsingular, and x̂ is any solution of Ax = b,

then

Ax̂ = b

Multiplying both sides of this equation by A−1
, we see

that x̂ must be equal to A−1b.

Conversely, if Ax = 0 has a unique solution x̂, then we

claim that A cannot be singular. Indeed, if A were

singular, then the equation Ax = 0 would have a

solution z ≠ 0. But this would imply that y = x̂ + z is

a second solution of Ax = b, since

Ay = A(x̂ + z) = Ax̂ + Az = b + 0 = b

Therefore, if Ax = b has a unique solution, then A

must be nonsingular.

∎

If A is nonsingular, then A is row equivalent to I and

hence there exist elementary matrices E1, … , Ek such

that

EkEk−1 ⋯ E1IA = I

Multiplying both sides of this equation on the right by 

A−1
, we obtain

EkEk−1 ⋯ E1I = A−1

Thus, the same series of elementary row operations that

transforms a nonsingular matrix A into I will transform I

into A−1
. This gives us a method for computing A−1

. If



we augment A by I and perform the elementary row

operations that transform A into I on the augmented

matrix, then I will be transformed into A−1
. That is, the

reduced row echelon form of the augmented matrix 

(A|I) will be (I A−1).

Example 4
Compute A−1

 if

A =

SOLUTION

Thus,

A−1 =

Example 5
Solve the system∣ ⎡⎢⎣ 1 4 3

−1 −2 0
2 2 3

⎤⎥⎦→

→ →

→ →

⎡⎢⎣ 1 4 3
−1 −2 0

2 2 3∣1 0 0
0 1 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ 1 4 3
0 2 3
0 −6 −3∣ 1 0 0

1 1 0
−2 0 1

⎤⎥⎦⎡⎢⎣ 1 4 3
0 2 3
0 0 6∣1 0 0

1 1 0
1 3 1

⎤⎥⎦ ⎡⎢⎣ 1 4 0
0 2 0
0 0 6∣ 1

2 − 3
2 − 1

2
1
2 − 1

2 − 1
2

1 3 1

⎤⎥⎦⎡⎢⎣ 1 0 0
0 2 0
0 0 6∣− 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

1 3 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0
0 0 1∣− 1

2 − 1
2

1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎤⎥⎦⎡⎢⎣ − 1
2 − 1

2
1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎤⎥⎦x1 + 4x2 + 3x3 = 12
−x1 − 2x2 = −12

2x1 + 2x2 + 3x3 = 8



SOLUTION

The coefficient matrix of this system is the matrix A of

the last example. The solution of the system is then

x = A−1b =   =

Diagonal and Triangular

Matrices
An n × n matrix A is said to be upper triangular if 

ajj = 0 for i > j and lower triangular if aij = 0 for 

i > j. Also, A is said to be triangular if it is either upper

triangular or lower triangular. For example, the 3 × 3
matrices

are both triangular. The first is upper triangular and the

second is lower triangular.

A triangular matrix may have 0’s on the diagonal.

However, for a linear system Ax = b to be in strict

triangular form, the coefficient matrix A must be upper

triangular with nonzero diagonal entries.

An n × n matrix A is diagonal if aij = 0 whenever 

i ≠ j. The matrices

are all diagonal. A diagonal matrix is both upper

triangular and lower triangular.

⎡⎢⎣ − 1
2 − 1

2
1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎤⎥⎦ ⎡⎢⎣ 12
−12

8

⎤⎥⎦ ⎡⎢⎣ 4
4

− 8
3

⎤⎥⎦  and  
⎡⎢⎣ 3 2 1

0 2 1
0 0 5

⎤⎥⎦ ⎡⎢⎣ 1 0 0
6 0 0
1 4 3

⎤⎥⎦[ ], ,
1 0
0 2

⎡⎢⎣ 1 0 0
0 3 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ 0 0 0
0 2 0
0 0 0

⎤⎥⎦



Triangular Factorization
If an n × n matrix A can be reduced to strict upper

triangular form using only row operation III, then it is

possible to represent the reduction process in terms of a

matrix factorization. We illustrate how this is done in the

next example.

Example 6
Let

A =

and let us use only row operation III to carry out the

reduction process. At the first step, we subtract 
1
2  times

the first row from the second and then we subtract twice

the first row from the third.

→

To keep track of the multiples of the first row that were

subtracted, we set l21 = 1
2  and l31 = 2. We complete

the elimination process by eliminating the −9 in the 

(3, 2) position.

→

Let l32 = −3, the multiple of the second row subtracted

from the third row. If we call the resulting matrix U and

set

L = =

⎡⎢⎣ 2 4 2
1 5 2
4 −1 9

⎤⎥⎦⎡⎢⎣ 2 4 2
1 5 2
4 −1 9

⎤⎥⎦ ⎡⎢⎣ 2 4 2
0 3 1
0 −9 5

⎤⎥⎦⎡⎢⎣ 2 4 2
0 3 1
0 −9 5

⎤⎥⎦ ⎡⎢⎣ 2 4 2
0 3 1
0 0 8

⎤⎥⎦⎡⎢⎣ 1 0 0
l21 1 0
l31 l32 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
1
2 1 0
2 −3 1

⎤⎥⎦



then it is easily verified that

LU =   = = A

The matrix L in the previous example is lower triangular

with 1’s on the diagonal. We say that L is unit lower

triangular. The factorization of the matrix A into a

product of a unit lower triangular matrix L times a

strictly upper triangular matrix U is often referred to as

an LU factorization.

To see why the factorization in Example 6 works, let us

view the reduction process in terms of elementary

matrices. The three row operations that were applied to

the matrix A can be represented in terms of

multiplications by elementary matrices

E3E2E1A = U

(3)

where

correspond to the row operations in the reduction

process. Since each of the elementary matrices is

nonsingular, we can multiply equation (3) by their

inverses.

A = E−1
1 E−1

2 E−1
3 U

[We multiply in reverse order because 

(E3E2E1)−1 = E−1
1 E−1

2 E−1
3 .] However, when the

inverses are multiplied in this order, the multipliers l21, 

l31, l32 fill in below the diagonal in the product:

⎡⎢⎣ 1 0 0
1
2 1 0
2 −3 1

⎤⎥⎦ ⎡⎢⎣ 2 4 2
0 3 1
0 0 8

⎤⎥⎦ ⎡⎢⎣ 2 4 2
1 5 2
4 −1 9

⎤⎥⎦, E3 =E1 = , E2 =
⎡⎢⎣ 1 0 0

− 1
2 1 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0

−2 0 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0
0 3 1

⎤⎥⎦E−1
1 E−1

2 E−1
3 =

⎡⎢⎣ 1 0 0
1
2 1 0
0 0 1

⎤⎥⎦ = L
⎡⎢⎣ 1 0 0

0 1 0
2 0 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0
0 −3 1

⎤⎥⎦



In general, if an n × n matrix A can be reduced to strict

upper triangular form using only row operation III, then

A has an LU factorization. The matrix L is unit lower

triangular, and if i > j, then lij is the multiple of the jth

row subtracted from the ith row during the reduction

process.

The LU factorization is a very useful way of viewing the

elimination process. We will find it particularly useful in

Chapter 7 when we study computer methods for solving

linear systems. Many of the major topics in linear algebra

can be viewed in terms of matrix factorizations. We will

study other interesting and important factorizations in

Chapters 5 through 7.



Section 1.5 Exercises

1. Which of the matrices that follow are elementary matrices?

Classify each elementary matrix by type.

1. [ ]

2. [ ]

3. 

4. 

2. Find the inverse of each matrix in Exercise 1. For each elementary

matrix, verify that its inverse is an elementary matrix of the same

type.

3. For each of the following pairs of matrices, find an elementary

matrix E such that EA = B:

1. 

2. 

3. 

4. For each of the following pairs of matrices, find an elementary

matrix E such that AE = B:

1. 

2. 

0 1

1 0

2 0

0 3

⎡⎢⎣1 0 0

0 1 0

5 0 1

⎤⎥⎦⎡⎢⎣1 0 0

0 5 0

0 0 1

⎤⎥⎦A = [ ], B = [ ]
2 −1

5 3

−4 2

5 3

A = , B =
⎡⎢⎣ 2 1 3

−2 4 5

3 1 4

⎤⎥⎦ ⎡⎢⎣ 2 1 3

3 1 4

−2 4 5

⎤⎥⎦A = , B =
⎡⎢⎣ 4 −2 3

1 0 2

−2 3 1

⎤⎥⎦ ⎡⎢⎣4 −2 3

1 0 2

0 3 5

⎤⎥⎦A = , B =
⎡⎢⎣4 1 3

2 1 4

1 3 2

⎤⎥⎦ ⎡⎢⎣3 1 4

4 1 2

2 3 1

⎤⎥⎦A = [ ], B = [ ]
2 4

1 6

2 −2

1 3



3. 

5. Let

1. Find an elementary matrix E such that EA = B.

2. Find an elementary matrix F such that FB = C.

3. Is C row equivalent to A? Explain.

6. Let

A =

1. Find elementary matrices E1, E2, E3 such that

E3E2E1A = U

where U is an upper triangular matrix.

2. Determine the inverses of E1, E2, E3 and set 

L = E−1
1 E−1

2 E−1
3 . What type of matrix is L? Verify

that A = LU .

7. Let

A = [ ]

1. Express A−1
 as a product of elementary matrices.

2. Express A as a product of elementary matrices.

8. Compute the LU factorization of each of the following matrices:

1. [ ]

2. [ ]

3. 

A = , B =
⎡⎢⎣ 4 −2 3

−2 4 2

6 1 −2

⎤⎥⎦ ⎡⎢⎣ 2 −2 3

−1 4 2

3 1 −2

⎤⎥⎦A = ,
⎡⎢⎣1 2 4

2 1 3

1 0 2

⎤⎥⎦ C =B = ,
⎡⎢⎣1 2 4

2 1 3

2 2 6

⎤⎥⎦ ⎡⎢⎣1 2 4

0 −1 −3

2 2 6

⎤⎥⎦⎡⎢⎣2 1 1

6 4 5

4 1 3

⎤⎥⎦2 1

6 4

3 1

9 5

2 4

−2 1

⎡⎢⎣ 1 1 1

3 5 6

−2 2 7

⎤⎥⎦



4. 

9. Let

A =

1. Verify that

A−1 =

2. Use A−1
 to solve Ax = b for the following choices of b:

1. b = (1, 1, 1)T

2. b = (1, 2, 3)T

3. b = (−2, 1, 0)T

10. Find the inverse of each of the following matrices:

1. [ ]

2. [ ]

3. [ ]

4. [ ]

5. 

6. 

7. 

8. 

⎡⎢⎣−2 1 2

4 1 −2

−6 −3 4

⎤⎥⎦ ⎡⎢⎣1 0 1

3 3 4

2 2 3

⎤⎥⎦⎡⎢⎣ 1 2 −3

−1 1 −1

0 −2 3

⎤⎥⎦−1 1

1 0

2 5

1 3

2 6

3 8

3 0

9 3

⎡⎢⎣1 1 1

0 1 1

0 0 1

⎤⎥⎦⎡⎢⎣2 0 5

0 3 0

1 0 3

⎤⎥⎦⎡⎢⎣−1 −3 −3

2 6 1

3 8 3

⎤⎥⎦⎡⎢⎣ 1 0 1

−1 1 1

−1 −2 −3

⎤⎥⎦



11. Given

A =

compute A−1
 and use it to:

1. find a 2 × 2 matrix X such that AX = B.

2. find a 2 × 2 matrix Y such that Y A = B.

12. Let

A =

Solve each of the following matrix equations:

1. AX + B = C

2. XA + B = C

3. AX + B = X

4. XA + C = X

13. Is the transpose of an elementary matrix an elementary matrix of

the same type? Is the product of two elementary matrices an

elementary matrix?

14. Let U and R be n × n upper triangular matrices and set T = UR

. Show that T is also upper triangular and that tij = uijrij for 

j = 1, … , n.

15. Let A be a 3 × 3 matrix and suppose that

2a1 + a2 − 4a3 = 0

How many solutions will the system Ax = 0 have? Explain. Is A

nonsingular? Explain.

16. Let A be a 3 × 3 matrix and suppose that

a1 = 3a2 − 2a3

Will the system Ax = 0 have a nontrivial solution? Is A

nonsingular? Explain your answers.

17. Let A and B be n × n matrices and let C = A − B. Show that if 

Ax0 = Bx0 and x0 ≠ 0, then C must be singular.

18. Let A and B be n × n matrices and let C = AB. Prove that if B is

singular, then C must be singular. Hint: Use Theorem 1.5.2.

19. Let U be an n × n upper triangular matrix with nonzero diagonal

entries.

1. Explain why U must be nonsingular.

[ ]
3 1

5 2
  and   B = [ ]

1 2

3 4

[ ], B
5 3

3 2
= [ ], C = [ ]

6 2

2 4

4 −2

−6 3



2. Explain why U −1
 must be upper triangular.

20. Let A be a nonsingular n × n matrix and let B be an n × r

matrix. Show that the reduced row echelon form of (A|B) is 

(I|C), where C = A−1B.

21. In general, matrix multiplication is not commutative (i.e., 

AB ≠ BA). However, in certain special cases the commutative

property does hold. Show that

1. if D1 and D2 are n × n diagonal matrices, then 

D1D2 = D2D1.

2. if A is an n × n matrix and

B = a0I + a1A + a2A2 + ⋯ + akAk

where a0, a1, … , ak are scalars, then AB = BA.

22. Show that if A is a symmetric nonsingular matrix, then A−1
 is also

symmetric.

23. Prove that if A is row equivalent to B, then B is row equivalent to

A.

24. 1. Prove that if A is row equivalent to B and B is row

equivalent to C, then A is row equivalent to C.

2. Prove that any two nonsingular n × n matrices are row

equivalent.

25. Let A and B be an m × n matrix. Prove that if B is row equivalent

to A and U is any row echelon form of A, then B is row equivalent

to U.

26. Prove that B is row equivalent to A if and only if there exists a

nonsingular matrix M such that B = MA.

27. Is it possible for a singular matrix B to be row equivalent to a

nonsingular matrix A? Explain.

28. Given a vector x ∈ R
n+1

, the (n + 1) × (n + 1) matrix V

defined by

vij = {

is called the Vandermonde matrix.

1. Show that if

Vc = y

and

p(x) = c1 + c2x + ⋯ + cn+1xn

1 if j = 1

x
j−1
i for j = 2, … , n + 1



then

2. Suppose that x1, x2, … , xn+1 are all distinct. Show

that if c is a solution of V x = 0, then the coefficients 

c1, c2, … , cn must all be zero, and hence V must be

nonsingular.

For each of following, answer true if the statement is always true

and answer false otherwise. In the case of a true statement,

explain or prove your answer. In the case of a false statement,

give an example to show that the statement is not always true.

29. If A is row equivalent to I and AB = AC, then B must equal C.

30. If E and F are elementary matrices and G = EF , then G is

nonsingular.

31. If A is a 4 × 4 matrix and a1 + a2 = a3 + 2a4, then A must be

singular.

32. If A is row equivalent to both B and C, then A is row equivalent to 

B + C.

p(xi) = yi, i = 1, 2, … , n + 1



1.6 Partitioned Matrices
Often it is useful to think of a matrix as being composed

of a number of submatrices. A matrix C can be

partitioned into smaller matrices by drawing horizontal

lines between the rows and vertical lines between the

columns. The smaller matrices are often referred to as

blocks. For example, let

C =

If lines are drawn between the second and third rows and

between the third and fourth columns, then C will be

divided into four submatrices, C11, C12, C21, and C22.

1.11-31 Full Alternative Text

One useful way of partitioning a matrix is to partition it

into columns. For example, if

B =

we can partition B into three column submatrices:

⎡⎢⎣1 −2 4 1 3
2 1 1 1 1
3 3 2 −1 2
4 6 2 2 4

⎤⎥⎦⎡⎢⎣−1 2 1
2 3 1
1 4 1

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-017.xhtml#la_unfig01-017


B = (b1 b2 b3) =

Suppose that we are given a matrix A with three

columns; then the product AB can be viewed as a block

multiplication. Each block of B is multiplied by A and the

result is a matrix with three blocks: Ab1, Ab2, and Ab3

; that is,

AB = A(b1 b2 b3) = [ ]

For example, if

A = [ ]

then

and hence

A(b1 b2 b3) = [ ]

In general, if A is an m × n matrix and B is an n × r

matrix that has been partitioned into columns 

[ ], then the block multiplication of A times

B is given by

AB = ( )

In particular,

( ) = A = AI = ( )

Let A be an m × n matrix. If we partition A into rows,

then

A =

⎡⎢⎣−1
2
1∣234∣111⎤⎥⎦Ab1 Ab3Ab2

1 3 1
2 1 −2

, Ab3 = [ ]Ab1 = [ ], Ab2 = [ ]
6

−2
15

−1
5
1

6
−2∣ 15

−1∣51b1 br⋯

Ab1 Ab2 ⋯ Abr

a1 ⋯ an Ae1 ⋯ Aen

⎡⎢⎣ →

1

→a2

⋮
→am

a ⎤⎥⎦



If B is an n × r matrix, the ith row of the product AB is

determined by multiplying the ith row of A times B.

Thus, the ith row of AB is →aiB. In general, the product

AB can be partitioned into rows as follows:

AB =

To illustrate this result, let us look at an example. If

then

These are the row vectors of the product AB:

Next, we consider how to compute the product AB in

terms of more general partitions of A and B.

Block Multiplication
Let A be an m × n matrix and B an n × r matrix. It is

often useful to partition A and B and express the product

in terms of the submatrices of A and B. Consider the

following four cases.

⎡⎢⎣→

1B

→

2B

⋮
→amB

a

a

⎤⎥⎦A =    and    B = [ ]
⎡⎢⎣2 5

3 4
1 7

⎤⎥⎦ 3 2 −3
−1 1 1

→a1B = [ ]
→a2B =
→a3B = [ ]

1 9 −1
[ ]−55 10

4−4 9



Case 1. If B = [ ], where B1 is an n × t matrix

and B2 is an n × (r − t) matrix, then

Thus,

A[ ] = [ ]

Case 2. If A = [ ], where A1 is a k × n matrix and 

A2 is an (m − k) × n matrix, then

Thus,

[ ] B = [ ]

Case 3. Let A = [ ] and B = [ ], where A1

is an m × s matrix, A2 is an m × (n − s) matrix, B1

is an s × r matrix, and B2 is an (n − s) × r matrix. If 

C = AB, then

cij =
n

∑
l=1

ailblj =
s

∑
l=1

ailblj +
n

∑
l=s+1

ailblj

1 B2B

AB = A(b1,…,bt, bt+1 … br)
= (Ab1, … , Abt, Abt+1, … , Abr)
= (A(b1 … bt), A(bt+1 … br))
= [ ]AB1 AB2

B1 B2 AB1 AB2

A1

A2

[ ] B =  B =

= = [ ]

A1

A2

⎡⎢⎣ →a1

⋮
→ak

→ak+1

⋮
→am

⎤⎥⎦ ⎡⎢⎣ →a1B

⋮
→akB

→ak+1B

⋮
→amB

⎤⎥⎦⎡⎢⎣  B

 B

⎡⎢⎣→a1

⋮
→ak

⎤⎥⎦⎡⎢⎣→ak+1

⋮
→am

⎤⎥⎦ ⎤⎥⎦ A1B

A2B

A1

A2

A1B

A2B

A1 A2
B1

B2



Thus, cij is the sum of the (i, j) entry of A1B1 and the 

(i, j) entry of A2B2. Therefore,

AB = C = A1B1 + A2B2

and it follows that

Case 4. Let A and B both be partitioned as follows:

Let

It follows from case 3 that

AB = = A1B1 + A2B2

It follows from cases 1 and 2 that

Therefore,

= [ ]

In general, if the blocks have the proper dimensions, the

block multiplication can be carried out in the same

manner as ordinary matrix multiplication, that is, if

[ ] = A1B1 + A2B2[ ]A1 A2
B1

B2

A1 = [ ], A2 = [ ],

1 = [ ], B2 = [ ]

A11

A12

A12

A22

B B11 B12 B21 B22

[ ][ ]A1 A2
B1

B12

A1B1 = [ ] B1 = [ ] = [ ]

A2B2 = [ ] B2 = [ ] = [ ]

A11

A21

A11B1

A21B1

A11B11 A11B12

A21B11 A21B12

A12

A22

A12B2

A22B2

A12B11 A12B22

A22B21 A22B22

[ ] [ ]
A11 A12

A21 A22

B11 B12

B21 B22

11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

A



then

AB =

where

Cij =
t

∑
k=1

AikBkj

The multiplication can be carried out in this manner only

if the number of columns of Aik equals the number of

rows of Bkj for each k.

Example 1

Let

A =

and

A =   and   B =
⎡⎢⎣A11 ⋯ A1t

⋮
As1 ⋯ Ast

⎤⎥⎦ ⎡⎢⎣B11 ⋯ B1r

⋮
Bt1 ⋯ Btr

⎤⎥⎦⎡⎢⎣C11 ⋯ C1r

⋮
Cs1 ⋯ Csr

⎤⎥⎦⎡⎢⎣1 1 1 1
2 2 1 1
3 3 2 2

⎤⎥⎦



Partition A into four blocks and perform the block

multiplication.

SOLUTION

Since each Bkj has two rows, the Aik’s must each have

two columns. Thus, we have one of two possibilities:

in which case

or



in which case

Example 2
Let A be an n × n matrix of the form

[ ]

where A11 is a k × k matrix (k < n). Show that A is

nonsingular if and only if A11 and A22 are nonsingular.

SOLUTION

If A11 and A22 are nonsingular, then

[ ] [ ] = [ ] = I

A11 O

O A22

A−1
11 O

O A−1
22

A11 O

O A22

Ik O

O In−k



and

[ ] [ ] = [ ] = I

so A is nonsingular and

A−1 = [ ]

Conversely, if A is nonsingular, then let B = A−1
 and

partition B in the same manner as A. Since

BA = I = AB

it follows that

Thus,

Hence, A11 and A22 are both nonsingular with inverses 

B11 and B22, respectively.

Outer Product Expansions
Given two vectors x and y in Rn

, it is possible to perform

a matrix multiplication of the vectors if we transpose one

of the vectors first. The matrix product xT Y  is the

product of a row vector (a 1 × n matrix) and a column

vector (an n × 1 matrix). The result will be a 1 × 1
matrix, or simply a scalar:

xT y = [ ]  = x1y1 + x2y2 + ⋯ + xnyn

A11 O

O A22

A−1
11 O

O A−1
22

Ik O

O In−k

A−1
11 O

O A−1
22

[ ] [ ] = [ ] = [ ] [ ]

[ ] = [ ] = [ ]

B11 B12

B21 B22

A11 O

O A22

Ik O

O In−k

A11 O

O A22

B11 B12

B21 B22

B11A11 B12A22

B21A11 B22A22

Ik O

O In−k

A11B11 A11B12

A22B21 A22B22

B11A11 = Ik = A11B11

B22A22 = In−k = A22B22

x1 x2 … xn

⎡⎢⎣y1

y2

⋮
yn

⎤⎥⎦



This type of product is referred to as a scalar product or

an inner product. The scalar product is one of the most

commonly performed operations. For example, when we

multiply two matrices, each entry of the product is

computed as a scalar product (a row vector times a

column vector).

It is also useful to multiply a column vector times a row

vector. The matrix product xyT
 is the product of an 

n × 1 matrix times a 1 × n matrix. The result is a full 

n × n matrix.

The product xyT
 is referred to as the outer product of x

and y. The outer product matrix has special structure in

that each of its rows is a multiple of yT
 and each of its

column vectors is a multiple of x. For example, if

then

Note that each row is a multiple of (3, 5, 2) and each

column is a multiple of x.

We are now ready to generalize the idea of an outer

product from vectors to matrices. Suppose that we start

with an m × n matrix X and a k × n matrix Y. We can

then form a matrix product XY T
. If we partition X into

columns and Y T
 into rows and perform the block

multiplication, we see that XY T
 can be represented as a

sum of outer products of vectors:

xyT = [ ]

⎡⎢⎣x1

x2

⋮
xn

⎤⎥⎦ y1 y2 … yn =

⎡⎢⎣x1y1 x1y2 … x1yn

x2y1 x2y2 … x2yn

⋮
xny1 xny2 … xnyn

⎤⎥⎦x =   and   y =
⎡⎢⎣4

1
3

⎤⎥⎦ ⎡⎢⎣3
5
2

⎤⎥⎦xyT =
⎡⎢⎣4

1
3

⎤⎥⎦ [ ] =23 5
⎡⎢⎣12 20 8

3 5 2
9 15 6

⎤⎥⎦



XY T = [ ]  = x1yT
1 + x2yT

2 + ⋯ + xnyT
n

This representation is referred to as an outer product

expansion. These types of expansions play an important

role in many applications. In Section 6.5, we will see how

outer product expansions are used in digital imaging and

in information retrieval applications.

Example 3
Given

X =

compute the outer product expansion of XY T
.

SOLUTION

x1 x2 ⋯ xn

⎡⎢⎣yT
1

yT
2

⋮
yT

n

⎤⎥⎦⎡⎢⎣3 1
2 4
1 2

⎤⎥⎦ Y =  and  
⎡⎢⎣1 2

2 4
3 1

⎤⎥⎦XY T =  [ ]

=  [ ] +  [ ]

= +

⎡⎢⎣3 1
2 4
1 2

⎤⎥⎦ 1 2 3
2 4 1

⎡⎢⎣3
2
1

⎤⎥⎦ 1 2 3
⎡⎢⎣1

4
2

⎤⎥⎦ 2 4 1

⎡⎢⎣3 6 9
2 4 6
1 2 3

⎤⎥⎦ ⎡⎢⎣2 4 1
8 16 4
4 8 2

⎤⎥⎦



Section 1.6 Exercises

1. Let A be a nonsingular n × n matrix. Perform the following

multiplications:

1. A−1 [ ]

2. 

3. 

4. 

5. 

2. Let B = ATA. Show that bij = aT
i aj.

3. Let

1. Calculate Ab1 and Ab2.

2. Calculate →a1B and →a2B.

3. Multiply AB and verify that its column vectors are the

vectors in part (a) and its row vectors are the vectors in

part (b).

4. Let

and

A I

[ ] A−1A

I

[ ]T [ ]A I A I

[ ]T[ ]A I A I

[ ] [ ]
A−1

I
A I

B = [ ]A = [ ]   and  
1 1

2 −1

2 1

1 3

I = [ ],    E = [ ],    O = [ ]

C = [ ],    D = [ ]

1 0

0 1

0 1

1 0

0 0

0 0

1 0

−1 1

2 0

0 2



Perform each of the following block multiplications:

1. 

2. 

3. 

4. 

5. Perform each of the following block multiplications:

1.  

2.  

[ ] [ ]
O I

I O

B11 B12

B21 B22

[ ] [ ]
C O

O C

B11 B12

B21 B22

[ ] [ ]
D O

O I

B11 B12

B21 B22

[ ] [ ]
E O

O E

B11 B12

B21 B22



3.  

4.  

6. Given

1. Compute the outer product expansion of XY T
.

2. Compute the outer product expansion of YXT
. How is

the outer product expansion of YXT
 related to the outer

product expansion of XY T
?

7. Let

X = [ ], Y = [ ]
2 1 5

4 2 3

1 2 4

2 3 1

A = [ ]
A11 A12

A21 A22
AT = [ ]and

AT
11 AT

21

AT
12 AT

22



Is it possible to perform the block multiplications of AAT
 and 

ATA? Explain.

8. Let A be an m × n matrix, X an n × r matrix, and B an m × r

matrix. Show that

AX = B

if and only if

9. Let A be an n × n matrix and let D be an n × n diagonal matrix.

1. Show that D = (d11e1, d22e2, …, dnnen).

2. Show that AD = (d11a1, d22a2, …, dnnan).

10. Let U be an m × m matrix, let V be an n × n matrix, and let

Σ = [ ]

where Σ1 is an n × n diagonal matrix with diagonal entries 

σ1,σ2, …,σn and O is the (m − n) × n zero matrix.

1. Show that if U = (U1,U2), where U1 has n columns,

then

UΣ = U1Σ1

2. Show that if A = UΣV T
, then A can be expressed as an

outer product expansion of the form

A = σ1u1vT
1 + σ2u2vT

2 + ⋯ + σnunvT
n

11. Let

A = [ ]

where all four blocks are n × n matrices.

1. If A11 and A22 are nonsingular, show that A must also

be nonsingular and that A−1
 must be of the form

2. Determine C.

Axj = bj, j = 1, …, r

Σ1

O

A11 A12

O A22



12. Let A and B be n × n matrices and let M be a block matrix of the

form

M = [ ]

Use condition (b) of Theorem 1.5.2 to show that if either A or B is

singular, then M must be singular.

13. Let

A = [ ]

where all four submatrices are k × k. Determine A2
 and A4

.

14. Let I denote the n × n identity matrix. Find a block form for the

inverse of each of the following 2n × 2n matrices:

1. [ ]

2. [ ]

15. Let O be the k × k matrix whose entries are all 0, I be the k × k

identity matrix, and B be a k × k matrix with the property that 

B2 = O. If

A = [ ]

determine the block form of A−1 + A2 + A3

16. Let A and B be n × n matrices and define 2n × 2n matrices S

and M by

Determine the block form of S−1
 and use it to compute the block

form of the product S−1 MS.

17. Let

A = [ ]

where A11 is a k × k nonsingular matrix. Show that A can be

factored into a product

where

A O

O B

O I

B O

O I

I O

O O

B I

O I

I B

S = [ ], M = [ ]
I A

O I

AB O

B O

A11 A12

A21 A22

[ ] [ ]
I O

B I

A11 A12

O C

B = A21A
−1
11 A12and C = A22 − A21A

−1
11



(Note that this problem gives a block matrix version of the

factorization in Exercise 18 of Section 1.3.)

18. Let A, B, L, M, S, and T be n × n matrices with A, B, and M

nonsingular and L, S, and T singular. Determine whether it is

possible to find matrices X and Y such that

  =

If so, show how; if not, explain why.

19. Let A be an n × n matrix and x ∈ R
n

.

1. A scalar c can also be considered as a 1 × 1 matrix 

C = (c), and a vector b ∈ R
n

 can be considered as an 

n × 1 matrix B. Although the matrix multiplication CB

is not defined, show that the matrix product BC is equal

to cb, the scalar multiplication of c times b.

2. Partition A into columns and x into rows and perform

the block multiplication of A times x.

3. Show that

Ax = x1a1 + x2a2 + ⋯ + xnan

20. If A is an n × n matrix with the property that Ax = 0 for all 

x ∈ R
n

, show that A = O. Hint: Let x = ej for j = 1, …,n.

21. Let B and C be n × n matrices with the property that BX = CX

for all x ∈ R
n

. Show that B = C.

22. Consider a system of the form

[ ] [ ] = [ ]

where A is a nonsingular n × n matrix and a, b, and c are vectors

in R
n

.

1. Multiply both sides of the system by

[ ]

to obtain an equivalent triangular system.

2. Set y = A−1a and z = A−1b. Show that if 

β − cTy ≠ 0, then the solution of the system can be

determined by letting

T

⎡⎢⎣O I O O O O

O O I O O O

O O O I O O

O O O O I O

O O O O O X

Y O O O O O

⎤⎥⎦ ⎡⎢⎣MATLAB⎤⎥⎦ ⎡⎢⎣ATLAST⎤⎥⎦A a

cT β

x

xn+1

b

bn+1

A−1 0

−cTA−1 1



xn+1 =
bn+1 − cTz

β − cTy

and then setting

x = z − xn+1y



Chapter 1 Exercises

MATLAB Exercises
The exercises that follow are to be solved

computationally with the software package MATLAB,

which is described in the appendix of this book. The

exercises also contain questions that are related to the

underlying mathematical principles illustrated in the

computations. Save a record of your session in a file.

After editing and printing out the file, you can fill in the

answers to the questions directly on the printout.

MATLAB has a help facility that explains all its

operations and commands. For example, to obtain

information on the MATLAB command rand, you need

only type help rand. The commands used in the

MATLAB exercises for this chapter are inv, floor,

rand, tic, toc, rref, abs, max, round, sum, eye,

triu, ones, zeros, and magic. The operations

introduced are +,  − ,  ∗ ,  ′ , and \. The + and −
represent the usual addition and subtraction operations

for both scalars and matrices. The ∗ corresponds to

multiplication of either scalars or matrices. For

matrices whose entries are all real numbers, the ′

operation corresponds to the transpose operation. If A

is a nonsingular n × n matrix and B is any n × r matrix,

the operation A\B is equivalent to computing A−1B.

1. Use MATLAB to generate random 4 × 4 matrices A and B. For

each of the following, compute A1, A2, A3, and A4 as indicated and

determine which of the matrices are equal (you can use MATLAB

to test whether two matrices are equal by computing their

difference).



1. 

A1 = A * B, A2 = B * A, A3 = (A′ * B′)′, A4 = (B′ * A′)′

2. 

A1 = A′ * B′, A2 = (A * B), A3 = B′ * A′, A4 = (B * A)′

3. 

A1 = inv(A * B), A2 = inv(A) * inv(B), A3 = inv(B * A), A4 = inv(B) * inv(A)

4. 

A1 = inv((A * B)), A2 = inv(A′ * B′), A3 = inv(A′) * inv(B′)A4 = (inv(A) * inv(B))′

2. Set n = 200 and generate an n × n matrix and two vectors in R
n

, both having integer entries, by setting

(Since the matrix and vectors are large, we use semicolons to

suppress the printout.)

1. The exact solution of the system Ax = b should be the

vector z. Why? Explain. One could compute the solution

in MATLAB using the “\” operation or by computing 

A−1
 and then multiplying A−1

 times b. Let us compare

these two computational methods for both speed and

accuracy. One can use MATLAB’s tic and toc
commands to measure the elapsed time for each

computation. To do this, use the commands

Which method is faster?

To compare the accuracy of the two methods, we can

measure how close the computed solutions x and y are to

the exact solution z. Do this with the commands

Which method produces the most accurate solution?

2. Repeat part (a), using n = 500 and n = 1000.

3. Set A = floor(10 * rand(6)). By construction, the matrix A will

have integer entries. Let us change the sixth column of A so as to

make the matrix singular. Set

1. Set x = ones(6, 1) and use MATLAB to compute Ax.

Why do we know that A must be singular? Explain.

A = floor(10 * rand(n));

b = sum(A′)′;

z = ones(n, 1);

tic, x = A\b; toc

tic, y = inv(A) * b; toc

max(abs(x − z))

max(abs(y − z))

B = A′, A(:, 6) = −sum(B(1 : 5, :))′



Check that A is singular by computing its reduced row

echelon form.

2. Set

B = x * [1 : 6]

The product AB should equal the zero matrix. Why?

Explain. Verify that this is so by computing AB with the

MATLAB operation ∗.

3. Set

C = floor(10 * rand(6))

and

D = B + C

Although C ≠ D, the products AC and AD should be

equal. Why? Explain. Compute A * C and A * D, and

verify that they are indeed equal.

4. Construct a matrix as follows: Set

B = eye(10) − triu(ones(10), 1)

Why do we know that B must be nonsingular? Set

Now change B slightly by setting B(10, 1) = −1/256. Use

MATLAB to compute the product Bx. From the result of this

computation, what can you conclude about the new matrix B? Is it

still nonsingular? Explain. Use MATLAB to compute its reduced

row echelon form.

5. Generate a matrix A by setting

A = floor(10 * rand(6))

and generate a vector b by setting

b = floor(20 * rand(6, 1)) − 10

1. Since A was generated randomly, we would expect it to

be nonsingular. The system Ax = b should have a

unique solution. Find the solution using the “\”

operation. Use MATLAB to compute the reduced row

echelon form U of [ ]. How does the last column of

U compare with the solution x? In exact arithmetic, they

should be the same. Why? Explain. To compare the two,

compute the difference U(:, 7) − x or examine both

using format long.

2. Let us now change A so as to make it singular. Set

A(:, 3) = A(:, 1 : 2) * [4 3]′

x = C(:, 10)C = inv(B) and

A b



Use MATLAB to compute rref([A b]). How many

solutions will the system Ax = b have? Explain.

3. Set

y = floor(20 * rand(6, 1)) − 10

and

c = A * y

Why do we know that the system Ax = c must be

consistent? Explain. Compute the reduced row echelon

form U of [A c]. How many solutions does the system 

Ax = c have? Explain.

4. The free variable determined by the echelon form should

be x3. By examining the system corresponding to the

matrix U, you should be able to determine the solution

corresponding to x3 = 0. Enter this solution into

MATLAB as a column vector w. To check that Aw = c,

compute the residual vector c − Aw.

5. Set U(:, 7) = zeros(6, 1). The matrix U should now

correspond to the reduced row echelon form of (A | 0).

Use U to determine the solution of the homogeneous

system when the free variable x3 = 1 (do this by hand)

and enter your result as a vector z. Check your answer by

computing A * z.

6. Set v = w + 3 * z. The vector v should be a solution of

the system Ax = c. Why? Explain. Verify that v is a

solution by using MATLAB to compute the residual

vector c  − Av. What is the value of the free variable x3

for this solution? How could we determine all possible

solutions of the system in terms of the vectors w and z?

Explain.

6. Consider the graph



1. Determine the adjacency matrix A for the graph and

enter it in MATLAB.

2. Compute A2
 and determine the number of walks of

length 2 from (i) V1 to V7,(ii) V4 to V8, (iii) V5 to V6, and

(iv) V8 to V3.

3. Compute A4
, A6

, and A8
 and answer the questions in

part (b) for walks of lengths 4, 6, and 8. Make a

conjecture as to when there will be no walks of even

length from vertex Vi to vertex Vj.

4. Compute A3
, A5

, and A7
 and answer the questions from

part (b) for walks of lengths 3, 5, and 7. Does your

conjecture from part (c) hold for walks of odd length?

Explain. Make a conjecture as to whether there are any

walks of length k from Vi to Vj based on whether 

i + j + k is odd or even.

5. If we add the edges {V3, V6}, {V5, V8} to the graph, the

adjacency matrix B for the new graph can be generated

by setting B = A and then setting

( ) ( )



Compute Bk
 for k = 2, 3, 4, 5. Is your conjecture from

part (d) still valid for the new graph?

6. Add the edge {V6, V8} to the figure and construct the

adjacency matrix C for the resulting graph. Compute

powers of C to determine whether your conjecture from

part (d) will still hold for this new graph.

7. In Application 1 of Section 1.4, the numbers of married and single

women after 1 and 2 years were determined by computing the

products AX and A2X for the given matrices A and X. Use

format long and enter these matrices in MATLAB. Compute Ak

and AkX for k = 5, 10, 15, 20. What is happening to Ak
 as k

gets large? What is the long-run distribution of married and single

women in the town?

8. The following table describes a seven-stage model for the life cycle

of the loggerhead sea turtle:

Seven-Stage Model for Loggerhead Sea Turtle

Demographics

Stage 
Number

Description (age 
in years)

Annual 
Survivorship

Eggs Laid per 
Year

1 Eggs, hatchlings (<1) 0.6747 0

2 Small juveniles (1–7) 0.7857 0

3 Large juveniles (8–15) 0.6758 0

4 Subadults (16–21) 0.7425 0

5 Novice breeders (22) 0.8091 127

6 First-year remigrants (23) 0.8091 4

7 Mature breeders (24–54) 0.8091 80

The corresponding Leslie matrix is

B(3, 6) = 1, B(6, 3) = 1,

B(5, 8) = 1, B(8, 5) = 1



L =

Suppose that the number of turtles in each stage of the initial

turtle population is described by the vector

x0 = ( )T

1. Enter L into MATLAB and then set

x0 = [200000, 130000, 100000, 70000, 500, 400, 1100]′

Use the command

x50 = round(L
ˆ
50 * x0)

to compute x50. Compute also the values of x100, x150, 

x200, x250, and x300.

2. Loggerhead sea turtles lay their eggs on land. Suppose

that conservationists take special measures to protect

these eggs and, as a result, the survival rate for eggs and

hatchlings increases to 77 percent. To incorporate this

change into our model, we need only change the (2,1)

entry of L to 0.77. Make this modification to the matrix L

and repeat part (a). Has the survival potential of the

loggerhead sea turtle improved significantly?

3. Suppose that, instead of improving the survival rate for

eggs and hatchlings, we could devise a means of

protecting the small juveniles so that their survival rate

increases to 88 percent. Use equations (1) and (2) from

Application 2 of Section 1.4 to determine the proportion

of small juveniles that survive and remain in the same

stage and the proportion that survive and grow to the

next stage. Modify your original matrix L accordingly

and repeat part (a), using the new matrix. Has the

survival potential of the loggerhead sea turtle improved

significantly?

9. Set A = magic(8) and then compute its reduced row echelon

form. The leading 1’s should correspond to the first three variables

x1, x2, and x3, and the remaining five variables are all free.

1. Set c = [1 : 8]′ and determine whether the system 

Ax = c is consistent by computing the reduced row

echelon form of [A c]. Does the system turn out to be

consistent? Explain.

⎡⎢⎣ 0 0 0 0 127 4 80

0.6747 0.7370 0 0 0 0 0

0 0.0486 0.6610 0 0 0 0

0 0 0.0147 0.6907 0 0 0

0 0 0 0.0518 0 0 0

0 0 0 0 0.8091 0 0

0 0 0 0 0 0.8091 0.8089

⎤⎥⎦200, 000 110040050070, 000130, 000 100, 000



2. Set

b = [ ]′;

and consider the system Ax = b. This system should be

consistent. Verify that it is by computing 

U = rref([A b]). We should be able to find a solution

for any choice of the five free variables. Indeed, set 

x2 = floor(10 * rand(5, 1)). If x2 represents the last

five coordinates of a solution of the system, then we

should be able to determine x1 = (x1, x2, x3)
T

 in

terms of x2. To do this, set U = rref([A b]). The

nonzero rows of U correspond to a linear system with

block form

[ ][ ] = c

(1)

To solve equation (1), set

and use MATLAB to compute x1 in terms of x2, c, and V.

Set x = [ ] and verify that x is a solution of the

system.

10. Set

B = [−1, −1 :  1, 1]

and

A = [zeros(2), eye(2); eye(2), B]

and verify that B2 = O.

1. Use MATLAB to compute A2
, A4

, A6
, and A8

. Make a

conjecture as to what the block form of A2k will be in

terms of the submatrices I, O, and B. Use mathematical

induction to prove that your conjecture is true for any

positive integer k.

2. Use MATLAB to compute A3
, A5

, A7
, and A9

. Make a

conjecture as to what the block form of A2k−1
 will be in

terms of the submatrices I, O, and B. Prove your

conjecture.

11.  

1. The MATLAB commands

8−8−88− 8 88 −8

I V
x1

x2

V = U(1 : 3, 4 : 8), c = U(1 : 3, 9)

x1; x2

A = floor(10 * rand(6)), B = A′ * A



will result in a symmetric matrix with integer entries.

Why? Explain. Compute B in this way and verify these

claims. Next, partition B into four 3 × 3 submatrices. To

determine the submatrices in MATLAB, set

and define B21 and B22 in a similar manner using rows 4

through 6 of B.

2. Set C = inv(B11). It should be the case that CT = C

and B21T = B12. Why? Explain. Use the MATLAB

operation  to compute the transposes and verify these

claims. Next, set

and use the MATLAB functions eye and zeros to

construct

Compute H = L * D * L′ and compare H with B by

computing H − B. Prove that if all computations had

been done in exact arithmetic, LDLT
 would equal B

exactly.

B11 = B(1 : 3,  1 : 3), B12 = B(1 : 3,  4 : 6)

E = B21 * C and F = B22 − B21 * C * B21′

L = [ ], D = [ ]
I O

E I

B11 O

O F

′



Chapter Test A True or False
This chapter test consists of true or false questions. In

each case, answer true if the statement is always true and

false otherwise. In the case of a true statement, explain

or prove your answer. In the case of a false statement,

give an example to show that the statement is not always

true. For example, consider the following statements

about n × n matrices A and B:

1. A + B = B + A

2. AB = BA

Statement (i) is always true. Explanation: The (i, j) entry

of A + B is aij + bij and the (i, j) entry of B + A is 

bij + aij. Since aij + bij = bij + aij for each i and j, it

follows that A + B = B + A.

The answer to statement (ii) is false. Although the

statement may be true in some cases, it is not always

true. To show this, we need only exhibit one instance in

which equality fails to hold. For example, if

then

This proves that statement (ii) is false.

1. If the row reduced echelon form of A involves free variables, then

the system Ax = b will have infinitely many solutions.

2. Every homogeneous linear system is consistent.

3. An n × n matrix A is nonsingular if and only if the reduced row

echelon form of A is I (the identity matrix).

4. If A is nonsingular, then A can be factored into a product of

elementary matrices.

5. If A and B are nonsingular n × n matrices, then A + B is also

nonsingular and (A + B)−1 = A−1 + B−1
.

A = [ ] and B = [ ]
1 2

3 1

2 3

1 1

AB = [ ] and BA = [ ]
4 5

7 10

11 7

4 3



6. If A = A−1
, then A must be equal to either I or  − I.

7. If A and B are n × n matrices, then 

(A − B)2 = A2 − 2AB + B2
.

8. If AB = AC and A ≠ O (the zero matrix), then B = C.

9. If AB = O, then BA = O.

10. If A is a 3 × 3 matrix and a1 + 2a2 − a3 = 0, then A must be

singular.

11. If A is a 4 × 3 matrix and b = a1 + a3, then the system Ax = b

must be consistent.

12. Let A be a 4 × 3 matrix with a2 = a3. If b = a1 + a2 + a3, then

the system Ax = b will have infinitely many solutions.

13. If E is an elementary matrix, then ET
 is also an elementary

matrix.

14. The product of two elementary matrices is an elementary matrix.

15. If x and y are nonzero vectors in R
n

 and A = xyT
, then the row

echelon form of A will have exactly one nonzero row.



Chapter Test B

1. Find all solutions of the linear system

2.  

1. A linear equation in two unknowns corresponds to a line

in the plane. Give a similar geometric interpretation of a

linear equation in three unknowns.

2. Given a linear system consisting of two equations in

three unknowns, what is the possible number of

solutions? Give a geometric explanation of your answer.

3. Given a homogeneous linear system consisting of two

equations in three unknowns, how many solutions will it

have? Explain.

3. Let Ax = b be a system of n linear equations in n unknowns and

suppose that x1 and x2 are both solutions and x1 ≠ x2.

1. How many solutions will the system have? Explain.

2. Is the matrix A nonsingular? Explain.

4. Let A be a matrix of the form

A = [ ]

where α and β are fixed scalars not both equal to 0.

1. Explain why the system

Ax = [ ]

must be inconsistent.

2. How can one choose a nonzero vector b so that the

system Ax = b will be consistent? Explain.

5. Let

1. Find an elementary matrix E such that EA = B.

x1 − x2 + 3x3 + 2x4 = 1

−x1 + x2 − 2x3 + x4 = −2

2x1 − 2x2 + 7x3 + 7x4 = 1

α β

2α 2β

3

1

A = , B = , C =
⎡⎢⎣ 2 1 3

4 2 7

1 3 5

⎤⎥⎦ ⎡⎢⎣ 2 1 3

1 3 5

4 2 7

⎤⎥⎦ ⎡⎢⎣ 0 1 3

0 2 7

−5 3 5

⎤⎥⎦



2. Find an elementary matrix F such that AF = C.

6. Let A be a 3 × 3 matrix and let

b = 3a1 + a2 + 4a3

Will the system Ax = b be consistent? Explain.

7. Let A be a 3 × 3 matrix and suppose that

a1 − 3a2 + 2a3 = 0 (the zero vector)

Is A nonsingular? Explain.

8. Given the vector

x0 = [ ]

is it possible to find 2 × 2 matrices A and B so that A ≠ B and 

Ax0 = Bx0? Explain.

9. Let A and B be symmetric n × n matrices and let C = AB. Is C

symmetric? Explain.

10. Let E and F be n × n elementary matrices and let C = EF . Is C

nonsingular? Explain.

11. Given

A =

where all of the submatrices are n × n, determine the block form

of A−1
.

12. Let A and B be 10 × 10 matrices that are partitioned into

submatrices as follows:

1. If A11 is a 6 × 5 matrix, and B11 is a k × r matrix, what

conditions, if any, must k and r satisfy in order to make

the block multiplication of A times B possible?

2. Assuming that the block multiplication is possible, how

would the (2, 2) block of the product be determined?

1

1

⎡⎢⎣ I O O

O I O

O B I

⎤⎥⎦A = [ ], B = [ ]
A11 A12

A21 A22

B11 B12

B21 B22



Chapter 2 Determinants

Full Alternative Text

With each square matrix, it is possible to associate a real

number called the determinant of the matrix. The value

of this number will tell us whether the matrix is singular.

In Section 2.1, the definition of the determinant of a

matrix is given. In Section 2.2, we study properties of

determinants and derive an elimination method for

evaluating determinants. The elimination method is

generally the simplest method to use for evaluating the

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_co-02.xhtml#la_co-02


determinant of an n × n  matrix when n > 3. In Section

2.3, we see how determinants can be applied to solving 

n × n  linear systems and how they can be used to

calculate the inverse of a matrix. Two applications of

determinants are presented in Section 2.3. Additional

applications will also be presented later in Chapters 3

and 6.



2.1 The Determinant of a

Matrix
With each n × n matrix A, it is possible to associate a

scalar, det(A), whose value will tell us whether the matrix

is nonsingular. Before proceeding to the general

definition, let us consider the following cases.

Case 1. 1 × 1 Matrices If A = (a) is a 1 × 1 matrix,

then A will have a multiplicative inverse if and only if 

a ≠ 0. Thus, if we define

det(A) = a

then A will be nonsingular if and only if det(A) ≠ 0.

Case 2. 2 × 2 Matrices Let

A = [ ]

By Theorem 1.5.2, A will be nonsingular if and only if it is

row equivalent to I. Then, if a11 ≠ 0, we can test

whether A is row equivalent to I by performing the

following operations:

1. Multiply the second row of A by a11:

[ ]

2. Subtract a21 times the first row from the new second row:

[ ]

Since a11 ≠ 0, the resulting matrix will be row

equivalent to I if and only if

a11a22 − a21a12 ≠ 0

(1)

a11 a12

a21 a22

a11 a12

a11a21 a11a22

a11 a12

0 a11a22 − a21a12



If a11 = 0, we can switch the two rows of A. The

resulting matrix

[ ]

will be row equivalent to I if and only if a21a12 ≠ 0. This

requirement is equivalent to condition (1) when a11 = 0.

Thus, if A is any 2 × 2 matrix and we define

det(A) = a11a22 − a12a21

then A is nonsingular if and only if det(A) ≠ 0.

Notation
We can refer to the determinant of a specific matrix by

enclosing the array between vertical lines. For example,

if

A = [ ]

then

represents the determinant of A.

Case 3. 3 × 3 Matrices We can test whether a 3 × 3
matrix is nonsingular by performing row operations to

see if the matrix is row equivalent to the identity matrix

I. To carry out the elimination in the first column of an

arbitrary 3 × 3 matrix A, let us first assume that 

a11 ≠ 0. The elimination can then be performed by

subtracting a21/a11 times the first row from the second

and a31/a11 times the first row from the third:

→

a21 a22

0 a12

3 4

2 1∣3 4

2 1∣⎡⎢⎣ a11 12 a13

a21 a22 a23

a31 a32 a33

a ⎤⎥⎦ ⎡⎢⎣ a11 a12 a13

0
a11a22 − a21a12

a11

a11a23 − a21a13
a11

0
a11a32 − a31a12

a11

a11a33 − a31a13
a11

⎤⎥⎦



The matrix on the right will be row equivalent to I if and

only if

a11 ≠ 0

Although the algebra is somewhat messy, this condition

can be simplified to

(2)

Thus, if we define

(3)

then, for the case a11 ≠ 0, the matrix will be

nonsingular if and only if det(A) ≠ 0. What if 

a11 = 0? Consider the following possibilities:

1. a11 = 0, a21 ≠ 0

2. a11 = a21 = 0, a31 ≠ 0

3. a11 = a21 = a31 = 0

In case (i), one can show that A is row equivalent to I if

and only if

−a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22 ≠ 0

But this condition is the same as condition (2) with 

a11 = 0. The details of case (i) are left as an exercise for

the reader (see Exercise 7 at the end of the section).

In case (ii), it follows that

A =

is row equivalent to I if and only if

( )

∣ a11a22 − a21a12
a11

a11a23 − a21a13
a11

a11a32 − a31a12
a11

a11a33 − a31a13
a11 ∣a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23

+ a13a21a32 − a13a31a22 ≠ 0

det(A) = a11a22a33 − a11a32a23 − a12a21a33

+a12a31a23 + a13a21a32 − a13a31a22

⎡⎢⎣ 0 a12 a13

0 a22 a23

a31 a32 a33

⎤⎥⎦



a31(a12a23 − a22a13) ≠ 0

Again, this is a special case of condition (2) with 

a11 = a21 = 0.

Clearly, in case (iii) the matrix A cannot be row

equivalent to I and hence must be singular. In this case,

if we set a11, a21, and a31 equal to 0 in formula (3), the

result will be det(A) = 0.

In general, then, formula (2) gives a necessary and

sufficient condition for a 3 × 3 matrix A to be

nonsingular (regardless of the value of a11).

We would now like to define the determinant of an 

n × n matrix. To see how to do this, note that the

determinant of a 2 × 2 matrix

A = [ ]

can be defined in terms of the two 1 × 1 matrices

The matrix M11 is formed from A by deleting its first

row and first column, and M12 is formed from A by

deleting its first row and second column.

The determinant of A can be expressed in the form

det(A) = a11a22 − a12a21 = a11 det(M11) − a12 det(M12)

(4)

For a 3 × 3 matrix A, we can rewrite equation (3) in the

form

det(A) = a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22)

For j = 1, 2, 3, let M1j denote the 2 × 2 matrix formed

from A by deleting its first row and jth column. The

determinant of A can then be represented in the form

det(A) = a11 det(M11) − a12 det(M12) + a13 det(M13)

a11 a12

a21 a22

M11 = (a22) and M12 = (a21)



(5)

where

To see how to generalize (4) and (5) to the case n > 3, we

introduce the following definition.

Definition
Let A = (aij) be an n × n matrix and let Mij denote

the (n − 1) × (n − 1) matrix obtained from A by

deleting the row and column containing aij. The

determinant of Mij is called the minor of aij. We

define the cofactor Aij of aij by

Aij = (−1)
i+j

 det(Mij)

In view of this definition, for a 2 × 2 matrix A, we may

rewrite equation (4) in the form

(6)

Equation (6) is called the cofactor expansion of det(A)

along the first row of A. Note that we could also write

det(A) = a21(−a12) + a22a11 = a21A21 + a22A22

(7)

Equation (7) expresses det(A) in terms of the entries of

the second row of A and their cofactors. Actually, there is

no reason that we must expand along a row of the

matrix; the determinant could just as well be represented

by the cofactor expansion along one of the columns:

M11 = [ ], M12 = [ ], M13 = [ ]
a22 a23

a32 a33

a21 a23

a31 a33

a21 a22

a31 a32

det(A) = a11A11 + a12A12 (n = 2)

det(A) = a11a22 + a21(−a12)

= a11A11 + a21A21 (first column)

det(A) = a12(−a21) + a22a11

= a12A12 + a22A22 (second column)



For a 3 × 3 matrix A, we have

det(A) = a11A11 + a12A12 + a13A13

(8)

Thus, the determinant of a 3 × 3 matrix can be defined

in terms of the elements in the first row of the matrix and

their corresponding cofactors.

Example 1
If

A =

then

As in the case of 2 × 2 matrices, the determinant of a 

3 × 3 matrix can be represented as a cofactor expansion

using any row or column. For example, equation (3) can

be rewritten in the form

This is the cofactor expansion along the third row of A.

Example 2
Let A be the matrix in Example 1. The cofactor expansion

of det(A) along the second column is given by

⎡⎢⎣ 2 5 4

3 1 2

5 4 6

⎤⎥⎦det(A) = a11A11 + a12A12 + a12A13

= (−1)
2
a11 det(M11) + (−1)

3
a12 det(M12) + (−1)

4
a13 det(M13)

= 2 − 5 + 4

= 2(6 − 8) − 5(18 − 10) + 4(12 − 5)

= −16∣1 2

4 6∣ ∣3 2

5 6∣ ∣3 1

5 4∣det(A) = a12a31a23 − a13a31a22 − a11a32a23 + a13a21a32 + a11a22a33 − a12a21a33

= a31(a12a23 − a13a22) − a32(a11a23 − a13a21) + a33(a11a22 − a12a21)

= a31A31 + a32A32 + a33A33



The determinant of a 4 × 4 matrix can be defined in

terms of a cofactor expansion along any row or column.

To compute the value of the 4 × 4 determinant, we

would have to evaluate four 3 × 3 determinants.

Definition
The determinant of an n × n matrix A, denoted

det(A), is a scalar associated with the matrix A that is

defined inductively as

det(A) = {

where

are the cofactors associated with the entries in the first

row of A.

As we have seen, it is not necessary to limit ourselves to

using the first row for the cofactor expansion. We state

the following theorem without proof:

Theorem 2.1.1
If A is an n × n matrix with n ≥ 2, then det(A) can be

expressed as a cofactor expansion using any row or

column of A:

for i = 1, …, n and j = 1, …, n.

det(A) = −5 + 1 − 4

= −5(18 − 10) + 1(12 − 20) − 4(4 − 12) = −16∣3 2

5 6∣ ∣2 4

5 6∣ ∣2 4

3 2∣a11 if n = 1

a11A11 + a12A12 +⋯+ a1nA1n if n > 1

A1j = (−1)1+j det(M1j) j = 1,…,n

det(A) = ai1Ai1 + ai2Ai2  +⋯+ ainAin

= a1jA1j + a2jA2j +⋯+ anjAnj



The cofactor expansion of a 4 × 4 determinant will

involve four 3 × 3 determinants. We can often save

work by expanding along the row or column that

contains the most zeros. For example, to evaluate

we would expand down the first column. The first three

terms will drop out, leaving

−2 = −2 ⋅ 3 ⋅ = 12

For n ≤ 3, we have seen that an n × n matrix A is

nonsingular if and only if det(A) ≠ 0. In the next

section, we will show that this result holds for all values

of n. In that section, we also look at the effect of row

operations on the value of the determinant, and we will

make use of row operations to derive a more efficient

method for computing the value of a determinant.

We close this section with three theorems that are

consequences of the cofactor expansion definition. The

proofs of the last two theorems are left for the reader (see

Exercises 8, 9, and 10 at the end of this section).

Theorem 2.1.2
If A is an n × n matrix, then det(AT ) = det(A).

Proof

The proof is by induction on n. Clearly, the result holds if

n = 1, since a 1 × 1 matrix is necessarily symmetric.

Assume that the result holds for all k × k matrices and

∣0 2 3 0

0 4 5 0

0 1 0 3

2 0 1 3∣∣2 3 0

4 5 0

1 0 3∣ ∣2 3

4 5∣



that A is a (k + 1) × (k + 1) matrix. Expanding det(A)

along the first row of A, we get

det(A) = a11 det(M11) − a12 det(M12) + − ⋅ ⋅ ⋅ ±a1,k+1 det(M1,k+1)

Since the Mij’s are all k × k matrices, it follows from

the induction hypothesis that

det(A) = a11 det(M
T
11) − a12 det(M

T
12) + − ⋅ ⋅ ⋅ ±a1,k+1 det(M

T
1,k+1)

(9)

The right-hand side of (9) is just the expansion by

minors of det(AT ) using the first column of AT
.

Therefore,

det(AT ) = det(A)

∎

Theorem 2.1.3
If A is an n × n triangular matrix, then the

determinant of A equals the product of the diagonal

elements of A.

Proof

In view of Theorem 2.1.2, it suffices to prove the theorem

for lower triangular matrices. The result follows easily

using the cofactor expansion and induction on n. The

details are left for the reader (see Exercise 8 at the end of

the section).

∎

Theorem 2.1.4
Let A be an n × n matrix.



1. If A has a row or column consisting entirely of zeros, then 

det(A) = 0.

2. If A has two identical rows or two identical columns, then 

det(A) = 0.

Both of these results can be easily proved with the use of

the cofactor expansion. The proofs are left for the reader

(see Exercises 9 and 10).

∎

In the next section, we look at the effect of row

operations on the value of the determinant. This will

allow us to make use of Theorem 2.1.3 to derive a more

efficient method for computing the value of a

determinant.



Section 2.1 Exercises

1. Let

A =

1. Find the values of det(M21), det(M22), and det(M23)
.

2. Find the values of A21, A22, and A23.

3. Use your answers from part (b) to compute det(A).

2. Use determinants to determine whether the following 2 × 2
matrices are nonsingular:

1. [ ]

2. [ ]

3. [ ]

3. Evaluate the following determinants:

1. 

2. 

3. 

4. 

5. 

⎡⎢⎣ 3 2 4

1 −2 3

2 3 2

⎤⎥⎦3 5

2 4

3 6

2 4

3 −6

2 4∣ 3 5

−2 −3∣∣ 5 −2

−8 4∣∣3 1 2

2 4 5

2 4 5∣∣4 3 0

3 1 2

5 −1 −4∣∣1 3 2

4 1 −2

2 1 3∣



6. 

7. 

8. 

4. Evaluate the following determinants by inspection:

1. 

2. 

3. 

4. 

5. Evaluate the following determinant. Write your answer as a

polynomial in x:

6. Find all values of λ for which the following determinant will equal

0:

7. Let A be a 3 × 3 matrix with a11 = 0 and a21 ≠ 0. Show that A is

row equivalent to I if and only if

8. Write out the details of the proof of Theorem 2.1.3.

∣2 −1 2

1 3 2

5 1 6∣∣2 0 0 1

0 1 0 0

1 6 2 0

1 1 −2 3∣∣ 2 1 2 1

3 0 1 1

−1 2 −2 1

−3 2 3 1∣∣3 5

2 4∣∣2 0 0

4 1 0

7 3 −2∣∣3 0 0

2 1 1

1 2 2∣∣4 0 2 1

5 0 4 2

2 0 3 4

1 0 2 3∣∣a − x b c

1 −x 0

0 1 −x∣∣2 − λ 4

3 3 − λ∣−a12a21a33 + a12a31a23

+a13a21a32 − a13a31a22 ≠ 0



9. Prove that if a row or a column of an n × n matrix A consists

entirely of zeros, then det(A) = 0.

10. Use mathematical induction to prove that if A is an 

(n + 1) × (n + 1) matrix with two identical rows, then 

det(A) = 0.

11. Let A and B be 2 × 2 matrices.

1. Does det(A + B) = det(A) + det(B)?

2. Does det(AB) = det(A)det(B)?

3. Does det(AB) = det(BA)?

Justify your answers.

12. Let A and B be 2 × 2 matrices and let

1. Show that 

det(A + B) = det(A) + det(B) + det(C) + det(D)

.

2. Show that if B = EA, then 

det(A + B) = det(A) + det(B).

13. Let A be a symmetric tridiagonal matrix (i.e., A is symmetric and 

aij = 0 whenever |i − j| > 1). Let B be the matrix formed from

A by deleting the first two rows and columns. Show that

det(A) = a11 det(M11) − a2
12det(B)

E = [ ]

D = [ ],C = [ ],
a11 a12

b21 b22

b11 b12

a21 a22

0 α

β 0



2.2 Properties of

Determinants
In this section, we consider the effects of row operations

on the determinant of a matrix. Once these effects have

been established, we will prove that a matrix A is

singular if and only if its determinant is zero, and we will

develop a method for evaluating determinants by using

row operations. Also, we will establish an important

theorem about the determinant of the product of two

matrices. We begin with the following lemma:

Lemma 2.2.1
Let A be an n × n matrix. If Ajk denotes the cofactor of 

ajk for k = 1, …, n, then

ai1Aj1 + ai2Aj2 + ⋯ + ainAjn = {

(1)

Proof

If i = j, (1) is just the cofactor expansion of det(A) along

the ith row of A. To prove (1) in the case i ≠ j, let A∗
 be

the matrix obtained by replacing the jth row of A by the

ith row of A:

det(A) if i = j

0 if i ≠ j

A* = jth row

⎡⎢⎣ a11 a12 … a1n

⋮
ai1 ai2 … ain

⋮
ai1 ai2 … ain

⋮
an1 an2 … ann

⎤⎥⎦



Since two rows of A∗
 are the same, its determinant must

be zero. It follows from the cofactor expansion of det(A∗

) along the jth row that

∎

Let us now consider the effects of each of the three row

operations on the value of the determinant.

Row Operation I
Two rows of A are interchanged.

If A is a 2 × 2 matrix and

E = [ ]

then

det(EA) = = a21a12 − a22a11 = −det(A)

For n > 2, let Eij be the elementary matrix that

switches rows i and j of A. An induction proof can show

that det(EijA) = −det(A). We illustrate the idea

behind the proof for the case n = 3. Suppose that the

first and third rows of a 3 × 3 matrix A have been

interchanged. Expanding det(E13A) along the second

row and making use of the result for 2 × 2 matrices, we

see that

0 = det(A*) = ai1A
*
j1 + ai2A

*
j2 + ⋯ + ainA

*
jn

= ai1Aj1 + ai2Aj2 + ⋯ + ainAjn

0 1
1 0∣a21 a22

a11 a12∣



In general, if A is an n × n matrix and Eij is the n × n

elementary matrix formed by interchanging the ith and

jth rows of I, then

det(EijA) = −det(A)

In particular,

det(Eij) = det(EijI) = −det(I) = −1

Thus, for any elementary matrix E of type I,

det(EA) = −det(A) = det(E) det(A)

Row Operation II
A row of A is multiplied by a nonzero scalar.

Let E denote the elementary matrix of type II formed

from I by multiplying the ith row by the nonzero scalar α

. If det(EA) is expanded by cofactors along the ith row,

then

In particular,

det(E) = det(EI) = α det(I) = α

and hence,

det(EA) = α det(A) = det(E) det(A)

det(E13A) =

= −a21 + a22 − a23

= a21 − a22 + a23

= − det(A)∣a31 a32 a33

a21 a22 a23

a11 a12 a13∣∣a32 a33

a12 a13∣ ∣a31 a33

a11 a13∣ ∣a31 a32

a11 a12∣∣a12 a13

a32 a33∣ ∣a11 a13

a31 a33∣ ∣a11 a12

a31 a32∣det(EA) = αai1Ai1 + αai2Ai2 + ⋯ + αainAin

= α(ai1Ai1 + ai2Ai2 + ⋯ + ainAin)
= α det(A)



Row Operation III
A multiple of one row is added to another row.

Let E be the elementary matrix of type III formed from I

by adding c times the ith row to the jth row. Since E is

triangular and its diagonal elements are all 1, it follows

that det(E) = 1. We will show that

det(EA) = det(A) = det(E) det(A)

If det(EA) is expanded by cofactors along the jth row, it

follows from Lemma 2.2.1 that

Thus,

det(EA) = det(A) = det(E) det(A)

Summary

In summation, if E is an elementary matrix, then

det(EA) = det(E) det(A)

where

det(E) =

(2)

Similar results hold for column operations. Indeed, if E

is an elementary matrix, then ET
 is also an elementary

matrix (see Exercise 8 at the end of the section) and

det(EA) = (aj1 + cai1)Aj1 + (aj2 + cai2)Aj2 + ⋯ + (ajn + cain)Ajn

= (aj1Aj1 + ⋯ + ajnAjn) + c(ai1Aj1 + ⋯ + ainAjn)
= det(A)

⎧⎪⎨⎪ −1 if E is of type I
α ≠ 0 if E is of type II
1 If E is of type III

det(AE) = det((AE)T ) = det(ET AT )
= det(ET ) det(AT ) = det(E) det(A)



Thus, the effects that row or column operations have on

the value of the determinant can be summarized as

follows:

1. Interchanging two rows (or columns) of a matrix changes the sign

of the determinant.

2. Multiplying a single row or column of a matrix by a scalar has the

effect of multiplying the value of the determinant by that scalar.

3. Adding a multiple of one row (or column) to another does not

change the value of the determinant.

Note
As a consequence of III, if one row (or column) of a

matrix is a multiple of another, the determinant of the

matrix must equal zero.

Main Results
We can now make use of the effects of row operations on

determinants to prove two major theorems and to

establish a simpler method of computing determinants.

It follows from (2) that all elementary matrices have

nonzero determinants. This observation can be used to

prove the following theorem.

Theorem 2.2.2
An n × n matrix A is singular if and only if

det(A) = 0

Proof

The matrix A can be reduced to row echelon form with a

finite number of row operations. Thus,

U = EkEk−1 ⋯ E1A



where U is in row echelon form and the Ei’s are all

elementary matrices. It follows that

Since the determinants of the Ei’s are all nonzero, it

follows that det(A) = 0 if and only if det(U) = 0. If A

is singular, then U has a row consisting entirely of zeros,

and hence det(U) = 0. If A is nonsingular, then U is

triangular with 1’s along the diagonal and hence 

det(U) = 1.

∎

From the proof of Theorem 2.2.2, we can obtain a

method for computing det(A). We reduce A to row

echelon form.

U = EkEk−1 ⋯ E1A

If the last row of U consists entirely of zeros, A is singular

and det(A) = 0. Otherwise, A is nonsingular and

det(A) = [det(Ek) det(Ek−1) ⋯ det(E1)]−1

Actually, if A is nonsingular, it is simpler to reduce A to

triangular form. This can be done using only row

operations I and III. Thus,

T = EmEm−1 ⋯ E1A

and hence,

det(A) = ±det(T ) = ±t11t22 ⋯ tnn

where the tii’s are the diagonal entries of T. The sign will

be positive if row operation I has been used an even

number of times and negative otherwise.

Example 1
Evaluate

det(U) = det(EkEk−1 ⋯ E1A)
= det(Ek) det(Ek−1) ⋯ det(E1) det(A)



SOLUTION

We now have two methods for evaluating the

determinant of an n × n matrix A. If n > 3 and A has

nonzero entries, elimination is the most efficient

method, in the sense that it involves fewer arithmetic

operations. In Table 2.2.1, the number of arithmetic

operations involved in each method is given for 

n = 2, 3, 4, 5, 10. It is not difficult to derive general

formulas for the number of operations in each of the

methods (see Exercises 20 and 21 at the end of the

section).

Table 2.2.1 Operation Counts

n
Cofactors Elimination
AdditionsMultiplicationsAdditionsMultiplications and Divisions

2 1 2 1 3

3 5 9 5 10

4 23 40 14 23

5 119 205 30 44

10 3,628,799 6,235,300 285 339

We have seen that, for any elementary matrix E,

( ) ( ) ( ) ( )

∣2 1 3
4 2 1
6 −3 4∣= = (−1)

= −(−1)(2)(−6)(−5)
= −60∣2 1 3

4 2 1
6 −3 4∣ ∣2 1 3

0 0 −5
0 −6 −5∣ ∣2 1 3

0 −6 −5
0 0 −5∣



det(EA) = det(E) det(A) = det(AE)

This is a special case of the following theorem.

Theorem 2.2.3
If A and B are n × n matrices, then

det(AB) = det(A) det(B)

Proof

If B is singular, it follows from Theorem 1.5.2 that AB is

also singular (see Exercise 14 of Section 1.5), and

therefore,

det(AB) = 0 = det(A) det(B)

If B is nonsingular, B can be written as a product of

elementary matrices. We have already seen that the

result holds for elementary matrices. Thus,

∎

If A is singular, the computed value of det(A) using exact

arithmetic must be 0. However, this result is unlikely if

the computations are done by computer. Since

computers use a finite number system, roundoff errors

are usually unavoidable. Consequently, it is more likely

that the computed value of det(A) will only be near 0.

Because of roundoff errors, it is virtually impossible to

determine computationally whether a matrix is exactly

singular. In computer applications, it is often more

meaningful to ask whether a matrix is “close” to being

singular. In general, the value of det(A) is not a good

indicator of nearness to singularity. In Section 6.5, we

det(AB) = det(AEkEk−1 ⋯ E1)
= det(A) det(Ek) det(Ek−1) ⋯ det(E1)
= det(A) det(EkEk−1 ⋯ E1)
= det(A) det(B)



will discuss how to determine whether a matrix is close

to being singular.



Section 2.2 Exercises

1. Evaluate each of the following determinants by inspection:

1. 

2. 

3. 

2. Let

A =

1. Use the elimination method to evaluate det(A).

2. Use the value of det(A) to evaluate

+

3. For each of the following, compute the determinant and state

whether the matrix is singular or nonsingular:

1. [ ]

2. [ ]

3. ∣0 0 3

0 4 1

2 3 1∣∣ 1 1 1 3

0 3 1 1

0 0 2 2

−1 −1 −1 2∣∣0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0∣⎡⎢⎣ 0 1 2 3

1 1 1 1

−2 −2 3 3

1 2 −2 −3

⎤⎥⎦∣ 0 1 2 3

−2 −2 3 3

1 2 −2 −3

1 1 1 1∣ ∣ 0 1 2 3

1 1 1 1

−1 −1 4 4

2 3 −1 −2∣3 1

6 2

3 1

4 2

⎡⎢⎣ 3 3 1

0 1 2

0 2 3

⎤⎥⎦



4. 

5. 

6. 

4. Find all possible choices of c that would make the following matrix

singular:

5. Let A be an n × n matrix and α a scalar. Show that

det(αA) = an det(A)

6. Let A be a nonsingular matrix. Show that

det(A−1) =
1

det(A)

7. Let A and B be 3 × 3 matrices with det(A) = 4 and 

det(B) = 5. Find the value of

1. det(AB)

2. det(3A)

3. det(2AB)

4. det(A−1B)

8. Show that if E is an elementary matrix, then ET
 is an elementary

matrix of the same type as E.

9. Let E1, E2, and E3 be 3 × 3 elementary matrices of types I, II,

and III, respectively, and let A be a 3 × 3 matrix with 

det(A) = 6. Assume, additionally, that E2 was formed from I by

multiplying its second row by 3. Find the values of each of the

following:

1. det(E1A)

2. det(E2A)

3. det(E3A)

4. det(AE1)

⎡⎢⎣ 2 1 1

4 3 5

2 1 2

⎤⎥⎦⎡⎢⎣ 2 −1 3

−1 2 −2

1 4 0

⎤⎥⎦⎡⎢⎣ 1 1 1 1

2 −1 3 2

0 1 2 1

0 0 7 3

⎤⎥⎦⎡⎢⎣ 1 1 1

1 9 c

1 c 3

⎤⎥⎦



5. det(E2
1 )

6. det(E1E2E3)

10. Let A and B be row equivalent matrices, and suppose that B can be

obtained from A by using only row operations I and III. How do

the values of det(A) and det(B) compare? How will the values

compare if B can be obtained from A using only row operation III?

Explain your answers.

11. Let A be an n × n matrix. Is it possible for A2 + I = O in the

case where n is odd? Answer the same question in the case where

n is even.

12. Consider the 3 × 3 Vandermonde matrix

V =

1. Show that V = (x2 − x1)(x3 − x1)(x3 − x2). Hint:

Make use of row operation III.

2. What conditions must the scalars x1, x2, and x3 satisfy

in order for V to be nonsingular?

13. Suppose that a 3 × 3matrix A factors into a product:

 

Determine the value of det(A).

14. Let A and B be n × n matrices. Prove that the product AB is

nonsingular if and only if A and B are both nonsingular.

15. Let A and B be n × n matrices. Prove that if AB = I, then 

BA = I. What is the significance of this result in terms of the

definition of a nonsingular matrix?

16. A matrix A is said to be skew symmetric if AT = −A. For

example,

A = [ ]

is skew symmetric, since

A
T = [ ] = −A

If A is an n × n skew-symmetric matrix and n is odd, show that A

must be singular.

⎡⎢⎣ 1 x1 x2
1

1 x2 x2
2

1 x3
2
3x

⎤⎥⎦⎡⎢⎣ 1 0 0

l21 1 0

l31 l32 1

⎤⎥⎦ ⎡⎢⎣ u11 u12 13

0 u22 u23

0 0 u33

u ⎤⎥⎦0 1

−1 0

0 −1

1 0



17. Let A be a nonsingular n × n matrix with a nonzero cofactor Ann,

and set

c =
det(A)

Ann

Show that if we subtract c from ann, then the resulting matrix will

be singular.

18. Let A be a k × k matrix and let B be an (n − k) × (n − k)

matrix. Let

where Ik and In−k are the k × k and (n − k) × (n − k) identity

matrices.

1. Show that det(E) = det(B).

2. Show that det(F) = det(A).

3. Show that det(C) = det(A) det(B).

19. Let A and B be k × k matrices and let

M = [ ]

Show that det(M) = (−1)k det(A) det(B).

20. Show that evaluating the determinant of an n × n matrix by

cofactors involves (n! − 1) additions and 

n−1

∑
k=1

n!/k!

multiplications.

21. Show that the elimination method of computing the value of the

determinant of an n × n matrix involves [n(n − 1)(2n − 1)]/6

additions and [n(n − 1)(n2 + n + 3)]/3 multiplications and

divisions. Hint:Atthe ith step of the reduction process, it takes 

n − i divisions to calculate the multiples of the ith row that are to

be subtracted from the remaining rows below the pivot. We must

then calculate new values for the (n − i)
2

 entries in rows i + 1
through n and columns i + 1 through n.

C = [ ]

F = [ ],E = [ ],
Ik O

O B

A O

O In−k

A O

O B

O B

A O



2.3 Additional Topics and

Applications
In this section, we learn a method for computing the

inverse of a nonsingular matrix A using determinants

and we learn a method for solving linear systems using

determinants. Both methods depend on Lemma 2.2.1.

We also show how to use determinants to define the

cross product of two vectors. The cross product is useful

in physics applications involving the motion of a particle

in 3-space.

The Adjoint of a Matrix
Let A be an n × n matrix. We define a new matrix called

the adjoint of A by

adj A =

Thus, to form the adjoint, we must replace each term by

its cofactor and then transpose the resulting matrix. By

Lemma 2.2.1,

ai1Aj1 + ai2Aj2 + ⋯ + ainAjn = {

and it follows that

A(adj A) = det(A)I

If A is nonsingular, det(A) is a nonzero scalar, and we

may write

⎡⎢⎣ A11 A21 … An1

A12 A22 … An2

⋮
A1n A2n … Ann

⎤⎥⎦det(A) if i = j

0 if i ≠ j



A(
1

det(A)
adj A) = I

Thus,

Example 1
For a 2 × 2 matrix,

adj A = [ ]

If A is nonsingular, then

A−1 =
1

a11a22 − a12a21
[ ]

Example 2
Let

A =

Compute adj A and A−1
.

SOLUTION

adj A =

T

=

A−1 =
1

det(A)
adj A =

1
5

Using the formula

A−1 = 1
det(A)

adj A when det(A) ≠ 0

a22 −a12

−a21 a11

a22 −a12

−a21 a11

⎡⎢⎣ 2 1 2
3 2 2
1 2 3

⎤⎥⎦⎡⎢⎣ −

− −

−∣2 2
2 3∣ ∣3 2

1 3∣ ∣3 2
1 2∣∣1 2

2 3∣ ∣2 2
1 3∣ ∣2 1

1 2∣∣1 2
2 2∣ ∣2 2

3 2∣ ∣2 1
3 2∣⎤⎥⎦ ⎡⎢⎣ 2 1 −2

−7 4 2
4 −3 1

⎤⎥⎦⎡⎢⎣ 2 1 −2
−7 4 2

4 −3 1

⎤⎥⎦



A−1 =
1

det(A)
adj A

we can derive a rule for representing the solution to the

system Ax = b in terms of determinants.

Cramer’s Rule

Theorem 2.3.1 Cramer’s Rule
Let A be a nonsingular n × n matrix, and let b ∈ R

n
.

Let Ai be the matrix obtained by replacing the ith

column of A by replacing the ith column of A by b. If x is

the unique solution of Ax = b, then

Proof

Since

x = A−1b =
1

det(A)
(adj A)b

it follows that

∎

Example 3
Use Cramer’s rule to solve

xi =
det(Ai)
det(A)

  for    i = 1, 2, … , n

xi = b1A1i + b2A2i + ⋯ + bnAni

det(A)

=
det(Ai)
det(A)



SOLUTION

Therefore,

Cramer’s rule gives us a convenient method for writing

the solution of an n × n system of linear equations in

terms of determinants. To compute the solution,

however, we must evaluate n + 1 determinants of order

n. Evaluating even two of these determinants generally

involves more computation than solving the system by

Gaussian elimination.

Application 1
Coded Messages

A common way of sending a coded message is to assign

an integer value to each letter of the alphabet and to send

the message as a string of integers. For example, the

message

SEND MONEY

might be coded as

5, 8, 10, 21, 7, 2, 10, 8, 3

Here, the S is represented by a 5, the E by an 8, and so

on. Unfortunately, this type of code is generally easy to

break. In a longer message, we might be able to guess

x1 + 2x2 + x3 = 5
2x1 + 2x2 + x3 = 6

x1 + 2x2 + 3x3 = 9

det(A) = = −4 det(A1) = = −4

det(A2) = = −4 det(A3) = = −8∣1 2 1
2 2 1
1 2 3∣ ∣5 2 1

6 2 1
9 2 3∣∣1 5 1

2 6 1
1 9 3∣ ∣1 2 5

2 2 6
1 2 9∣x1 =

−4
−4

= 1, x2 =
−4
−4

= 1, x3 =
−8
−4

= 2



which letter is represented by a number on the basis of

the relative frequency of occurrence of that number. For

example, if 8 is the most frequently occurring number in

the coded message, then it is likely that it represents the

letter E, the letter that occurs most frequently in the

English language.

We can disguise the message further by using matrix

multiplications. If A is a matrix whose entries are all

integers and whose determinant is ±1, then, since 

A−1 = ±adj A the entries of A−1
 will be integers. We

can use such a matrix to transform the message. The

transformed message will be more difficult to decipher.

To illustrate the technique, let

A =

The coded message is put into the columns of a matrix B

having three rows:

B =

The product

AB =   =

gives the coded message to be sent:

31, 80, 54, 37, 83, 67, 29, 69, 50

The person receiving the message can decode it by

multiplying by A−1
:

  =

⎡⎢⎣ 1 2 1
2 5 3
2 3 2

⎤⎥⎦⎡⎢⎣ 5 21 10
8 7 8

10 2 3

⎤⎥⎦⎡⎢⎣ 1 2 1
2 5 3
2 3 2

⎤⎥⎦ ⎡⎢⎣ 5 21 10
8 7 8

10 2 3

⎤⎥⎦ ⎡⎢⎣ 31 37 29
80 83 69
54 67 50

⎤⎥⎦⎡⎢⎣ 1 −1 1
2 0 −1

−4 1 1

⎤⎥⎦ ⎡⎢⎣ 31 37 29
80 83 69
54 67 50

⎤⎥⎦ ⎡⎢⎣ 5 21 10
8 7 8
10 2 3

⎤⎥⎦



To construct a coding matrix A, we can begin with the

identity I and successively apply row operation III, being

careful to add integer multiples of one row to another.

Row operation I can also be used. The resulting matrix A

will have integer entries, and since

det(A) = ±det(I) = ±1

A−1
 will also have integer entries.

Reference

1. Hansen, Robert, “Integer Matrices Whose Inverses Contain

Only Integers,” Two-Year College Mathematics Journal, 13(1),

1982.

The Cross Product
Given two vectors x and y in R

3
, one can define a third

vector, the cross product, denoted x × y, by

x × y =

(1)

If C is any matrix of the form

C =

then

x × y = C11e1 + C12e2 + C13e3 =

Expanding det(C) by cofactors along the first row, we see

that

det(C) = w1C11 + w2C12 + w2C13 = wT (x × y)

⎡⎢⎣ x2y3 − y2x3

y1x3 − x1y3

x1y2 − y1x2

⎤⎥⎦⎡⎢⎣ w1 w2 w3

x1 x2 x3

1 y2 y3y

⎤⎥⎦ ⎡⎢⎣ C11

C12

C13

⎤⎥⎦



In particular, if we choose w  =  x or w  =  y, then the

matrix C will have two identical rows, and hence its

determinant will be 0. We then have

xT (x × y) = yT (x × y) = 0

(2)

In calculus books, it is standard to use row vectors

= (y1, y2, y3)

and to define the cross product to be the row vector:

x × y = (x2y3 − y2x3)i − (x1y3 − y1x3)j + (x1y2 − y1x2)k

where i, j, and k are the row vectors of the 3 × 3 identity

matrix. If one uses i, j, and k in place of w1, w2, and w3,

respectively, in the first row of the matrix M, then the

cross product can be written as a determinant.

x × y =

In linear algebra courses, it is generally more standard to

view x, y and x × y as column vectors. In this case, we

can represent the cross product in terms of the

determinant of a matrix whose entries in the first row are

e1, e2, e3, the column vectors of the 3 × 3 identity

matrix:

x × y =

The relation given in equation (2) has applications in

Newtonian mechanics. In particular, the cross product

can be used to define a binormal direction, which

Newton used to derive the laws of motion for a particle in

3-space.

Application 2

x = (x1, x2, x3) and y∣ i j k

x1 x2 x3

y1 2 y3y ∣∣e1 e2 e3

x1 x2 x3

y1 y2 y3 ∣



Newtonian Mechanics

If x is a vector in either R
2

 or R
3

 then, we can define the

length of x, denoted ‖x‖, by

∥x∥ = (xT x)
1
2

A vector x is said to be a unit vector if ∥x∥ = 1. Unit

vectors were used by Newton to derive the laws of

motion for a particle in either the plane or 3-space. If x

and y are nonzero vectors in R
2

, then the angle θ

between the vectors is the smallest angle of rotation

necessary to rotate one of the two vectors clockwise so

that it ends up in the same direction as the other vector

(see Figure 2.3.1).

Figure 2.3.1.

Figure 2.3.1. Full Alternative Text

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig02-03-001.xhtml#la_fig02-03-001


A particle moving in a plane traces out a curve in the

plane. The position of the particle at any time t can be

represented by a vector (x1(t), x2(t)). In describing the

motion of a particle, Newton found it convenient to

represent the position of vectors at time t as linear

combinations of the vectors T(t) and N(t), where T(t) is a

unit vector in the direction of the tangent line to curve at

the point (x1(t), x2(t)) and N(t) is a unit vector in the

direction of a normal line (a line perpendicular to the

tangent line) to the curve at the given point (see Figure

2.3.2).

Figure 2.3.2.



Figure 2.3.2. Full Alternative Text

In Chapter 5, we will show that if x and y are nonzero

vectors and θ is the angle between the vectors, then

xT y = ∥x∥ ∥y∥ cos θ

(3)

This equation can also be used to define the angle

between nonzero vectors in R
3

. It follows from (3) that

the angle between the vectors is a right angle if and only

if xT y = 0.

In this case, we say that the vectors x and y are

orthogonal. In particular, since T(t) and N(t) are unit

orthogonal vectors in R
2

, we have 

∥T(t) = ∥N(t)∥ = 1 and the angle between the

vectors is 
π
2 . It follows from (3) that

T(t)T
N(t) = 0

In Chapter 5, we will also show that if x and y are vectors

in R
3

 and θ is the angle between the vectors, then

‖x × y‖ = ∥x∥ ∥y∥  sin θ

(4)
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A particle moving in three dimensions will trace out a

curve in 3-space. In this case, at time t the tangent and

normal lines to the curve at the point (x1(t), x2(t))
determine a plane in 3-space. However, in 3-space the

motion is not restricted to a plane. To derive laws

describing the motion, Newton needed to use a third

vector, a vector in a direction normal to the plane

determined by T(t) and N(t). If z is any nonzero vector in

the direction of the normal line to this plane, then the

angle between the vectors z and T(t) and the angle

between z and N(t) should both be right angles. If we set

B(t) = T(t) × N(t)

(5)

then it follows from (2) that B(t) is orthogonal to both

T(t) and N(t) and hence is in the direction of the normal

line. Furthermore, B(t) is a unit vector since it follows

from (4) that

‖B(t)‖ = ‖T(t) × N(t)‖ = ‖T(t)‖ ‖N(t)‖  sin
π

2
= 1

The vector B(t) defined by (5) is called the binormal

vector (see Figure 2.3.3).

Figure 2.3.3.



Figure 2.3.3. Full Alternative Text
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Section 2.3 Exercises

1. For each of the following, compute (i) det(A), (ii) adj A, and (iii) 

A−1
:

1. A = [ ]

2. A = [ ]

3. A =

4. A =

2. Use Cramer’s rule to solve each of the following systems:

1. 

2. 

3. 

4. 

5. 

3. Given

1   2

3 −1

3 1

2 4

⎡⎢⎣ 1 3 1

2 1 1

−2 2 −1

⎤⎥⎦⎡⎢⎣ 1 1 1

0 1 1

0 0 1

⎤⎥⎦x1 + 2x2 = 3

1 − x2 = 13x

2x1 + 3x2 = 2

1 + 2x2 = 53x

2x1 + x2 − 3x3 = 0

4x1 + 5x2 + x3 = 8

−2x1 − x2 + 4x3 = 2

x1 + 3x2 + x3 = 1

2x1 + x2 + x3 = 5

−2x1 + 2x2 − x3 = −8

x1 + x2 = 0

x2 + x3 − 2x4 = 1

x1 + 2x3 + x4 = 0

x1 + x2 + x4 = 0



A =

determine the (2, 3) entry of A−1
 by computing a quotient of two

determinants.

4. Let A be the matrix in Exercise 3. Compute the third column of 

A−1
 by using Cramer’s rule to solve Ax = e3.

5. Let

A =

1. Compute the determinant of A. Is A nonsingular?

2. Compute adj A and the product A adj A.

6. If A is singular, what can you say about the product A adj A?

7. Let Bj denote the matrix obtained by replacing the jth column of

the identity matrix with a vector b = (b1, … , bn)
T

. Use

Cramer’s rule to show that

8. Let A be a nonsingular n × n matrix with n > 1. Show that

det(adj A) = (det(A))
n−1

9. Let A be a 4 × 4 matrix. If

adj A =

1. calculate the value of det(adj A). What should the value

of det(A) be? Hint: Use the result from Exercise 8.

2. find A.

10. Show that if A is nonsingular, then adj A is nonsingular and

(adj A)−1 = det(A−1)A = adj A−1

11. Show that if A is singular, then adj A is also singular.

12. Show that if det(A) = 1, then

adj (adj A) = A

13. Suppose that Q is a matrix with the property Q−1 = QT
. Show

that

⎡⎢⎣ 1 2 1

0 4 3

1 2 2

⎤⎥⎦⎡⎢⎣ 1 2 3

2 3 4

3 4 5

⎤⎥⎦bj = det(Bj) for j = 1, … , n

⎡⎢⎣ 2 0 0 0

0 2 1 0

0 4 3 2

0 −2 −1 2

⎤⎥⎦



qij =
Qij

det(Q)

14. In coding a message, a blank space was represented by 0, an A by

1, a B by 2, a C by 3, and so on. The message was transformed

using the matrix

A =

and sent as

What was the message?

15. Let x, y, and z be vectors in R
3

. Show each of the following:

1. x × x = 0

2. y × x = −(x × y)

3. x × (y + z) = (x × y) + (x × z)

4. zT × (x × y) =

16. Let x and y be vectors in R
3

 and define the skew-symmetric

matrix Ax by

Ax =

1. Show that x × y = Axy.

2. Show that y × x = AT
x y.

⎡⎢⎣ −1 −1 2 0

1 1 −1 0

0 0 −1 1

1 0 0 −1

⎤⎥⎦−19, 19, 25, −21, 0, 18, −18, 15, 3, 10

−8, 3, −2, 20, −7, 12∣x1 x2 x3

y1 y2 y3

z1 z2 z3 ∣⎡⎢⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎥⎦



Chapter 2 Exercises

MATLAB Exercises
The first four exercises that follow involve integer

matrices and illustrate some of the properties of

determinants that were covered in this chapter. The last

two exercises illustrate some of the differences that may

arise when we work with determinants in floating-point

arithmetic.

In theory, the value of the determinant should tell us

whether the matrix is nonsingular. However, if the

matrix is singular and its determinant is computed

using finite-precision arithmetic, then, because of

roundoff errors, the computed value of the determinant

may not equal zero. A computed value near zero does

not necessarily mean that the matrix is singular or even

close to being singular. Furthermore, a matrix may be

nearly singular and have a determinant that is not even

close to zero (see Exercise 6).

1. Generate random 5 × 5 matrices with integer entries by setting

A  = round(10 * rand(5))

and

B = round(20 * rand(5)) − 10

Use MATLAB to compute each of the pairs of numbers that follow.

In each case, check whether the first number is equal to the

second.

1. 

2. 

3. 

4. 

det(A) det(AT )

det(A + B) det(A) + det(B)

det(AB) det(A) det(B)

det(ATBT ) det(AT ) det(BT )



5. 

6. 

2. Are n × n magic squares nonsingular? Use the MATLAB

command det(magic(n)) to compute the determinants of the

magic squares matrices in the cases n = 3, 4, …, 10. What

seems to be happening? Check the cases n = 24 and 25 to see if

the pattern still holds.

3. Set A = round(10 ∗ rand(6)). In each of the following, use

MATLAB to compute a second matrix as indicated. State how the

second matrix is related to A and compute the determinants of

both matrices. How are the determinants related?

1. 

2. = 4 * A(3, :)

3. = A(5, :) + 2 * A(4, :)

4. We can generate a random 6 × 6 matrix A whose entries consist

entirely of 0’s and 1’s by setting

A = round(rand(6))

1. What percentage of these random 0–1 matrices are

singular? You can estimate the percentage in MATLAB

by setting

y = zeros(1, 100);

and then generating 100 test matrices and setting 

y(j) = 1 if the jth matrix is singular and 0 otherwise.

The easy way to do this in MATLAB is to use a for loop.

Generate the loop as follows:

(Note: A semicolon at the end of a line suppresses

printout. It is recommended that you include one at the

end of each line of calculation that occurs inside a for

loop.) To determine how many singular matrices were

generated, use the MATLAB command sum(y). What

percentage of the matrices generated were singular?

2. For any positive integer n, we can generate a random 

6 × 6 matrix A whose entries are integers from 0 to n by

setting

A = round(n * rand(6))

det(A−1) 1/det(A)

det(AB−1) det(A)/det(B)

B = A; B(2, :) = A(1, :); B(1, :) = A(2, :)

C = A; C(3, :)

D = A; D(5, :)

for j = 1 : 100

A = round(rand(6));

y(j) = (det(A) == 0)

end



What percentage of random integer matrices generated

in this manner will be singular if n = 3? If n = 6? If 

n = 10? We can estimate the answers to these questions

by using MATLAB. In each case, generate 100 test

matrices and determine how many of the matrices are

singular.

5. If a matrix is sensitive to roundoff errors, the computed value of

its determinant may differ drastically from the exact value. For an

example of this, set

In theory,

det(U) = det(U T ) = 10−10

and

det(UUT ) = det(U) det(U T ) = 10−20

Compute det(U), det(U ′), and det(U * U
′
) with MATLAB. Do

the computed values match the theoretical values?

6. Use MATLAB to construct a matrix A by setting

1. By construction, the entries in each row of A should all

add up to zero. To check this, set x = ones(6, 1) and

use MATLAB to compute the product Ax. The matrix A

should be singular. Why? Explain. Use the MATLAB

functions det and inv to compute the values of det(A)

and A−1
. Which MATLAB function is a more reliable

indicator of singularity?

2. Use MATLAB to compute det(AT ). Are the computed

values of det(A) and det(AT ) equal? Another way to

check if a matrix is singular is to compute its reduced

row echelon form. Use MATLAB to compute the reduced

row echelon forms of A and AT
.

3. To see what is going wrong, it helps to know how

MATLAB computes determinants. The MATLAB routine

for determinants first computes a form of the LU

factorization of the matrix. The determinant of the

matrix L is ±1, depending on whether an even or odd

number of row interchanges were used in the

computation. The computed value of the determinant of

A is the product of the diagonal entries of U and 

det(L) = ±1. To see what is happening with our

original matrix, use the following commands to compute

and display the factor U:

U = round(100 * rand(10));

U = triu(U , 1) + 0.1 * eye(10)

A = vander(1 : 6); A = A − diag(sum(A′))



In exact arithmetic, U should be singular. Is the

computed matrix U singular? If not, what goes wrong?

Use the following commands to see the rest of the

computation of d = det(A):

format short e

[L,U ] = lu(A);U

format short

d = prod(diag(U))



Chapter Test A True or False
For each statement that follows, answer true if the

statement is always true and false otherwise. In the case

of a true statement, explain or prove your answer. In the

case of a false statement, give an example to show that

the statement is not always true. Assume that all the

given matrices are n × n.

1. det(AB) = det(BA)

2. det(A + B) = det(A) + det(B)

3. det(cA) = c det(A)

4. det((AB)T ) = det(A) det(B)

5. det(A) = det(B)implies A = B.

6. det(Ak) = det(A)k

7. A triangular matrix is nonsingular if and only if its diagonal

entries are all nonzero.

8. If x is a nonzero vector in R
n

 and Ax = 0, then det(A) = 0.

9. If A and B are row equivalent matrices, then their determinants

are equal.

10. If A ≠ O, but Ak = O (where O denotes the zero matrix) for

some positive integer k, then A must be singular.



Chapter Test B

1. Let A and B be 3 × 3 matrices with det(A) = 4 and 

det(B) = 6, and let E be an elementary matrix of type I.

Determine the value of each of the following:

1. det( 1
2
A)

2. det(B−1AT )

3. det(E A2)

2. Let

A =

1. Compute the value of det(A) (Your answer should be a

function of x.)

2. For what values of x will the matrix be singular? Explain.

3. Let

A =

1. Compute the LU factorization of A.

2. Use the LU factorization to determine the value of

det(A).

4. If A is a nonsingular n × n matrix, show that ATA is nonsingular

and det(ATA) > 0.

5. Let A be an n × n matrix. Show that if B = S−1AS for some

nonsingular matrix S, then det(B) = det(A).

6. Let A and B be n × n matrices and let C = AB. Use

determinants to show that if either A or B is singular, then C must

be singular.

7. Let A be an n × n matrix and let λ be a scalar. Show that

det(A − λI) = 0

if and only if

⎡⎢⎣ x 1 1

1 x −1

−1 −1 x

⎤⎥⎦⎡⎢⎣ 1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

⎤⎥⎦Ax = λx for some x ≠ 0



8. Let x and y be vectors in R
n

, n > 1. Show that if A = xyT
, then 

det(A) = 0.

9. Let x and y be distinct vectors in R
n

 (i.e., x ≠ y), and let A be an 

n × n matrix with the property that Ax = Ay. Show that 

det(A) = 0.

10. Let A be a matrix with integer entries. If |det(A)| = 1, then what

can you conclude about the nature of the entries of A−1
? Explain.



Chapter 3 Vector Spaces

The operations of addition and scalar multiplication are

used in many diverse contexts in mathematics.

Regardless of the context, however, these operations

usually obey the same set of algebraic rules. Thus, a

general theory of mathematical systems involving

addition and scalar multiplication will be applicable to

many areas in mathematics. Mathematical systems of

this form are called vector spaces or linear spaces. In this



chapter, the definition of a vector space is given and

some of the general theory of vector spaces is developed.



3.1 Definition and Examples
In this section, we present the formal definition of a

vector space. Before doing this, however, it is instructive

to look at a number of examples. We begin with the

Euclidean vector spaces R
n

.

Euclidean Vector Spaces
Perhaps the most elementary vector spaces are the

Euclidean vector spaces Rn
, n = 1, 2, …. For

simplicity, let us consider first R2
. Nonzero vectors in 

R2
 can be represented geometrically by directed line

segments. This geometric representation will help us to

visualize how the operations of scalar multiplication and

addition work in R
2

. Given a nonzero vector x = [ ],

we can associate it with the directed line segment in the

plane from (0, 0) to (x1, x2) (see Figure 3.1.1). If we

equate line segments that have the same length and

direction (Figure 3.1.2), x can be represented by any line

segment from (a, b) to (a + x1, b + x2).

Figure 3.1.1.

x1

x2



Figure 3.1.1. Full Alternative Text

Figure 3.1.2.
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Figure 3.1.2. Full Alternative Text

For example, the vector x = [ ] in R2
 could just as

well be represented by the directed line segment from 

2
1
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(2, 2) to (4, 3) or from (−1, −1) to (1, 0), as shown in

Figure 3.1.3.

Figure 3.1.3.

Figure 3.1.3. Full Alternative Text

We can think of the Euclidean length of a vector 

x = [ ] as the length of any directed line segment

representing x. The length of the line segment from 

(0, 0) to (x1, x2) is √x2
1 + x2

2 (see Figure 3.1.4). For

each vector x = [ ] and each scalar α, the product 

αx is defined by

α[ ] = [ ]

x1

x2

x1

x2

x1

x2

αx1

αx2
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Figure 3.1.4.

Figure 3.1.4. Full Alternative Text
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For example, as shown in Figure 3.1.5, if x = [ ], then

Figure 3.1.5.

2
1

−x = [ ], 3x = [ ], −2x = [ ]
−2
−1

6
3

−4
−2



Figure 3.1.5. Full Alternative Text

The vector 3x is in the same direction as x, but its length

is three times that of x. The vector −x has the same

length as x, but it points in the opposite direction. The

vector −2x is twice as long as x and it points in the same

direction as −x. The sum of two vectors

is defined by

Note that if v is placed at the terminal point of u, then 

u + v is represented by the directed line segment from

the initial point of u to the terminal point of v (Figure

3.1.6). If both u and v are placed at the origin and a

parallelogram is formed as in Figure 3.1.7, the diagonals

of the parallelogram will represent the sum u + v and

the difference v − u. In a similar manner, vectors in R3

can be represented by directed line segments in 3-space

(see Figure 3.1.8).

Figure 3.1.6.

u = [ ] and v = [ ]
u1

u2

v1

v2

u + v = [ ]
u1 + v1

u2 + v2
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Figure 3.1.6. Full Alternative Text

Figure 3.1.7.
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Figure 3.1.7. Full Alternative Text

Figure 3.1.8.
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Figure 3.1.8. Full Alternative Text

In general, scalar multiplication and addition in R
n

 are,

respectively, defined by

for any x, y ∈ Rn
 and any scalar α.

The Vector Space Rm×n

αx = and x + y =

⎡⎢⎣ αx1

αx2

⋮
αxn

⎤⎥⎦ ⎡⎢⎣ x1 + y1

x2 + y2

⋮
xn + yn

⎤⎥⎦
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We can also view R
n

 as the set of all n × 1 matrices with

real entries. The addition and scalar multiplication of

vectors in R
n

 are just the usual addition and scalar

multiplication of matrices. More generally, let R
m×n

denote the set of all m × n matrices with real entries. If 

A = (aij) and B = (bij), then the sum A + B is

defined to be the m × n matrix C = (cij), where 

cij = aij + bij. Given a scalar α, we can define αA to be

the m × n matrix whose (i, j) entry is αaij. Thus, by

defining operations on the set Rm×n
, we have created a

mathematical system. The operations of addition and

scalar multiplication of Rm×n
 obey certain algebraic

rules. These rules form the axioms that are used to define

the concept of a vector space.

Vector Space Axioms

Definition
Let V be a set on which the operations of addition and

scalar multiplication are defined. By this we mean that,

with each pair of elements x and y in V, we can associate

a unique element x + y that is also in V, and with each

element x in V and each scalar α, we can associate a

unique element αx in V. The set V together with the

operations of addition and scalar multiplication is said to

form a vector space if the following axioms are

satisfied:

A1. x + y = y + x for any x and y in V.

A2. (x + y) + z = x + (y + z) for any x, y, and z in V.

A3. There exists an element 0 in V such that x + 0 = x for each 

x ∈ V .

A4. For each x ∈ V , there exists an element −x in V such that 

x+(−x) = 0.

A5. α(x + y) = αx + αy for each scalar α and any x and y in

V.



A6. (α + β)x = αx + βx for any scalars α and β and any 

x ∈ V .

A7. (αβ)x = α(βx) for any scalars α and β and any x ∈ V .

A8. 1x = x for all x ∈ V .

We will refer to the set V as the universal set for the

vector space. Its elements are called vectors and are

usually denoted by boldface letters such as u, v, w, x, y,

and z. The term scalar will generally refer to a real

number, although in some cases it will be used to refer to

complex numbers. Scalars will generally be represented

by lowercase italic letters such as a, b, and c or lowercase

Greek letters such as α, β, and γ. In the first five

chapters of this book, the term scalars will always refer

to real numbers. Often the term real vector space is used

to indicate that the set of scalars is the set of real

numbers. The boldface symbol 0 was used in Axiom 3 in

order to distinguish the zero vector from the scalar 0.

An important component of the definition is the closure

properties of the two operations. These properties can be

summarized as follows:

C1. If x ∈ V  and α is a scalar, then αx ∈ V .

C2. If x, y ∈ V , then x + y ∈ V .

To illustrate the necessity of the closure properties,

consider the following example. Let

W = {(a, 1)|a real}

with addition and scalar multiplication defined in the

usual way. The elements (3, 1) and (5, 1) are in W, but

the sum

(3, 1) + (5, 1) = (8, 2)

is not an element of W. The operation + is not really an

operation on the set W because property C2 fails to hold.

Similarly, scalar multiplication is not defined on W,

because property C1 fails to hold. The set W, together



with the operations of addition and scalar multiplication,

is not a vector space.

If, however, we are given a set U on which the operations

of addition and scalar multiplication have been defined

and satisfy properties C1 and C2, then we must check to

see if the eight axioms are valid in order to determine

whether U is a vector space. We leave it to the reader to

verify that R
n

 and R
m×n

, with the usual addition and

scalar multiplication of matrices, are both vector spaces.

There are a number of other important examples of

vector spaces.

The Vector Space C[a, b]
Let C[a, b] denote the set of all real-valued functions

that are defined and continuous on the closed interval 

[a, b]. In this case, our universal set is a set of functions.

Thus, our vectors are the functions in C[a, b]. The sum 

f + g of two functions in C[a, b] is defined by

(f + g)(x) = f(x) + g(x)

for all x in [a, b]. The new function f + g is an element

of C[a, b] since the sum of two continuous functions is

continuous. If f is a function in C[a, b] and α is a real

number, define αf by

(αf)(x) = αf(x)

for all x in [a, b]. Clearly, αf is in C[a, b] since a constant

times a continuous function is always continuous. Thus,

we have defined the operations of addition and scalar

multiplication on C[a, b]. To show that the first axiom, 

f + g = g + f, is satisfied, we must show that

This follows because

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)

(f + g)(x) = (g + f)(x) for every x in [a, b]



for every x in [a, b]. Axiom 3 is satisfied, since the

function

acts as the zero vector; that is,

We leave it to the reader to verify that the remaining

vector space axioms are all satisfied.

The Vector Space Pn
Let Pn denote the set of all polynomials of degree less

than n. Define p + q and αp, respectively, by

(p + q)(x) = p(x) + q(x)

and

(αp)(x) = αp(x)

for all real numbers x. In this case, the zero vector is the

zero polynomial:

z(x) = 0xn−1 + 0xn−2 + ⋯ + 0x + 0

It is easily verified that all the vector space axioms hold.

Thus, Pn, with the standard addition and scalar

multiplication of functions, is a vector space.

Additional Properties of

Vector Spaces
We close this section with a theorem that states three

more fundamental properties of vector spaces. Other

important properties are given in Exercises 7, 8, and 9 at

the end of the section.

z(x) = 0 for all x in [a, b]

f + z = f for all f in C[a, b]



Theorem 3.1.1
If V is a vector space and x is any element of V, then

1. 0x = 0.

2. x + y = 0 implies that y = −x (i.e., the additive inverse of x is

unique).

3. (−1)x = −x.

Proof

It follows from axioms A6 and A8 that

x = 1x = (1 + 0)x = 1x + 0x = x + 0x

Thus,

To prove (ii), suppose that x + y = 0. Then

−x = −x + 0 = −x + (x + y)

Therefore,

Finally, to prove (iii), note that

Thus,

and it follows from part (ii) that

(−1)x = −x

∎

−x + x = −x + (x + 0x) = (−x + x) + 0x (A2)
0 = 0 + 0x = 0x (A1, A3, and A4)

−x = (−x + x) + y = 0 + y = y (A1, A2, A3, and A4)

0 = 0x = (1 + (−1))x = 1x + (−1)x [(i) and A6]

x + (−1)x = 0 (A8)



Section 3.1 Exercises

1. Consider the vectors x1 = (8, 6)
T

 and x2 = (4, −1)
T

 in R
2
.

1. Determine the length of each vector.

2. Let x3 = x1 + x2. Determine the length of x3. How

does its length compare with the sum of the lengths of x1

and x2?

3. Draw a graph illustrating how x3 can be constructed

geometrically using x1 and x2. Use this graph to give a

geometrical interpretation of your answer to the

question in part (b).

2. Repeat Exercise 1 for the vectors x1 = (2, 1)T  and x2 = (6, 3)T .

3. Let C be the set of complex numbers. Define addition on C by

(a + bi) + (c + di) = (a + c) + (b + d)i

and define scalar multiplication by

α(a + bi) = αa + αbi

for all real numbers α. Show that C is a vector space with these

operations.

4. Show that R
m×n

, together with the usual addition and scalar

multiplication of matrices, satisfies the eight axioms of a vector

space.

5. Show that C[a, b], together with the usual scalar multiplication

and addition of functions, satisfies the eight axioms of a vector

space.

6. Let P be the set of all polynomials. Show that P, together with the

usual addition and scalar multiplication of functions, forms a

vector space.

7. Show that the element 0 in a vector space is unique.

8. Let x, y, and z be vectors in a vector space V. Prove that if

x + y = x + z

then y = z.

9. Let V be a vector space and let x ∈ V . Show that

1. β0 = 0 for each scalar β.

2. if αx = 0, then either α = 0 or x = 0.



10. Let S be the set of all ordered pairs of real numbers. Define scalar

multiplication and addition on S by

We use the symbol ⊕ to denote the addition operation for this

system in order to avoid confusion with the usual addition x + y

of row vectors. Show that S, together with the ordinary scalar

multiplication and the addition operation ⊕, is not a vector space.

Which of the eight axioms fail to hold?

11. Let V be the set of all ordered pairs of real numbers with addition

defined by

(x1,x2) + (y1 + y2) = (x1 + y1,x2 + y2)

and scalar multiplication defined by

α ◦ (x1,x2) = (αx1,x2)

Scalar multiplication for this system is defined in an unusual way,

and consequently, we use the symbol ◦ to avoid confusion with the

ordinary scalar multiplication of row vectors. Is V a vector space

with these operations? Justify your answer.

12. Let R+
 denote the set of positive real numbers. Define the

operation of scalar multiplication, denoted ◦, by

α ◦ x = xα

for each x ∈ R+
 and for any real number α. Define the operation

of addition, denoted ⊕, by

Thus, for this system, the scalar product of −3 times 
1
2

 is given by

−3 ◦
1

2
= (

1

2
)−3 = 8

and the sum of 2 and 5 is given by

2 ⊕ 5 = 2 ⋅ 5 = 10

Is R+
 a vector space with these operations? Prove your answer.

13. Let R denote the set of real numbers. Define scalar multiplication

by

and define addition, denoted ⊕, by

Is R a vector space with these operations? Prove your answer.

α(x1,x2) = (αx1,αx2)

(x1,x2) ⊕ (y1, y2) = (x1 + y1, 0)

x ⊕ y = x ⋅ y for all x, y ∈ R+

αx = α ⋅ x (the usual multiplication of real numbers)

x ⊕ y = max(x, y) (the maximum of the two numbers)



14. Let Z denote the set of all integers with addition defined in the

usual way and define scalar multiplication, denoted ◦, by

where [[[[α]] denotes the greatest integer less than or equal to α.

For example,

2.25 ◦ 4 = [[2.25]] ⋅ 4 = 2 ⋅ 4 = 8

Show that Z, together with these operations, is not a vector space.

Which axioms fail to hold?

15. Let S denote the set of all infinite sequences of real numbers with

scalar multiplication and addition defined by

Show that S is a vector space.

16. We can define a one-to-one correspondence between the elements

of Pn and R
n

 by

Show that if p ↔ a and q ↔ b, then

1. αp ↔ αa for any scalar α.

2. p + q ↔ a + b.

[In general, two vector spaces are said to be isomorphic if their

elements can be put into a one-to-one correspondence that is

preserved under scalar multiplication and addition as in (a) and

(b).]

α ◦ k = [[α]] ⋅ k for all k ∈ Z

α{an} = {αan}

{an} + {bn} = {an + bn}

p(x) = a1 + a2x + ⋯ + anx
n−1

↔ (a1, … , an)T = a



3.2 Subspaces
Given a vector space V, it is often possible to form

another vector space by taking a subset S of V and using

the operations of V. Since V is a vector space, the

operations of addition and scalar multiplication always

produce another vector in V. For a new system using a

subset S of V as its universal set to be a vector space, the

set S must be closed under the operations of addition

and scalar multiplication. That is, the sum of two

elements of S must always be an element of S, and the

product of a scalar and an element of S must always be

an element of S.

Example 1
Let

S = {[ ] x2 = 2x1}

S is a subset of R
2

. If

x = [ ]

is any element of S and α is any scalar, then

αx = α[ ] = [ ]

is also an element of S. If

are any two elements of S, then their sum

x1

x2 ∣ c

2c

c

2c

αc

2αc

[ ] and [ ]
a

2a

b

2b



[ ] = [ ]

is also an element of S. It is easily seen that the

mathematical system consisting of the set S (instead of 

R2
), together with the operations from R2

, is itself a

vector space.

Definition
If S is a nonempty subset of a vector space V, and S

satisfies the conditions

1. αx ∈ S whenever x ∈ S for any scalar α

2. x + y ∈ S whenever x ∈ S and y ∈ S

then S is said to be a subspace of V.

Condition (i) says that S is closed under scalar

multiplication. That is, whenever an element of S is

multiplied by a scalar, the result is an element of S.

Condition (ii) says that S is closed under addition. That

is, the sum of two elements of S is always an element of

S. Thus, if we use the operations from V and the

elements of S, to do arithmetic, then we will always end

up with elements of S. A subspace of V, then, is a subset

S that is closed under the operations of V.

Let S be a subspace of a vector space V. Using the

operations of addition and scalar multiplication as

defined on V, we can form a new mathematical system

with S as the universal set. It is easily seen that all eight

axioms will remain valid for this new system. Axioms A3

and A4 follow from Theorem 3.1.1 and condition (i) of

the definition of a subspace. The remaining six axioms

are valid for any elements of V, so, in particular, they are

valid for the elements of S. Thus, the mathematical

system with universal set S and the two operations

inherited from the vector space V satisfies all the

a + b

2a + 2b

a + b

2(a + b)



conditions in the definition of a vector space. Every

subspace of a vector space is a vector space in its own

right.

Remarks

1. In a vector space V, it can be readily verified that {0} and V are

subspaces of V. All other subspaces are referred to as proper

subspaces. We refer to {0} as the zero subspace.

2. To show that a subset S of a vector space forms a subspace, we

must show that S is nonempty and that the closure properties (i)

and (ii) in the definition are satisfied. Since every subspace must

contain the zero vector, we can verify that S is nonempty by

showing that 0 ∈ S.

Example 2
Let S = {(x1,x2,x3)T x1 = x2}. The set S is

nonempty since 0 = (0, 0, 0)T ∈ S. To show that S is a

subspace of R
3

, we need to verify that the two closure

properties hold:

1. If x = (a, a, b)T  is any vector in S, then

αx = (αa,αa,αb)T ∈ S

2. If (a, a, b)T  and (c, c, d)T  are arbitrary elements of S, then

(a, a, b)T + (c, c, d)T = (a + c, a + c, b + d)T ∈ S

Since S is nonempty and satisfies the two closure

conditions, it follows that S is a subspace of R
3

.

Example 3
Let

S = {[ ] x is a real number}∣x

1 ∣



If either of the two conditions in the definition fails to

hold, then S will not be a subspace. In this case, the first

condition fails since

Therefore, S is not a subspace. Actually, both conditions

fail to hold. S is not closed under addition, since

[ ] + [ ] = [ ] ∉ S

Example 4
Let S = {A ∈ R2×2 a12 = −a21}. The set S is

nonempty, since O (the zero matrix) is in S. To show that

S is a subspace, we verify that the closure properties are

satisfied:

1. If A ∈ S, then A must be of the form

A = [ ]

and hence,

αA = [ ]

Since the (2, 1) entry of αA is the negative of the (1, 2) entry, 

αA ∈ S.

2. If A,B ∈ S, then they must be of the form

It follows that

A + B = [ ]

Hence, A + B ∈ S.

α[ ] = [ ] ∉ S when α ≠ 1
x

1

αx

α

x

1

y

1

x + y

2∣ a b

−b c

αa αb

−βb αc

A = [ ] and B = [ ]
a b

−b c

d e

−e f

a + d b + e

−(b + e) c + f



Example 5
Let S be the set of all polynomials of degree less than n

with the property that p(0) = 0. The set S is nonempty

since it contains the zero polynomial. We claim that S is a

subspace of Pn. This follows, because

1. if p(x) ∈ S and α is a scalar, then

αp(0) = α ⋅ 0 = 0

and hence αp ∈ S; and

2. if p(x) and q(x) are elements of S, then

(p + q)(0) = p(0) + q(0) = 0 + 0 = 0

and hence p + q ∈ S.

Example 6
Let Cn[a, b] be the set of all functions f that have a

continuous nth derivative on [a, b]. We leave it to the

reader to verify that Cn[a, b] is a subspace of C[a, b].

Example 7
The function f(x) = |x| is in C[−1, 1], but it is not

differentiable at x = 0 and hence it is not in C1[−1, 1].
This shows that C1[−1, 1] is a proper subspace of 

C[−1, 1]. The function g(x) = x|x| is in C1[−1, 1]
since it is differentiable at every point in [−1, 1] and 

g′(x) = 2|x| is continuous on [−1, 1]. However, 

g ∉ C2[−1, 1] since g′′(x) is not defined when x = 0.

Thus, the vector space C2[−1, 1] is a proper subspace of

both C[−1, 1] and C1[−1, 1].

Example 8



Let S be the set of all f in C2[a, b] such that

f′′(x) + f(x) = 0

for all x in [a, b]. The set S is nonempty since the zero

function is in S. If f ∈ S and α is any scalar, then for

any x in [a, b]

Thus, αf ∈ S. If f and g are both in S, then

Thus, the set of all solutions on [a, b] to the differential

equation y′′ + y = 0 forms a subspace of C2[a, b]. If

we note that f(x) = sinx and g(x) = cos x are both

in S, it follows that any function of the form 

c1 sin x + c2 cos x must also be in S. We can easily

verify that functions of this form are solutions to 

y′′ + y = 0.

The Null Space of a Matrix
Let A be an m × n matrix. Let N(A) denote the set of

all solutions to the homogeneous system Ax = 0. Thus,

N(a) = {x ∈ R
n|Ax = 0}

We claim that N(A) is a subspace of R
n

. Clearly, 

0 ∈ N(A), so N(A) is nonempty. If x ∈ N(A) and α

is a scalar, then

A(αx) = αAx = α0 = 0

and hence ax ∈ N(A). If x and y are elements of 

N(A), then

A(x + y) = Ax + Ay = 0 + 0 = 0

(αf)′′(x) + (αf)(x) = αf′′(x) + αf(x)

= α(f′′(x) + f(x)) = α ⋅ 0 = 0

(f + g)′′(x) + (f + g)(x) = f′′(x) + g′′(x) + f(x) + g(x)

= [f′′(x) + f(x)] + [g′′(x) + g(x)]

= 0 + 0 = 0



Therefore, x + y ∈ N(A). It then follows that N(A) is

a subspace of R
n

. The set of all solutions of the

homogeneous system Ax = 0 forms a subspace of R
n

.

The subspace N(A) is called the null space of A.

Example 9
Determine N(A) if

A = [ ]

SOLUTION

Using Gauss–Jordan reduction to solve Ax = 0, we

obtain

The reduced row echelon form involves two free

variables, x3 and x4.

Thus, if we set x3 = α and x4 = β, then

x = = α + β

is a solution of Ax = 0. The vector space N(A) consists

of all vectors of the form

α + β

where α and β are scalars.

1 1 1 0

2 1 0 1

[ ] → [ ]

→ [ ] → [ ]

1 1 1 0

2 1 0 1∣00 1 1 1 0

0 −1 −2 1∣001 0 −1 1

0 −1 −2 1∣00 1 0 −1 1

0 1 2 −1∣00x1 = x3 − x4

x2 = −2x3 + x4

⎡⎢⎣ α − β

−2α + β

α

β

⎤⎥⎦ ⎡⎢⎣ 1

−2

1

0

⎤⎥⎦ ⎡⎢⎣ −1

1

0

1

⎤⎥⎦⎡⎢⎣ 1

−2

1

0

⎤⎥⎦ ⎡⎢⎣ −1

1

0

1

⎤⎥⎦



The Span of a Set of Vectors

Definition
Let v1, v2, … , vn be vectors in a vector space V. A sum

of the form α1v1 + αv2 + ⋯ + αnvn, where 

α1, … ,αn are scalars, is called a linear combination

of v1, v2, … , vn. The set of all linear combinations of 

v1, v2, … , vn is called the span of v1, … , vn. The

span of v1, … , vn will be denoted by Span

(v1, … , vn).

In Example 9, we saw that the null space of A was the

span of the vectors (1, −2, 1, 0)T  and (−1, 1, 0, 1)T .

Example 10
In R

3
, the span of e1 and e2 is the set of all vectors of

the form

αe1 + βe2 =

The reader may verify that Span(e1, e2) is a subspace of 

R3
. The subspace can be interpreted geometrically as the

set of all vectors in 3-space that lie in the x1x2-plane

(see Figure 3.2.1). The span of e1, e2, e3 is the set of all

vectors of the form

α1e1 + α2e2 + α3e3 =

Figure 3.2.1.

⎡⎢⎣ αβ0⎤⎥⎦ ⎡⎢⎣ α1

α2

α3

⎤⎥⎦



Figure 3.2.1. Full Alternative Text

Thus, Span(e1, e2, e3) = R
3

.

Theorem 3.2.1
If v1, v2, … , vn are elements of a vector space V, then

Span(v1, v2, … , vn) is a subspace of V.

Proof

Let β be a scalar and let 

v = α1v1 + α2v2 + ⋯ + αnvn be an arbitrary

element of Span(v1, v2, … , vn). Since

βv = (βα1)v1 + (βα2)v2 + ⋯ + (βαn)vn

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-02-001.xhtml#la_fig03-02-001


it follows that βv ∈ Span(v1, … , vn). Next, we must

show that any sum of elements of Span(v1, … , vn) is

in Span(v1, … , vn). Let v = α1v1 + ⋯ + αnvn

and w = β1v1 + ⋯ + βnvn.

v + w = (α1 + β1)v1 + ⋯ + (αn + βn)vn ∈ Span(v1, … , vn)

Therefore, Span(v1, … , vn) is a subspace of V.

∎

A vector x in R3
 is in Span(e1, e2) if and only if it lies

in the x1x2-plane in 3-space. Thus, we can think of the 

x1x2-plane as the geometrical representation of the

subspace Span(e1, e2) (see Figure 3.2.1). Similarly,

given two vectors x and y, if (0, 0, 0), (x1,x2,x3), and 

(y1, y2, y3) are not collinear, these points determine a

plane. If z = c1x + c2y, then z is a sum of vectors

parallel to x and y and hence must lie on the plane

determined by the two vectors (see Figure 3.2.2). In

general, if two vectors x and y can be used to determine a

plane in 3-space, that plane is the geometrical

representation of Span(x, y).

Figure 3.2.2.



Figure 3.2.2. Full Alternative Text

Spanning Set for a Vector

Space
Let v1, v2, … , vn be vectors in a vector space V. We

will refer to Span(v1, … , vn) as the subspace of V

spanned by v1, v2, … , vn. It may happen that 

Span(v1, … , vn) = V , in which case we say that the

vectors v1, … , vn span V, or that {v1, … , vn} is a

spanning set for V. Thus, we have the following

definition.
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Definition
The set {v1, … , vn} is a spanning set for V if and

only if every vector in V can be written as a linear

combination of v1, v2, … , vn.

We can easily visualize the span of a set of vectors in R
2

.

If v  is a single nonzero vector in R2
, then Span(v1)

consists of all vectors of the form c1v1. Since c1 can be

positive, negative, or zero, we see that the subspace

corresponds geometrically to a line in the plane that

passes through the origin. For any point not on that line,

the corresponding vector will not be in Span(v1). A

single nonzero vector v1 will span a proper subspace of 

R2
, but it cannot span the entire space. You need at least

two vectors in order to form a spanning set for R2
.

The simplest choice of a spanning set for R2
 is to use the

vectors e1 and e2. Figure 3.2.3 shows the vectors e1 and 

e2 and a small circle representing a target point in the

plane. We can start at the origin and get to the target

point by moving 2 units in the direction of e1 and then

moving 3 units in the direction of e2. The resulting

vector v = (2, 3)T  is shown in Figure 3.2.4. If we

change the target point to some other coordinates (a, b),

then the corresponding vector will be

x = ae1 + be2 = [ ]

Figure 3.2.3.

1

a

b



Figure 3.2.3. Full Alternative Text

Figure 3.2.4.

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-02-003.xhtml#la_fig03-02-003


Figure 3.2.4. Full Alternative Text

Thus, any vector x in R
2

 can be represented as a linear

combination of e1 and e2 and hence {e1, e2} is a

spanning set for R2
.

In Figure 3.2.5, the vectors e1 and e2 have been rotated

and scaled to form the vectors v1 and v2 and the target

point has been moved to a new position. If we can start

at the origin and reach the target point moving only in

the directions of v1, −v1, v2, and −v2, then we can

express the target vector as a linear combination of the

given vectors. Reasoning this way, one can often come up

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-02-004.xhtml#la_fig03-02-004


with good approximations to the correct values of the

scalars c1 and c2. However, it is much more difficult to

approximate the scalars using this type of geometric

reasoning when the angle between the vectors is small.

Actually, if the values of the given vectors and the target

vector are known, it is not necessary to approximate. You

can solve for the scalars directly. For example, if the

vectors in Figure 3.2.5 are given as

Figure 3.2.5.

Figure 3.2.5. Full Alternative Text

, x = [ ]v1 = [ ], v2 = [ ]
3

1

1

2

−1

3
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then we can determine scalars by solving the equation

for c1 and c2. The vectors v1 and v2 will span R2
 if we

can use these vectors to reach any point (a, b) in the

plane. This will be possible if the systems

are consistent for all choices of a and b.

Let us now consider the problem of finding a spanning

set for R
3

. As was the case for R
2

, we see that a single

nonzero vector x cannot span. In this case, Span(x) can

be represented geometrically by a line through the origin

in 3-space. What about the span of two nonzero vectors x

and y in R
3

? If y is not a multiple of x, then we can

represent the sum z = x + y geometrically as a vector

corresponding to the diagonal of a parallelogram in 3-

space. The parallelogram, which has one corner at the

origin, can be extended to form a plane passing through

the origin [see Figure 3.2.6(a)]. Any linear combination 

c1x + c2y will correspond to a point in the plane. We

can reach that point by starting at the origin and moving

in the directions of x and y or, if the scalars are negative,

the directions of −x and −y. Indeed, if x and y are

nonzero vectors and one of the vectors is not a scalar

multiple of the other, then Span(x, y) corresponds to a

plane through the origin. If (z1, z2, z3) is a point that

does not lie on the plane, then the vector 

z= (z1, z2, z3)T  is not in Span(x, y) [see Figure

3.2.6(b)]. In general, one cannot span R
3

 using only one

or two vectors. To span R
3

, you need at least three

vectors, and if the span of the first two vectors is

represented by a plane through the origin, then the third

vector must correspond to a point that does not lie in

that plane [see Figure 3.2.6(b)].

c1v1 + c2v2 = [ ]
−1

3

c1v1 + c2v2 = [ ]
a

b



Figure 3.2.6.

Figure 3.2.6. Full Alternative Text

While the the vectors x, y, and z in Figure 3.2.6(a) do not

form a spanning set, the three vectors in Figure 3.2.6(b)

do span R
3

. To see this geometrically, let (a, b, c) be any

point in 3-space. If the point is not on the plane

corresponding to the span of x and y, draw a line

through the point in a direction parallel to the vector z

and then draw a vector v from the origin to the point

where this line intersects the plane (see Figure 3.2.7).

From the tip of the vector v, we can get to the point 

(a, b, c) by moving an appropriate distance in the

direction of z or −z. Thus, if b = (a, b, c)T , then 

b = v + c3z for some scalar c3. Since 

v ∈ Span(x, y), we can find scalars c1 and c2 such
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that v = c1x + c2y). Since the vector b was arbitrary

and

b = v + c3z = c1x + c2y+c3z

Figure 3.2.7.

Figure 3.2.7. Full Alternative Text

it follows that x, y, and z span R3
.

Example 11
Which of the following are spanning sets for R

3
?
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1. {e1, e2, e3, (1, 2, 3)
T}

2. {(1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T}

3. {(1, 0, 1)T , (0, 1, 0)T}

4. {(1, 2, 4)T , (2, 1, 3)T , (4, −1, 1)T}

SOLUTION

To determine whether a set spans R3
, we must

determine whether an arbitrary vector (a, b, c)T  in R
3

can be written as a linear combination of the vectors in

the set. In part (a), it is easily seen that (a, b, c)T  can be

written as

(a, b, c)
T

= ae1 + be2 + ce3 + 0(1, 2, 3)
T

For part (b), we must determine whether it is possible to

find constants α1, α2, and α3 such that

= α1 + α2 + α3

This leads to the system of equations

Since the coefficient matrix of the system is nonsingular,

the system has a unique solution. In fact, we find that

=

Thus,

= c + (b − c) + (a − b)

so the three vectors span R3
.

⎡⎢⎣ cab⎤⎥⎦ ⎡⎢⎣ 1

1

1
⎤⎥⎦ ⎡⎢⎣ 0

1

1
⎤⎥⎦ ⎡⎢⎣ 0

1

0
⎤⎥⎦α1 + α2 + α3 = a

α1 + α2 = b

α1 = c

⎡⎢⎣ α3

α2

α1⎤⎥⎦ ⎡⎢⎣ a − b

c

b − c
⎤⎥⎦⎡⎢⎣ cab⎤⎥⎦ ⎡⎢⎣ 1

1

1
⎤⎥⎦ ⎡⎢⎣ 0

1

1
⎤⎥⎦ ⎡⎢⎣ 0

1

0
⎤⎥⎦



For part (c), we should note that linear combinations of 

(1, 0, 1)T  and (0, 1, 0)T  produce vectors of the form 

(α,β,α)T . Thus, any vector (a, b, c)T  in R
3

, where 

a ≠ c, would not be in the span of these two vectors.

Part (d) can be done in the same manner as part (b). If

= α1 + α2 + α3

then

In this case, however, the coefficient matrix is singular.

Gaussian elimination will yield a system of the form

If

≠ 0

then the system is inconsistent. Hence, for most choices

of a, b, and c, it is impossible to express (a, b, b)T  as a

linear combination of (1, 2, 4)T , (2, 1, 3)T , and 

(4, −1, 1)T . The vectors do not span R
3

.

Example 12
The vectors 1 − x2,x + 2, and x2

 span P3. Thus, if 

ax2 + bx + c is any polynomial in P3, it is possible to

find scalars α1, α2, and α3 such that

ax2 + bx + c = α1(1 − x2) + α2(x + 2) + α3x
2

Indeed,

2 2 2

⎡⎢⎣ cab⎤⎥⎦ ⎡⎢⎣ 4

1

2
⎤⎥⎦ ⎡⎢⎣ 3

2

1
⎤⎥⎦ ⎡⎢⎣ 1

4

−1
⎤⎥⎦α1 + 2α2 + 4α3 = a

2α1 + α2 − α3 = b

4α1 + 3α2 + α3 = c

α1 + 2α2 + 4α3 = a

α2 + 3α3 = 2a − b
3

0 = 2a − 3c + 5b

2a − 3c + 5b



α1(1 − x2)+α2(x + 2) + α3x
2 = (α3 − α1)x2 + α2x + (α1 + 2α2)

Setting

and solving, we see that α1 = c − 2b,α2 = b, and 

α3 = a + c − 2b.

In Example 11(a), we saw that the vectors 

e1, e2, e3, (1, 2, 3)T  span R
3

. Clearly, R
3

 could be

spanned with only the vectors e1, e2, e3. The vector 

(1, 2, 3)T  is really not necessary. In the next section, we

consider the problem of finding minimal spanning sets

for a vector space V (i.e., spanning sets that contain the

smallest possible number of vectors).

Linear Systems Revisited
Let S be the solution set to a consistent m × n linear

system Ax = b. In the case that b = 0, we have 

S = N(A), and consequently, the solution set forms a

subspace of Rn
. If b = 0, then S does not form a

subspace of Rn
; however, if one can find a particular

solution x0, then it is possible to represent any solution

vector in terms of x0 and a vector z from the null space

of A.

Let Ax = b be a consistent linear system and let x0 be

a particular solution to the system. If there is another

solution x1 to the system, then the difference vector 

z = x1 − x0 must be in N(A) since

Az = Ax1 − Ax0 = b − b = 0

Thus, if there is a second solution, it must be of the form 

x1 = x0 + z, where z ∈ N(A).

α3 − α1 = a

α2 = b

α1 + 2α2 = c



In general, if x0 is a particular solution to Ax = b and

z is any vector in N(A), then setting y = x0 + z, we

have

Ay = Ax0 + Az = b + 0 = b

So y = x0 + z must also be a solution to the system 

Ax = b.

These observations are summarized in the following

theorem.

Theorem 3.2.2
If the linear system Ax = b is consistent and x0 is a

particular solution, then a vector y will also be a

solution if and only if y = x0 + z, where z ∈ N(A).

To help understand the meaning of Theorem 3.2.2, let us

consider the case of an m × 3 matrix whose null space is

spanned by two nonzero vectors z1 and z2. If z1 is not a

multiple of z2, then the set of all linear combinations of 

z1 and z2 corresponds to a plane through the origin in 3-

space (see Figure 3.2.8). If x0 is a vector in R
3

 and 

b = Ax0 is a nonzero vector, then x0 is a particular

solution to the nonhomogeneous system Ax = b. It

follows from Theorem 3.2.2 that the solution set S

consists of all vectors of the form

y = x0 + c1z1 + c2z2

Figure 3.2.8.



Figure 3.2.8. Full Alternative Text

where c1 and c2 are arbitrary scalars. The solution set S

corresponds to a plane in 3-space that does not pass

through the origin. See Figure 3.2.8.
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Section 3.2 Exercises

1. Determine whether the following sets form subspaces of R
2

:

1. {(x1,x2)
T x1 + x2 = 0}

2. {(x1,x2)
T x1x2 = 0}

3. {(x1,x2)
T x1 = 3x2}

4. {(x1,x2)
T |x1| = |x2|}

5. {(x1,x2)
T x2

1 = x2
2}

2. Determine whether the following sets form subspaces of R
3

:

1. {(x1,x2,x3)
T x1 + x3 = 1}

2. {(x1,x2,x3)
T x1 = x2 = x3}

3. {(x1,x2,x3)
T x3 = x1 + x2}

4. {(x1,x2,x3)
T x3 = x1 or x3 = x2}

3. Determine whether the following are subspaces of R
2×2

:

1. The set of all 2 × 2 diagonal matrices

2. The set of all 2 × 2 triangular matrices

3. The set of all 2 × 2 lower triangular matrices

4. The set of all 2 × 2 matrices A such that a12 = 1

5. The set of all 2 × 2 matrices B such that b11 = 0

6. The set of all symmetric 2 × 2 matrices

7. The set of all singular 2 × 2 matrices

4. Determine the null space of each of the following matrices:

1. [ ]

2. [ ]

3. ∣∣∣∣∣ ∣∣∣∣2 1

3 2

1 2 −3 −1

−2 −4 6 3

⎡⎢⎣ 1 3 −4

2 −1 −1

−1 −3 4

⎤⎥⎦



4. 

5. Determine whether the following are subspaces of P4 (be

careful!):

1. The set of polynomials in P4 of even degree

2. The set of all polynomials of degree 3

3. The set of all polynomials p(x) in P4 such that 

p(0) = 0

4. The set of all polynomials in P4 having at least one real

root

6. Determine whether the following are subspaces of C[−1, 1]:

1. The set of functions f in C[−1, 1] such that 

f(−1) = f(1)

2. The set of odd functions in C[−1, 1]

3. The set of continuous nondecreasing functions on 

[−1, 1]

4. The set of functions f in C[−1, 1] such that f(−1) = 0
and f(1) = 0

5. The set of functions f in C[−1, 1] such that f(1) = 0 or

f(1) = 0

7. Show that Cn[a, b] is a subspace of C[a, b].

8. Let A beafixedvectorin R
n×n

 and let S be the set of all matrices

that commute with A, that is,

S = {B|AB = BA}

Show that S is a subspace of R
n×n

.

9. In each of the following, determine the subspace of R
2×2

consisting of all matrices that commute with the given matrix:

1. [ ]

2. [ ]

3. [ ]

4. [ ]

⎡⎢⎣ 1 1 −1 2

2 2 −3 1

−1 −1 0 −5

⎤⎥⎦1 0

0 −1

0 0

1 0

1 1

0 1

1 1

1 1



10. Let A be a particular vector in R
2×2

. Determine whether the

following are subspaces of R
2×2

:

1. S1 = {B ∈ R
2×2 BA = O}

2. S2 = {B ∈ R
2×2 AB ≠ BA}

3. S3 = {B ∈ R2×2 AB + B = O}

11. Determine whether the following are spanning sets for R
2

:

1. {[ ], [ ]}

2. {[ ], [ ]}

3. {[ ], [ ], [ ]}

4. {[ ], [ ], [ ]}

5. {[ ], [ ]}

12. Which of the sets that follow are spanning sets for R
3

? Justify

your answers.

1. {(1, 0, 0)
T
, (0, 1, 1)

T
, (1, 0, 1)

T
}

2. {(1, 0, 0)
T
, (0, 1, 1)

T
, (1, 0, 1)

T
, (1, 2, 3)

T
}

3. {(2, 1,−2)T , (3, 2,−2)T , (2, 2, 0)T}

4. {(2, 1,−2)T , (−2,−1, 2)T , (4, 2,−4)T}

5. {(1, 1, 3)
T
, (0, 2, 1)

T
}

13. Given

1. Is x ∈ Span(x1,x2)?

2. Is y ∈ Span(x1,x2)?

Prove your answers.

∣∣∣2

1

3

2

2

3

4

6

−2

1

1

3

2

4

−1

2

1

−2

2

−4

1

2

−1

1

x1 = , x2 = ,

x = , y =

⎡⎢⎣ −1

2

3

⎤⎥⎦ ⎡⎢⎣ 234⎤⎥⎦⎡⎢⎣ 626⎤⎥⎦ ⎡⎢⎣ 5

−9

−2
⎤⎥⎦



14. Let A be a 4 × 3 matrix and let b ∈ R
4

. How many possible

solutions could the system Ax = b have if N(A) = {0}?

Answer the same question in the case N(A) ≠ {0}. Explain your

answers.

15. Let A be a 4 × 3 matrix and let

c = 2a1 + a2 + a3

1. If N(A) = {0}, what can you conclude about the

solutions to the linear system Ax = c?

2. If N(A) ≠ {0}, how many solutions will the system 

Ax = c have? Explain.

16. Let x1 be a particular solution to a system Ax = b and let 

{z1, z2, z3} be a spanning set for N(A). If

Z = [ 3],

show that y will be a solution to Ax = b if and only if 

y = x1 + Zc for some c ∈ R
3

.

17. Figure 3.2.6 gives a geometric illustration of the solution set S to a

system Ax = b, where A is an m × 3 matrix, 

N(A) = Span(z1, z2), and b = Ax0, for some x0 ∉ N(A).

Suppose we change b by setting it equal to Ax1, where x1 is a

different vector that is also not in N(A). Explain the effect that

this change will have on the original figure. Geometrically, how

will the new solution set S1 compare to the original solution set S

and to N(A)?

18. Let {x1,x2,… ,xk} be a spanning set for a vector space V.

1. If we add another vector, xk+1, to the set, will we still

have a spanning set? Explain.

2. If we delete one of the vectors, say, xk, from the set, will

we still have a spanning set? Explain.

19. In R
2×2

, let

Show that E11,E12,E21,E22 span R
2×2

.

20. Which of the sets that follow are spanning sets for P3? Justify your

answers.

1. {1,x2,x2 − 2}

2. {2,x2,x, 2x + 3}

zz1 z2

E11 = [ ], E12 = [ ]
1 0

0 0

0 1

0 0

E21 = [ ], E22 = [ ]
0 0

1 0

0 0

0 1



3. {x + 2,x + 1,x2 − 1}

4. {x + 2,x2 − 1}

21. Let S be the vector space of infinite sequences defined in Exercise

15 of Section 3.1. Let S0 be the set of {a2} with the property that 

an → 0 as n → ∞. Show that S0 is a subspace of S.

22. Prove that if S is a subspace of R1
, then either S = {0} or 

S = R
1

.

23. Let A be an n × n matrix. Prove that the following statements are

equivalent:

1. N(A) = {0}.

2. A is nonsingular.

3. For each b ∈ R
n

, the system Ax = b has a unique

solution.

24. Let U and V be subspaces of a vector space W. Prove that their

intersection U ∩ V  is also a subspace of W.

25. Let S be the subspace of R
2

 spanned by e1 and let T be the

subspace of R
2

 spanned by e2. Is S ∪ T  a subspace of R
2

?

Explain.

26. Let U and V be subspaces of a vector space W. Define

U + V = {z = u + v, where u ∈ U  and v ∈ V }.

Show that U + V  is a subspace of W.

27. Let S, T, and U be subspaces of a vector space V. We can form new

subspaces using the operations of ∩ and + defined in Exercises 24

and 26. When we do arithmetic with numbers, we know that the

operation of multiplication distributes over the operation of

addition in the sense that

a(b + c) = ab + ac

It is natural to ask whether similar distributive laws hold for the

two operations with subspaces.

1. Does the intersection operation for subspaces distribute

over the addition operation? That is, does

S ∩ (T + U) = (S ∩ T ) + (S ∩ U)?

2. Does the addition operation for subspaces distribute

over the intersection operation? That is, does

S + (T ∩ U) = (S + T ) ∩ (S + U)?



3.3 Linear Independence
In this section, we look more closely at the structure of

vector spaces. To begin with, we restrict ourselves to

vector spaces that can be generated from a finite set of

elements. Each vector in the vector space can be built up

from the elements in this generating set using only the

operations of addition and scalar multiplication. The

generating set is usually referred to as a spanning set. In

particular, it is desirable to find a minimal spanning set.

By “minimal,” we mean a spanning set with no

unnecessary elements (i.e., all the elements in the set are

needed in order to span the vector space). To see how to

find a minimal spanning set, it is necessary to consider

how the vectors in the collection depend on each other.

Consequently, we introduce the concepts of linear

dependence and linear independence. These concepts

provide the keys to understanding the structure of vector

spaces.

Consider the following vectors in R
3

:

Let S be the subspace of R
3

 spanned by x1, x2, x3.

Actually, S can be represented in terms of the two vectors

x1 and x2, since the vector x3 is already in the span of 

x1 and x2; that is,

x3 = 3x1 + 2x2

(1)

Any linear combination of x1, x2, and x3 can be reduced

to a linear combination of x1 and x2:

, x3 =x1 = , x2 =
⎡⎢⎣ 2

1
−1

⎤⎥⎦ ⎡⎢⎣ 1

−2
3
⎤⎥⎦ ⎡⎢⎣ 8

−1
3
⎤⎥⎦α1x1 + α2x2 + α3x3 = α1x1 + α2x2 + α3(3x1 + 2x2)

= (α1 + 3α3)x1+(α2 + 3α3)x2



Thus,

S = Span(x1, x2, x3) = Span(x1, x2)

Equation (1) can be rewritten in the form

3x1 + 2x2 − 1x3 = 0

(2)

Since the three coefficients in (2) are nonzero, we could

solve for any vector in terms of the other two:

It follows that

Span(x1, x2, x3) = Span(x2, x3) = Span(x1, x3) = Span(x1, x2)

Because of the dependency relation (2), the subspace S

can be represented as the span of any two of the given

vectors.

In contrast, no such dependency relationship exists

between x1 and x2. Indeed, if there were scalars c1 and 

c2, not both 0, such that

c1x1 + c2x2 = 0

(3)

then we could solve for one of the vectors in terms of the

other:

However, neither of the two vectors in question is a

multiple of the other. Therefore, Span(x1) and Span

(x2) are both proper subspaces of Span(x1, x2), and

the only way that (3) can hold is if c1 = c2 = 0.

We can generalize this example by making the following

observations:

1. If v1, v2, … , vn span a vector space V and one of these vectors

can be written as a linear combination of the other n − 1 vectors,

then those n − 1 vectors span V.

= − 3
2 x1 + 1

2 x3, x3 = 3x1 + 2x2x1 = − 2
3 x2 + 1

3 x3, x2

(c2 ≠ 0)x2 = − c1
c2

x1orx1 = − c2
c1

x2 (c1 ≠ 0)



2. Given n vectors v1, … , vn, it is possible to write one of the

vectors as a linear combination of the other n − 1 vectors if and

only if there exist scalars c1, … , cn, not all zero, such that

c1v1 + c2v2 + ⋯ + cnvn = 0

Proof of (I)

Suppose that vn can be written as a linear combination

of the vectors v1, v2, … , vn−1; that is,

vn = β1v1 + β2v2 + ⋯ + βn−1vn−1

Let v be any element of V. Since v1, … , vn span V, we

can write

Thus, any vector v in V can be written as a linear

combination of v1, v2, … , vn−1, and hence these

vectors span V.

∎

Proof of (II)

Suppose that one of the vectors v1, v2, … , vn, say, vn,

can be written as a linear combination of the others.

vn = α1v1 + α2v2 + ⋯ + αn−1vn−1

Subtracting vn from both sides of this equation, we get

α1v1 + α2v2 + ⋯ + αn−1vn−1 − vn = 0

If we set ci = αi for i = 1, … n − 1, and set 

Cn = −1, then it follows that

c1v1 + c2v2 + ⋯ + cnvn = 0

Conversely, if

c1v1 + c2v2 + ⋯ + cnvn = 0

and at least one of the ci’s, say, cn, is nonzero, then

v = α1v1 + α2v2 + ⋯ + αn−1vn−1 + αnvn

= α1v1 + α2v2 + ⋯ + αn−1vn−1 + αn(β1v1 + ⋯ + βn−1vn−1)
= (α1 + α2β1)v1 + (α2 + αnβ2)v2 + ⋯ + (αn−1 + αnβn−1)vn−1)



vn =
−c1

cn

v1 +
−c2

cn

v2 + ⋯ +
−Cn−1

Cn

vn−1

∎

Definition
The vectors v1, v2, … , vn in a vector space V are said

to be linearly independent if

c1v1 + c2v2 + ⋯ + cnvn = 0

implies that all the scalars c1, … , cn must equal 0.

It follows from (I) and (II) that, if {v1, v2, … , vn} is

a minimal spanning set, then v1, v2, … , vn are linearly

independent. Conversely, if v1, … , vn are linearly

independent and span V, then {v1, … , vn} is a

minimal spanning set for V (see Exercise 20 at the end of

this section). A minimal spanning set is called a basis.

The concept of a basis will be studied in more detail in

the next section.

Example 1

The vectors [ ] and [ ] are linearly independent, since

if

c1[ ] + c2[ ] = [ ]

then

and the only solution to this system is c1 = 0, c2 = 0.

1
1

1
2

1
1

1
2

0
0

c1 + c2 = 0
c2 + 2c2 = 0



Definition
The vectors v1, v2, … , vn in a vector space V are said

to be linearly dependent if there exist scalars 

c1, c2, … , cn, not all zero, such that

c1v1 + c1v2 + ⋯ + cnvn = 0

Example 2

Let x = (1, 2, 3)T
. The vectors e1, e2, e3, and x are

linearly dependent, since

e1 + 2e2 + 3e3 − x = 0

(In this case, c1 = 1, c2 = 2, c3 = 3, c4 = −1.)

Given a set of vectors {v1, v2, … , vn} in a vector

space V, we can find scalars c1, c2, … , cn such that

c1v1 + c2v2 + ⋯ + cnvn = 0

Just take

c1 = c2 = ⋯ = cn = 0

If there are nontrivial choices of scalars for which the

linear combination c1v1 + ⋯ +cnvn equals the zero

vector, then v1, … , vn are linearly dependent. If the

only way the linear combination c1v1 + ⋯ + cnvn can

equal the zero vector is for all the scalars c1, … , cn to

be 0, then v1, … , vn are linearly independent.

Geometric Interpretation
If x and y are linearly dependent in R

2
, then

c1x + c2y = 0

where c1 and c2 are not both 0. If, say, c1 ≠ 0, we can

write



x = −
c2

c1
y

If two vectors in R
2

 are linearly dependent, one of the

vectors can be written as a scalar multiple of the other.

Thus, if both vectors are nonzero and they are placed at

the origin, then they will lie along the same line (see

Figure 3.3.1).

Figure 3.3.1.

Figure 3.3.1. Full Alternative Text

If

=yx = and
⎡⎢⎣ x3

x1

x2

⎤⎥⎦ ⎡⎢⎣ y3

y1

y2

⎤⎥⎦
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are linearly independent in R3
, then the two points 

(x1, x2, x3) and (y1, y2, y3) will not lie on the same line

through the origin in 3-space. Since 

(0, 0, 0), (x1, x2, x3), and (y1, y2, y3) are not

collinear, they determine a plane. If (z1, z2, z3) lies on

this plane, the vector z = (z1, z2, z3)T
 can be written as

a linear combination of x and y, and hence x, y, and z

are linearly dependent. If (z1, z2, z3) does not lie on the

plane, the three vectors will be linearly independent (see

Figure 3.3.2).

Figure 3.3.2.

Figure 3.3.2. Full Alternative Text
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Theorems and Examples

Example 3
Which of the following collections of vectors are linearly

independent in R3
?

1. (1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T

2. (1, 0, 1)T , (0, 1, 0)T

3. (1, 2, 4)T , (2, 1, 3)T , (4, −1, 1)T

SOLUTION

1. These three vectors are linearly independent. To verify this, we

must show that the only way for

c1(1, 1, 1)T , c2(1, 1, 0)T , c3(1, 0, 0)T = (0, 0, 0)T

(4)

is if the scalars c1, c2, c3 are all zero. Equation (4) can be written

as a linear system with unknowns c1, c2, c3:

The only solution of this system is .

2. If

T

then

(c1, c2, c1)T = (0, 0, 0)T

so c1 = c2 = 0. Therefore, the two vectors are linearly

independent.

3. If

c1(1, 2, 4)T + c2(2, 1, 3)T + c3(4, −1, 1)T = (0, 0, 0)T

then

c1 + c2 + c3 = 0
c1 + c2 = 0
c1 = 0

c1 = 0, c2 = 0, c3 = 0

c1(1, 0, 1)T + c2(0, 1, 0)T = (0, 0, 0)

c1 + 2c2 + 4c3 = 0
2c1 + c2 − c3 = 0
4c1 + 3c2 + c3 = 0



The coefficient matrix of the system is singular and hence the

system has nontrivial solutions. Therefore, the vectors are linearly

dependent.

Notice in Example 3, parts (a) and (c), that it was

necessary to solve a 3 × 3 system to determine whether

the three vectors were linearly independent. In part (a),

where the coefficient matrix was nonsingular, the vectors

were linearly independent, while in part (c), where the

coefficient matrix was singular, the vectors were linearly

dependent. This illustrates a special case of the following

theorem.

Theorem 3.3.1
Let x1, x2, … , xn be n vectors in R

n
 and let 

X = (x1, … , xn). The vectors x1, x2, … , xn will be

linearly dependent if and only if X is singular.

Proof

The equation

c1x1 + c2x2 + ⋯ + cnxn = 0

can be rewritten as a matrix equation:

Xc = 0

This equation will have a nontrivial solution if and only if

X is singular. Thus, x1, … xn will be linearly dependent

if and only if X is singular.

∎

We can use Theorem 3.3.1 to test whether n vectors are

linearly independent, in R
n

. Simply form a matrix X

whose columns are the vectors being tested. To

determine whether X is singular, calculate the value of 

det(X). If det(X) = 0, the vectors are linearly



dependent. If det(X) ≠ 0, the vectors are linearly

independent.

Example 4

Determine whether the vectors (4, 2, 3)T , (2, 3, 1)T
,

and (2, −5, 3)T
 are linearly dependent.

SOLUTION

Since

= 0

the vectors are linearly dependent.

Example 5
The following vectors are pictured in Figure 3.3.3.

Figure 3.3.3.∣4 2 2
2 3 −5
3 1 3∣ x4 = ,x3 = ,x1 = , x2 = ,

⎡⎢⎣ 1

2
3
⎤⎥⎦ ⎡⎢⎣ 1

3
2
⎤⎥⎦ ⎡⎢⎣ 2

5
5
⎤⎥⎦ ⎡⎢⎣ 4

2
2
⎤⎥⎦



Figure 3.3.3. Full Alternative Text

We can see a dependency relation among the first three

of the vectors since

x3 = x1 + x2

In this case, the vector x3 lies in the plane spanned by x1

and x2. It follows then that

x1 + x2 − x3 + 0x4 = 0

The collection of four vectors must be linearly dependent

since the scalars c1 = 1, c2 = 1, c3 = −1, c4 = 0 are

not all 0.

In the next section of the book, we will show that any

collection of three linearly independent vectors in R
3

will form a spanning set. If we then add a fourth vector to

the collection, the new vector can be expressed as a

linear combination of the three spanning vectors. Hence,

the collection of four vectors must be linearly dependent.

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-03-003.xhtml#la_fig03-03-003


To determine whether k vectors x1, x2, …  xk in R
n

are linearly independent, we can rewrite the equation

c1x1 + c2x2 + ⋯ + ckxk = 0

as a linear system Xc = 0, where 

X = (x1, x2, … , xk). If k ≠ n, then the matrix X is

not square, so we cannot use determinants to decide

whether the vectors are linearly independent. The system

is homogeneous, so it has the trivial solution c = 0. It

will have nontrivial solutions if and only if the row

echelon forms of X involve free variables. If there are

nontrivial solutions, then the vectors are linearly

dependent. If there are no free variables, then c = 0 is

the only solution, and hence the vectors must be linearly

independent.

Example 6
Given

To determine whether the vectors are linearly

independent, we reduce the system Xc = 0 to row

echelon form:

→

Since the echelon form involves a free variable c3, there

are nontrivial solutions and hence the vectors must be

linearly dependent.

Next, we consider a very important property of linearly

independent vectors: Linear combinations of linearly

, x3 =x1 = , x2 =

⎡⎢⎣ 1
−1

2
3

⎤⎥⎦ ⎡⎢⎣ −2
3
1

−2

⎤⎥⎦ ⎡⎢⎣ 1
0
7
7

⎤⎥⎦⎡⎢⎣ 1 −2 1
−1 3 0

2 1 7
3 −2 7∣0000⎤⎥⎦ ⎡⎢⎣ 1 −2 1

0 1 1
0 0 0
0 0 0∣0000⎤⎥⎦



independent vectors are unique. More precisely, we have

the following theorem.

Theorem 3.3.2
Let v1, … , v2 be vectors in a vector space V. A vector 

v ∈ Span(v1, … , v2) can be written uniquely as a

linear combination of v1, … , vn if and only if 

v1, … , vn are linearly independent.

Proof

If v ∈ Span(v1, … , vn), then v can be written as a

linear combination:

v = α1v1 + α2v2 + ⋯ + αnvn

(5)

Suppose that v can also be expressed as a linear

combination:

v = β1v1 + β2v2 + ⋯ + βnvn

(6)

We will show that, if v1, … , vn are linearly

independent, then βi = αi, i = 1, … , n, and if 

v1, … , vn are linearly dependent, then it is possible to

choose the βi’s different from the αi’s.

If v1, … , vn are linearly independent, then subtracting

(6) from (5) yields

(α1 − β1)v1 + (α2 − β2)v2 + ⋯ + (αn − βn)vn = 0

(7)

By the linear independence of v1, … , vn, the

coefficients of (7) must all be 0. Hence,

α1 = β1, α2 = β2, … , αn = βn

Thus, the representation (5) is unique when v1, … , vn

are linearly independent.



On the other hand, if v1, … , vn are linearly dependent,

then there exist c1, … , cn, not all 0, such that

0 = c1v1 + c2v2+ … + cnvn

(8)

Now if we set

β1 = α1 + c1, β, = α2 + c2, … , βn = αn + cn

then, adding (5) and (8), we get

Since the ci’s are not all 0, βi ≠ αi for at least one value

of i. Thus, if v1, … , vn are linearly dependent, the

representation of a vector as a linear combination of 

v1, … , vn is not unique.

∎

Vector Spaces of Functions
To determine whether a set of vectors is linearly

independent in Rn
, we must solve a homogeneous linear

system of equations. A similar situation holds for the

vector space Pn.

The Vector Space Pn
To test whether the following polynomials 

p1, p2, … , pk are linearly independent in Pn, we set

c1p1 + c2p2 + ⋯ + ckpk = z

(9)

where z represents the zero polynomial; that is,

z(x) = 0xn−1 + 0xn−2 + ⋯ + 0x + 0

v = (α1 + c1)v1 + (α2 + c2)v2 + ⋯ + (αn + cn)vn

= β1v1 + β2v2 + ⋯ + βnvn



If the polynomial on the left-hand side of Equation (9) is

rewritten in the form 

a1xn−1 + a1xn−2 + ⋯ + an−1x + an, then, since

two polynomials are equal if and only if their coefficients

are equal, it follows that the coefficients ai must all be 0.

But each of the ai’s is a linear combination of the cj’s.

This leads to a homogeneous linear system with

unknowns c1, c2, … , ck. If the system has only the

trivial solution, the polynomials are linearly

independent; otherwise, they are linearly dependent.

Example 7
To test whether the vectors

= x2 + 8x + 7

are linearly independent, set

c1p1(x) + c2p2(x) + c3p3(x) = 0x2 + 0x + 0

Grouping terms by powers of x, we get

(c1 + 2c2 + c3)x2 + (−2c1 + c2 + 8c3)x + (3c1 + 8c2 + 7c3) = 0x2 + 0x + 0

Equating coefficients leads to the system

The coefficient matrix for this system is singular and

hence there are nontrivial solutions. Therefore, p1, p2,

and p3 are linearly dependent.

The Vector Space 

C (n−1)[a, b]

= 2x2 + x + 8, p3(x)p1(x) = x2 − 2x + 3, p2(x)

c1 + 2c2 + c3 = 0
−2c1 + c2 + 8c3 = 0
3c1 + 8c2 + 7c3 = 0



In Example 4, a determinant was used to test whether

three vectors were linearly independent in R3
.

Determinants can also be used to help to decide whether

a set of n vectors is linearly independent in C (n−1)[a, b].
Indeed, let f1, f2, … , fn be elements of C (n−1)[a, b]. If

these vectors are linearly dependent, then there exist

scalars c1, c2, … , c2, not all zero, such that

c1f1(x) + c2f2(x) + ⋯ + cnfn(x) = 0

(10)

for each x in [a, b]. Taking the derivative with respect to

x of both sides of (10) yields

c1f ′
1(x) + c2f ′

1(x) + ⋯ + cnf ′
n(x) = 0

If we continue taking derivatives of both sides, we end up

with the system

For each fixed x in [a, b], the matrix equation

  =

(11)

will have the same nontrivial solution (c1, c2, … , cn)T
.

Thus, if f1, … , fn are linearly dependent in 

C (n−1)[a, b], then, for each fixed x in [a, b], the

coefficient matrix of system (11) is singular. If the matrix

is singular, its determinant is zero.

Definition

c1f1(x) + c2f2(x) + ⋯ + cnfn(x) = 0
c1f ′

1(x) + c2f ′
2(x) + ⋯ + c2f ′

n(x) = 0

⋮

c1f
(n−1)
1 (x) + c2f

(n−1)
2 (x) + ⋯ + cnf

(n−1)
n (x) = 0

⎡⎢⎣ f1(x) f2(x) … fn(x)
f ′

1(x) f ′
2(x) … f ′

n(x)

⋮

f
(n−1)
1 (x) f

(n−1)
2 (x) … f

(n−1)
2 (x)

⎤⎥⎦ ⎡⎢⎣ α1

α2

⋮
αn

⎤⎥⎦ ⎡⎢⎣ 0
0

⋮
0

⎤⎥⎦



Let f1, f2, ⋯ , fn be functions in C (n−1)[a, b], and

define the function W [f1, f2, … , fn](x) on [a, b] by

W [f1, f2, … , fn](x) =

The function W [f1, f2, … , fn] is called the

Wronskian of f1, f2, … , fn.

Theorem 3.3.3
Let f1, f2, … , fn be elements of C (n−1)[a, b]. If there

exists a point x0 in [a, b] such that 

W [f1, f2, … , fn](x0) ≠ 0, then f1, f2, … , fn are

linearly independent.

Proof

If f1, f2, … , fn were linearly dependent, then by the

preceding discussion, the coefficient matrix in (11) would

be singular for each x in [a, b] and hence 

W [f1, f2, … , fn](x) would be identically zero on 

[a, b].

∎

If f1, f2, … , fn are linearly independent in 

C (n−1)[a, b], they will also be linearly independent in 

C[a, b].

Example 8
Show that ex

 and e−x
 are linearly independent in 

C(−∞, ∞).

SOLUTION

∣ f1(x) f2(x) … fn(x)
f ′

1(x) f ′
2(x) … f ′

n(x)

⋮

f
(n−1)
1 (x) f

(n−1)
2 (x) … f

(n−1)
n (x)∣



W[ex, e−x] = = −2

Since W [ex, e−x] is not identically zero, ex
 and e−x

 are

linearly independent.

Example 9
Consider the functions x2

 and x|x| in C[−1, 1]. Both

functions are in the subspace C1[−1, 1] (see Example 7

of Section 3.2), so we can compute the Wronskian:

W[x2, x|x|] = ≡ 0

Since the Wronskian is identically zero, it gives no

information as to whether the functions are linearly

independent. To answer the question, suppose that

c1x2 + c2x|x| = 0

for all x in [−1, 1]. Then, in particular for x = 1 and 

x = −1, we have

and the only solution of this system is .

Thus, the functions x2
 and x|x| are linearly independent

in C[−1, 1] even though W[x2, x|x|] ≡ 0.

This example shows that the converse of Theorem 3.3.3

is not valid.

Example 10
Show that the vectors 1, x, x2

, and x3
 are linearly

independent in C((−∞, ∞)).

SOLUTION

∣ex e−x

ex −e−x∣∣x2 x|x|
2x 2|x|∣c1 + c2 = 0

c1 − c2 = 0

c1 = c2 = 0



W[1, x, x2, x3] = = 12

Since W[1, x, x2, x3] ≢ 0, the vectors are linearly

independent. ∣1 x x2 x3

0 1 2x 3x2

0 0 2 6x

0 0 0 6 ∣



Section 3.3 Exercises

1. Determine whether the following vectors are linearly independent

in R
2

:

1. [ ], [ ]

2. [ ], [ ]

3. [ ], [ ], [ ]

4. [ ], [ ], [ ]

5. [ ], [ ]

2. Determine whether the following vectors are linearly independent

in R
3

:

1. , ,

2. , , ,

3. , ,

4. , ,

5. ,

3. For each of the sets of vectors in Exercise 2, describe geometrically

the span of the given vectors.

4. Determine whether the following vectors are linearly independent

in R
2×2

:

2

1

3

2

2

3

4

6

−2

1

1

3

2

4

−1

2

1

−2

2

−4

1

2

−1

1

⎡⎢⎣ 0

1

0
⎤⎥⎦ ⎡⎢⎣ 1

0

1
⎤⎥⎦ ⎡⎢⎣ 1

1

0
⎤⎥⎦⎡⎢⎣ 0

1

0
⎤⎥⎦ ⎡⎢⎣ 1

0

1
⎤⎥⎦ ⎡⎢⎣ 1

1

0
⎤⎥⎦ ⎡⎢⎣ 3

1

2
⎤⎥⎦⎡⎢⎣ −2

2

1
⎤⎥⎦ ⎡⎢⎣ −2

3

2
⎤⎥⎦ ⎡⎢⎣ 0

2

2
⎤⎥⎦⎡⎢⎣ −2

2

1
⎤⎥⎦ ⎡⎢⎣ 2

−2

−1
⎤⎥⎦ ⎡⎢⎣ −4

4

2
⎤⎥⎦⎡⎢⎣ 3

1

1
⎤⎥⎦ ⎡⎢⎣ 1

0

2
⎤⎥⎦



1. [ ], [ ]

2. [ ], [ ], [ ]

3. [ ], [ ], [ ]

5. Let x1, x2, … , xk be linearly independent vectors in a vector

space V.

1. If we add a vector xk+1 to the collection, will we still

have a linearly independent collection of vectors?

Explain.

2. If we delete a vector, say, xk, from the collection, will we

still have a linearly independent collection of vectors?

Explain.

6. Let x1, x2, and x3 be linearly independent vectors in R
n

 and let

Are y1, y2, and y3 linearly independent? Prove your answer.

7. Let x1, x2, and x3 be linearly independent vectors in Rn
 and let

Are y1, y2, and y3 linearly independent? Prove your answer.

8. Determine whether the following vectors are linearly independent

in P3:

1. 1, x2, x2 − 2

2. 2, x2, x, 2x + 3

3. x + 2, x + 1, x2 − 1

4. x + 2, x2 − 1

9. For each of the following, show that the given vectors are linearly

independent in C[0, 1]:

1. cos πx, sin πx

2. x3/2, x5/2

3. 1, ex + e−x, ex − e−x

4. ex, e−x, e2x

10. Determine whether the vectors cos x, 1, and sin2(x/2) are linearly

independent in C[−π, π].

1 0

1 1

0 1

0 0

1 0

0 1

0 1

0 0

0 0

1 0

1 0

0 1

0 1

0 0

2 3

0 2

y1 = x1 + x2, y2 = x2 + x3, y3 = x3 + x1

y1 = x2 − x1, y2 = x3 − x2, y3 = x3 − x1



11. Consider the vectors cos(x + α) and sin x in C[−π, π]. For what

values of α will the two vectors be linearly dependent? Give a

graphical interpretation of your answer.

12. Given the functions 2x and |x|, show that

1. these two vectors are linearly independent in C[−1, 1].

2. the vectors are linearly dependent in C[0, 1].

13. Prove that any finite set of vectors that contains the zero vector

must be linearly dependent.

14. Let v1, and v2 be two vectors in a vector space V. Show that v1

and v2 are linearly dependent if and only if one of the vectors is a

scalar multiple of the other.

15. Prove that any nonempty subset of a linearly independent set of

vectors {v1, … , vn} is also linearly independent.

16. Let A be an m × n matrix. Show that if A has linearly

independent column vectors, then N(A) = {0}.

[Hint: For any x ∈ R
n

, Ax = x1a1 + x2a2 + ⋯ + xnan.]

17. Let x1, … , xk be linearly independent vectors in R
n

, and let A

be a nonsingular n × n matrix. Define yi = Axi for 

i = 1, … , k. Show that y1, … , y
k

 are linearly independent.

18. Let A be a 3 × 3 matrix and let x1, x2, x3 be vectors in R3
. Show

that if the vectors

are linearly independent, then the matrix A must be nonsingular

and the vectors x1, x2, and x3 must be linearly independent.

19. Let {v1, … , vn} be a spanning set for the vector space V, and let

v be any other vector in V. Show that v, v1, … , vn are linearly

dependent.

20. Let v1, v2, … , vn be linearly independent vectors in a vector

space V. Show that v2, … , vn cannot span V.

y1 = Ax1, y2 = Ax2, y3 = Ax3



3.4 Basis and Dimension
In Section 3.3, we showed that a spanning set for a vector

space is minimal if its elements are linearly independent.

The elements of a minimal spanning set form the basic

building blocks for the whole vector space, and

consequently, we say that they form a basis for the vector

space.

Definition
The vectors v1, v2, … , vn form a basis for a vector

space V if and only if

1. v1, … , vn are linearly independent.

2. v1, … , vn span V.

Example 1
The standard basis for R

3
 is {e1, e2, e3}; however,

there are many bases that we could choose for R
3

. For

example,

are both bases for R3
. We will see shortly that any basis

for R3
 must have exactly three elements.

Example 2
In R

2×2
, consider the set {E11, E12, E21, E22}, where

, , and , ,

⎧⎪⎨⎪⎩⎡⎢⎣1

1

1

⎤⎥⎦ ⎡⎢⎣0

1

1

⎤⎥⎦ ⎡⎢⎣2

0

1

⎤⎥⎦⎫⎪⎬⎪⎭ ⎧⎪⎨⎪⎩⎡⎢⎣1

1

1

⎤⎥⎦ ⎡⎢⎣1

1

0

⎤⎥⎦ ⎡⎢⎣1

0

1

⎤⎥⎦⎫⎪⎬⎪⎭



If

c1E11 + c2E12 + c3E21 + c4E22 = O

then

[ ] = [ ]

so c1 = c2 = c3 = c4 = 0. Therefore, E11, E12, E21,

and E22 are linearly independent. If A is in R
2×2

, then

A = a11E11 + a12E12 + a21E21 + a22E22

Thus, E11, E12, E21, E22 span R
2×2

 and hence form a

basis for R
2×2

.

In many applications, it is necessary to find a particular

subspace of a vector space V. This can be done by finding

a set of basis elements of the subspace. For example, to

find all solutions of the system

we must find the null space of the matrix

A = [ ]

In Example 9 of Section 3.2, we saw that N(A) is the

subspace of R
4

 spanned by the vectors

Since these two vectors are linearly independent, they

form a basis for N(A).

E11 = [ ], E12 = [ ],

E3 = [ ], E22 = [ ]

1 0

0 0

0 1

0 0

0 0

1 0

0 0

0 1

c1 c2

c3 c4

0 0

0 0

x1 + x2 + x3 = 0

2x1 + x2 + + x4 = 0

1 1 1 0

2 1 0 1

and

⎡⎢⎣ 1

−2

1

0

⎤⎥⎦ ⎡⎢⎣−1

1

0

1

⎤⎥⎦



Theorem 3.4.1
If {v1, v2, … , vn} is a spanning set for a vector space

V, then any collection of m vectors in V, where m > n,

is linearly dependent.

Proof

Let u1, u2, … , um be m vectors in V where m > n.

Then, since v1, v2, … , vn span V, we have

A linear combination c1u1 + c2u2 + ⋯ + cmum can

be written in the form

c1

n

∑
j=1

a1jvj + c2

n

∑
j=1

a2jvj + ⋯ + cm

n

∑
j=1

amjvj

Rearranging the terms, we see that

c1u1 + c2u2 + ⋯ + cmum =
m

∑
i=1

[ci(
m

∑
i=1

aijvj)] =
m

∑
j=1

(
m

∑
i=1

aijci)vj

Now consider the system of equations

m

∑
i=1

aijci = 0

This is a homogeneous system with more unknowns than

equations. Therefore, by Theorem 1.2.1, the system must

have a nontrivial solution (ĉ1, ĉ2, … , ĉ3)T
. But then

ĉ1u1 + ĉ2u2 + ⋯ + ĉmum =
n

∑
j=1

0vj = 0

Here, u1, u2, … , um are linearly dependent.

∎

Corollary 3.4.2

ui = ai1v1 + ai2v2 + ⋯ + ainvn for i = 1, 2, … , m

j = 1, 2, … , n



If both {v1, … , vn} and {u1, … , um} are bases for a

vector space V, then n = m.

Proof

Let v1, v2, … , vn and u1, u2, … , vm both be bases

for V. Since v1, v2, … , vn span V and u1, u2, … , vm

are linearly independent, it follows from Theorem 3.4.1

that m ≤ n. By the same reasoning, u1, u2, … , vm

span V, and v1, v2, … , vn are linearly independent, so 

n ≤ m.

∎

In view of Corollary 3.4.2, we can now refer to the

number of elements in any basis for a given vector space.

This leads to the following definition.

Definition
Let V be a vector space. If V has a basis consisting of n

vectors, we say that V has dimension n. The subspace

{0} of V is said to have dimension 0. V is said to be

finite dimensional if there is a finite set of vectors that

spans V; otherwise, we say that V is infinite

dimensional.

If x is a nonzero vector in R
3

, then x spans a one-

dimensional subspace Span(x) = {αx|α is a scalar}.

A vector (a, b, c)T
 will be in Span(x) if and only if the

point (a, b, c) is on the line determined by (0, 0, 0) and 

(x1, x2, x3). Thus, a one-dimensional subspace of R3

can be represented geometrically by a line through the

origin.

If x and y are linearly independent in R3
, then

Span(x, y) = {αx + βy|α and β are scalars}



is a two-dimensional subspace of R3
. A vector (a, b, c)T

will be in Span(x, y) if and only if (a, b, c) lies on the

plane determined by (0, 0, 0), (x , x , x ), and (y , y , y ).

Thus, we can think of a two-dimensional subspace of R3

as a plane through the origin. If x, y, and z are linearly

independent in R3
, they form a basis for R3

 and Span(x,

y, z) = R
3

. Hence, any fourth point (a, b, c)T
 must lie in 

Span(x, y, z) (see Figure 3.4.1).

Figure 3.4.1.

Figure 3.4.1. Full Alternative Text

Example 3
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Let P be the vector space of all polynomials. We claim

that P is infinite dimensional. If P were finite

dimensional, say, of dimension n, any set of n + 1
vectors would be linearly dependent. However, 

1, x, x2, … , xn
 are linearly independent, since 

W[1, x, x2, … , xn] > 0. Therefore, P cannot be of

dimension n. Since n was arbitrary, P must be infinite

dimensional. The same argument shows that C[a, b] is
infinite dimensional.

Theorem 3.4.3
If V is a vector space of dimension n > 0, then

1. any set of n linearly independent vectors spans V.

2. any n vectors that span V are linearly independent.

Proof

To prove (I), suppose that v1, … , vn are linearly

independent and v is any other vector in V. Since V has

dimension n, it has a basis consisting of n vectors and

these vectors span V. It follows from Theorem 3.4.1 that 

v1, v2, … , vn, and v must be linearly dependent. Thus,

there exist scalars c1, c2, … , cn, cn+1, not all zero, such

that

c1v1 + c2v2 + ⋯ + cnvn + cn+1v = 0

(1)

The scalar cn+1 cannot be zero, for then (1) would imply

that v1, … , vn are linearly dependent. Hence, (1) can

be solved for v.

v = α1v1 + α2v2 + ⋯ + αnvn

Here, αi = −ci/cn+1 for i = 1, 2, … , n. Since v was

an arbitrary vector in V, it follows that v1, v2, … , vn

span V.



To prove (II), suppose that v1, … , vn span V. If 

v1, … , vn are linearly dependent, then one of the vi’s,

say, vn, can be written as a linear combination of the

others. It follows that v1, … , vn−1 will still span V. If 

v1, … , vn−1 are linearly dependent, we can eliminate

another vector and still have a spanning set. We can

continue eliminating vectors in this way until we arrive

at a linearly independent spanning set with k < n

elements. But this contradicts dim V = n. Therefore, 

v1, … , vn must be linearly independent.

∎

Example 4

Show that , ,  is a basis for R3
.

SOLUTION

Since dim R3 = 3, we need only show that these three

vectors are linearly independent. This follows, since

= 2

Theorem 3.4.4
If V is a vector space of dimension n > 0, then

1. no set of fewer than n vectors can span V.

2. any subset of fewer than n linearly independent vectors can be

extended to form a basis for V.

3. any spanning set containing more than n vectors can be pared

down to form a basis for V.

⎧⎪⎨⎪⎩⎡⎢⎣1

2

3

⎤⎥⎦ ⎡⎢⎣−2

1

0

⎤⎥⎦ ⎡⎢⎣1

0

1

⎤⎥⎦⎫⎪⎬⎪⎭∣1 −2 1

2 1 0

3 0 1∣



Proof

Statement (i) follows by the same reasoning that was

used to prove part (I) of Theorem 3.4.3. To prove (ii),

suppose that v1, … , vk are linearly independent and 

k < n. It follows from (i) that Span(v1, … , vk) is a

proper subspace of V and hence there exists a vector 

vk+1 that is in V but not in Span(v1, … , vk). It then

follows that v1, v2, … , vk, vk+1 must be linearly

independent. If k + 1 < n, then, in the same manner, 

{v1, … , vk, vk+1} can be extended to a set of k + 2
linearly independent vectors. This extension process may

be continued until a set 

{v1, v2, … , vk, vk+1, … , vn} of n linearly

independent vectors is obtained.

To prove (iii), suppose that v1, … , vm span V and 

m > n. Then, by Theorem 3.4.1, v1, … , vm must be

linearly dependent. It follows that one of the vectors, say,

vm, can be written as a linear combination of the others.

Hence, if vm is eliminated from the set, the remaining 

m − 1 vectors will still span V. If m − 1 > n, we can

continue to eliminate vectors in this manner until we

arrive at a spanning set containing n vectors.

∎

Standard Bases
In Example 1, we referred to the set {e1, e2, e3} as the

standard basis for R
3

. We refer to this basis as the

standard basis because it is the most natural one to use

for representing vectors in R
3

. More generally, the

standard basis for R
n

 is the set {e1, e2, … , en}.

The most natural way to represent matrices in R2×2
 is in

terms of the basis {E11, E12, E21, E21, E22} given in

Example 2. This, then, is the standard basis for R2×2
.



The standard way to represent a polynomial in Pn is in

terms of the functions 1, x, x2, … , xn−1
, and

consequently, the standard basis for Pn is 

{1, x, x2, … , xn−1}.

Although these standard bases appear to be the simplest

and most natural to use, they are not the most

appropriate bases for many applied problems. (See, for

example, the least squares problems in Chapter 5 or the

eigenvalue applications in Chapter 6.) Indeed, the key to

solving many applied problems is to switch from one of

the standard bases to a basis that is in some sense

natural for the particular application. Once the

application is solved in terms of the new basis, it is a

simple matter to switch back and represent the solution

in terms of the standard basis. In the next section, we

will learn how to switch from one basis to another.



Section 3.4 Exercises

1. In Exercise 1 of Section 3.3, indicate whether the given vectors

form a basis for R
2
.

2. In Exercise 2 of Section 3.3, indicate whether the given vectors

form a basis for R
3
.

3. Consider the vectors

[ ]

1. Show that x1 and x2 form a basis for R
2
.

2. Why must x1, x2, x3 be linearly dependent?

3. What is the dimension of Span(x1, x2, x3)?

4. Given the vectors

what is the dimension of Span(x1, x2, x3)?

5. Let

1. Show that x1, x2, and x3 are linearly dependent.

2. Show that x1 and x2 are linearly independent.

3. What is the dimension of Span(x1, x2, x3)?

4. Give a geometric description of Span(x1, x2, x3).

6. In Exercise 2 of Section 3.2, some of the sets formed subspaces of 

R
3
. In each of these cases, find a basis for the subspace and

determine its dimension.

7. Find a basis for the subspace S of R
4
 consisting of all vectors of the

form (a + b, a − b + 2c, b, c)
T

, where a, b, and c are all real

numbers. What is the dimension of S?

8. Given x1 = (1, 1, 1)T
 and x2 = (3, −1, 4)T

:

1. Do x1 and x2 span R3
? Explain.

x1 = [ ], x2 = [ ], x3 =
2

1

4

3

7

−3

x1 = , x2 = , x3 =
⎡⎢⎣ 4

3

−2
⎤⎥⎦ ⎡⎢⎣ −4

−3

2
⎤⎥⎦ ⎡⎢⎣ −8

−6

4
⎤⎥⎦x1 = , x2 = , x3 =

⎡⎢⎣ 3

2

1
⎤⎥⎦ ⎡⎢⎣ 4

3

−1
⎤⎥⎦ ⎡⎢⎣ 4

2

6
⎤⎥⎦



2. Let x3 be a third vector in R
3
 and set X = (x1 x2 x3).

What condition(s) would X have to satisfy in order for x1

, x2, and x3 to form a basis for R
3
?

3. Find a third vector x3 that will extend the set {x1, x2} to

a basis for R
3
.

9. Let a1 and a2 be linearly independent vectors in R
3
, and let x

beavector in R
2
.

1. Describe geometrically Span(a1, a2).

2. If A = (a1, a2) and b = Ax, then what is the

dimension of Span(a1, a2, b)? Explain.

10. The vectors

span R
3
. Pare down the set {x1, x2, x3, x4, x5} to form a basis

for R
3
.

11. Let S be the subspace of P3 consisting of all polynomials of the

form ax2 + bx + 2a + 3b. Find a basis for S.

12. In Exercise 3 of Section 3.2, some of the sets formed subspaces of 

R2×2
. In each of these cases, find a basis for the subspace and

determine its dimension.

13. In C[−π, π], find the dimension of the subspace spanned by 

1, cos 2x, cos2x.

14. In each of the following, find the dimension of the subspace of P3

spanned by the given vectors:

1. x, x − 1, x2 + 1

2. x, x − 1, x2 + 1, x2 − 1

3. x2, x2 − x − 1, x + 1

4. 2x, x − 2

15. Let S be the subspace of P3 consisting of all polynomials p(x)
such that p(0) = 0, and let T be the subspace of all polynomials 

q(x) such that q(1) = 0. Find bases for

1. S

2. T

x1 = , x2 = ,
⎡⎢⎣ 2

1

2
⎤⎥⎦ ⎡⎢⎣ 4

2

5
⎤⎥⎦x3 = , x4 = , x5 =

⎡⎢⎣ 2

1

3
⎤⎥⎦ ⎡⎢⎣ 4

2

7
⎤⎥⎦ ⎡⎢⎣ 0

1

1
⎤⎥⎦



3. S ∩ T

16. In R
4
, let U be the subspace of all vectors of the form 

(u1, u2, 0, 0)
T

, and let V be the subspace of all vectors of the form 

(0, v2, v3, 0)T
. What are the dimensions of U , V .U ∩ V , U + V

? Find a basis for each of these four subspaces. (See Exercises 24

and 26 of Section 3.2.)

17. Is it possible to find a pair of two-dimensional subspaces U and V

of R
3
 whose intersection is {0}? Prove your answer. Give a

geometrical interpretation of your conclusion. [Hint: Let {u1, u2}

and {v1, v2} be bases for U and V, respectively. Show that 

u1, u2, v1, v2 are linearly dependent.]

18. Show that if U and V are subspaces of R
n

 and U ∩ V = {0},

then

dim(U + V ) = dim U + dim V



3.5 Change of Basis
Many applied problems can be simplified by changing

from one coordinate system to another. Changing

coordinate systems in a vector space is essentially the

same as changing from one basis to another. For

example, in describing the motion of a particle in the

plane at a particular time, it is often convenient to use a

basis for R2
 consisting of a unit tangent vector t and a

unit normal vector n instead of the standard basis 

{e1, e2}.

In this section, we discuss the problem of switching from

one coordinate system to another. We will show that this

can be accomplished by multiplying a given coordinate

vector x by a nonsingular matrix S. The product y = Sx

will be the coordinate vector for the new coordinate

system.

Changing Coordinates in R2

The standard basis for R2
 is {e1, e2}. Any vector x in 

R2
 can be expressed as a linear combination:

x = x1e1 + x2e2

The scalars x1 and x2 can be thought of as the

coordinates of x with respect to the standard basis.

Actually, for any basis {y, z} for R
2

, it follows from

Theorem 3.3.2 that a given vector x can be represented

uniquely as a linear combination:

x = αy + βz

The scalars α and β are the coordinates of x with respect

to the basis {y, z}. Let us order the basis elements so

that y is considered the first basis vector and z is



considered the second, and denote the ordered basis by 

[y, z]. We can then refer to the vector (α,β)T  as the

coordinate vector of x with respect to [y, z]. Note that, if

we reverse the order of the basis vectors and take [z, y],
then we must also reorder the coordinate vector. The

coordinate vector of x with respect to [z, y] will be 

(β,α)T . When we refer to a basis using subscripts, such

as {u1, u2}, the subscripts assign an ordering to the

basis vectors.

Example 1

Let y = (2, 1)T  and z = (1, 4)T . The vectors y and z

are linearly independent and hence form a basis for R2
.

The vector x = (7, 7)T  can be written as a linear

combination:

x = 3y + z

Thus, the coordinate vector of x with respect to [y, z] is 

(3, 1)T . Geometrically, the coordinate vector specifies

how to get from the origin to the point (7, 7) by moving

first in the direction of y and then in the direction of z. If,

instead, we treat z as our first basis vector and y as the

second basis vector, then

x = z + 3y

The coordinate vector of x with respect to the ordered

basis [z, y] is (1, 3)T . Geometrically, this vector tells us

how to get from the origin to (7, 7) by moving first in the

direction of z and then in the direction of y (see Figure

3.5.1).

Figure 3.5.1.



Figure 3.5.1. Full Alternative Text
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As an example of a problem for which it is helpful to

change coordinates, consider the following application.

Application 1
Population Migration

Suppose that the total population of a large metropolitan

area remains relatively fixed; however, each year 6

percent of the people living in the city move to the

suburbs and 2 percent of the people living in the suburbs

move to the city. If, initially, 30 percent of the population

lives in the city and 70 percent lives in the suburbs, what

will these percentages be in 10 years? 30 years? 50

years? What are the long-term implications?

The changes in population can be determined by matrix

multiplications. If we set

then the percentages of people living in the city and

suburbs after one year can be calculated by setting 

x1 = Ax0. The percentages after two years can be

calculated by setting x2 = Ax1 = A2x0. In general,

the percentages after n years will be given by 

xn = Anx0. If we calculate these percentages for 

n = 10, 30, and 50 years and round to the nearest

percent, we get

In fact, as n increases, the sequence of vectors 

xn = Anx0 converges to a limit x = (0.25, 0.75)T .

The limit vector x is called a steady-state vector for the

process.

x0 = [ ]A = [ ] and
0.94 0.02
0.06 0.98

0.30
0.70

x50 = [ ]x10 = [ ] x30 = [ ]
0.27
0.73

0.25
0.75

0.25
0.75



To understand why the process approaches a steady

state, it is helpful to switch to a different coordinate

system. For the new coordinate system, we will pick

vectors u1 and u2, for which it is easy to see the effect of

multiplication by the matrix A. In particular, if we pick 

u1 to be any multiple of the steady-state vector x, then 

Au1 will equal u1. Let us choose u1 = (1  3)T  and 

u2 = (−1  1)T . The second vector was chosen because

the effect of multiplying by A is just to scale the vector by

a factor of 0.92. Thus, our new basis vectors satisfy

The initial vector x0 can be written as a linear

combination of the new basis vectors:

− 0.05u2

It follows that

− 0.05(0.92)nu2

The entries of the second component approach 0 as n

gets large. In fact, for n > 27, the entries will be small

enough so that the rounded values of xn are all equal to

0.25u1 = [ ]

This application is an example of a type of mathematical

model called a Markov process. The sequence of vectors 

x1, x2, … is called a Markov chain. The matrix A has a

special structure in that its entries are nonnegative and

its columns all add up to 1. Such matrices are called

stochastic matrices. More precise definitions will be

given later when we study these types of applications in

Chapter 6. What we want to stress here is that the key to

understanding such processes is to switch to a basis for

which the effect of the matrix is quite simple. In

Au1 = [ ] [ ] = [ ] = u1

Au2 = [ ] [ ] = [ ] = u2

0.94 0.02
0.06 0.98

1
3

1
3

0.94 0.02
0.06 0.98

−1
1

−0.92
0.92

x0 = [ ] = 0.25[ ] − 0.05[ ] = 0.25u1
0.30
0.70

1
3

−1
1

xn = Anx0 = 0.25u1

0.25
0.75



particular, if A is n × n, then we will want to choose

basis vectors so that the effect of the matrix A on each

basis vector uj is simply to scale it by some factor λj,

that is,

(1)

In many applied problems involving an n × n matrix A,

the key to solving the problem often is to find basis

vectors u1, … , un and scalars λ1, … ,λn such that (1)

is satisfied. The new basis vectors can be thought of as a

natural coordinate system to use with the matrix A, and

the scalars can be thought of as natural frequencies for

the basis vectors. We will study these types of

applications in more detail in Chapter 6.

Changing Coordinates
Once we have decided to work with a new basis, we have

the problem of finding the coordinates with respect to

that basis. Suppose, for example, that instead of using

the standard basis {e1, e2} for R2
, we wish to use a

different basis, say,

Indeed, we may want to switch back and forth between

the two coordinate systems. Let us consider the following

two problems:

1. Given a vector x = (x1,x2)T , find its coordinates with respect to 

u1 and u2.

2. Given a vector c1u1 + c2u2, find its coordinates with respect to 

e1 and e2.

We will solve II first, since it turns out to be the easier

problem. To switch bases from {u1, u2} to {e1, e2}, we

Auj = λuj j = 1, 2, … ,n

u1 = [ ], u2 = [ ]
3
2

1
1



must express the old basis elements u1 and u2 in terms

of the new basis elements e1 and e2.

It follows then that

Thus, the coordinate vector of c1u1 + c2u2 with respect

to {e1, e2} is

x = [ ] = [ ][ ]

If we set

U = (u1, u2) = [ ]

then, given any coordinate vector c with respect to 

{u1, u2}, to find the corresponding coordinate vector x

with respect to {e1, e2}, we simply multiply U times c:

x = Uc

(2)

The matrix U is called the transition matrix from the

ordered basis {u1, u2} to the standard basis {e1, e2}.

To solve problem I, we must find the transition matrix

from {e1, e2} to {u1, u2}. The matrix U in (2) is

nonsingular, since its column vectors, u1 and u2, are

linearly independent. It follows from (2) that

c = U−1x

Thus, given a vector

x = (x1,x2)T = x1e1 + x2e2

we need only multiply by U−1
 to find its coordinate

vector with respect to {u1, u2}. U−1
 is the transition

matrix from {e1, e2} to {u1, u2}.

u1 = 3e1 + 2e2

u2 = e1 + e2

c1u1 + c2u2 = (3c1e1 + 2c1e2) + (c2e1 + c2e2)
= (3c1 + c2)e1 + (2c1 + c2)e1

3c1 + c2

2c1 + c2

3 1
2 1

c1

c2

3 1
2 1



Example 2

Let u1 = (3, 2)T , u2 = (1, 1)T , and x = (7, 4)T . Find

the coordinates of x with respect to u1 and u2.

SOLUTION

By the preceding discussion, the transition matrix from 

{e1, e2} to {u1, u2} is the inverse of

U = (u1, u2) = [ ]

Thus,

c = U−1x = [ ] [ ] = [ ]

is the desired coordinate vector and

x = 3u1 − 2u2

Example 3

Let b1 = (1, −1)T  and b2 = (−2, 3)T . Find the

transition matrix from {e1, e2} to {b1, b2} and

determine the coordinates of x = (1, 2)T  with respect

to {b1, b2}.

SOLUTION

The transition matrix from {b1, b2} to {e1, e2} is

B = (b1, b2) = [ ]

and hence the transition matrix from {e1, e2} to 

{b1, b2} is

B−1 = [ ]

The coordinate vector of x with respect to {b1, b2} is

3 1
2 1

1 −1
−2 3

7
4

3
−2

1 −2
−1 3

3 2
1 1



c = B−1x = [ ] [ ] = [ ]

and hence

x = 7b1 + 3b2

Now let us consider the general problem of changing

from one ordered basis {v1, v2} of R
2

 to another

ordered basis {u1, u2}. In this case, we assume that, for

a given vector x, its coordinates with respect to {v1, v2}
are known:

x = c1v1 + c2v2

Now we wish to represent x as a sum d1u1 + d2u2.

Thus, we must find scalars d1 and d2 so that

c1v1 + c2v2 = d1u1 + d2u2

(3)

If we set V = (v1, v2) and U = (u1, u2), then

Equation (3) can be written in matrix form:

V c = Ud

It follows that

d = U−1V c

Thus, given a vector x in R
2

 and its coordinate vector c

with respect to the ordered basis {v1, v2}, to find the

coordinate vector of x with respect to the new basis 

{u1, u2}, we simply multiply c by the transition matrix 

S = U−1V .

Example 4
Find the transition matrix corresponding to the change

of basis from {v1, v2} to {u1, u2}, where

SOLUTION

3 2
1 1

1
2

7
3

v1 = [ ], v2 = [ ] and u1 = [ ], u2 = [ ]
5
2

7
3

3
2

1
1



The transition matrix from {v1, v2} to {u1, u2} is

given by

S = U−1V = [ ][ ] = [ ]

The change of basis from {v1, v2} to {u1, u2} can also

be viewed as a two-step process. First we change from 

{v1, v2} to the standard basis, {e1, e2}, and then we

change from the standard basis to {u1, u2}. Given a

vector x in R
2

, if c is the coordinate vector of x with

respect to {v1, v2} and d is the coordinate vector of x

with respect to {u1, u2}, then

c1v1 + c2v2 = x1e1 + x2e2 = d1u1 + d2u2

Since V is the transition matrix from {v1, v2} to 

{e1, e2} and U−1
 is the transition matrix from 

{e1, e2} to {u1, u2}, it follows that

and hence

U−1V c = U−1x = d

As before, we see that the transition matrix from 

{v1, v2} to {u1, u2} is U−1V  (see Figure 3.5.2).

Figure 3.5.2.

1 −1
−2 3

5 7
2 3

3 4
−4 −5

V c = x and U−1x = d



Figure 3.5.2. Full Alternative Text

Change of Basis for a General

Vector Space
Everything we have done so far can easily be generalized

to apply to any finite-dimensional vector space. We begin

by defining coordinate vectors for an n-dimensional

vector space.

Definition
Let V be a vector space and let E = {v1, v2, … , vn} be

an ordered basis for V. If v is any element of V, then v

can be written in the form

v = c1v1 + c2v2 + ⋯ + cnvn
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where c1, c2, … , cn are scalars. Thus, we can associate

with each vector v a unique vector 

c = (c1, c2, … , cn)T  in Rn
. The vector c defined in

this way is called the coordinate vector of v with

respect to the ordered basis E and is denoted [v]E. The 

ci’s are called the coordinates of v relative to E.

The examples considered so far have all dealt with

changing coordinates in R2
. Similar techniques could be

used for Rn
. In the case of Rn

, the transition matrices

will be n × n.

Example 5
If

v1 = , v2 = , v3 =

and

u1 = , u2 = , u3 =

then E = {v1, v2, v3} and F = {u1, u2, u3} are

ordered bases for R
3

. Let

Find the transition matrix from E to F and use it to find

the coordinates of x and y with respect to the ordered

basis F.

SOLUTION

As in Example 4, the transition matrix is given by

U−1V =   =

⎡⎢⎣1
1
1

⎤⎥⎦ ⎡⎢⎣2
3
2

⎤⎥⎦ ⎡⎢⎣1
5
4

⎤⎥⎦⎡⎢⎣1
1
0

⎤⎥⎦ ⎡⎢⎣1
2
0

⎤⎥⎦ ⎡⎢⎣1
2
1

⎤⎥⎦x = 3v1 + 2v2 − v3 and y = v1 − 3v2 + 2v3

⎡⎢⎣ 2 −1 0
−1 1 −1

0 0 1

⎤⎥⎦ ⎡⎢⎣1 2 1
1 3 5
1 2 4

⎤⎥⎦ ⎡⎢⎣ 1 1 −3
−1 −1 0

1 2 4

⎤⎥⎦



The coordinate vectors of x and y with respect to the

ordered basis F are given by

[x]F =   =

and

[y]F =   =

The reader may verify that

If V is any n-dimensional vector space, it is possible to

change from one basis to another by means of an n × n

transition matrix. We will show that such a transition

matrix is necessarily nonsingular. To see how this is

done, let E = {w1, … , wn} and F = {v1, … , vn}
be two ordered bases for V. The key step is to express

each basis vector wj as a linear combination of the vi’s.

(4)

Let v ∈ V . If x = [v]E , it follows from (4) that

Thus, if y = [v]F , then

and hence,

y = Sx

⎡⎢⎣ 1 1 −3
−1 −1 0

1 2 4

⎤⎥⎦ ⎡⎢⎣ 3
2

−1

⎤⎥⎦ ⎡⎢⎣ 8
−5

3

⎤⎥⎦⎡⎢⎣ 1 1 −3
−1 −1 0

1 2 4

⎤⎥⎦ ⎡⎢⎣ 1
−3

2

⎤⎥⎦ ⎡⎢⎣−8
2
3

⎤⎥⎦8u1 − 5u2 + 3u3 = 3v1 + 2v2 − v3

−8u1 + 2u2 + 3u3 = v1 − 3v2 + 2v3

w1 = s11v1 + s21v2 + ⋯ + sn1vn

w2 = s12v1 + s22v2 + ⋯ + sn2vn

⋮
wn = s1nv1 + s2nv2 + ⋯ + snnvn

v = x1w1 + x2w2 + ⋯ + xnwn

= (
n

∑
j=1

s1jxj)v1 +(
n

∑
j=1

s2jxj)v2 + ⋯ +(
n

∑
j=1

snjxj)vn

yi =
n

∑
j=1

sijxj i = 1, … ,n



The matrix S defined by (4) is referred to as the

transition matrix. Once S has been determined, it is a

simple matter to change coordinate systems. To find the

coordinates of v = x1w1 + ⋯ + xnwn with respect to

{v1, … , vn}, we need only calculate y = Sx.

The transition matrix S corresponding to the change of

basis from {w1, … , wn} to {v1, … , vn} can be

characterized by the condition

(5)

Taking y = 0 in (5), we see that Sx = 0 implies that

x1w1 + ⋯ + xnwn = 0

Since the wi’s are linearly independent, it follows that 

x = 0. Thus, the equation Sx = 0 has only the trivial

solution and hence the matrix S is nonsingular. The

inverse matrix is characterized by the condition

Thus, S−1
 is the transition matrix used to change basis

from {v1, … , vn} to {w1, … , wn}.

Example 6
Suppose that in P3 we want to change from the ordered

basis [1,x,x2] to the ordered basis [1, 2x, 4x2 − 2].

Because [1,x,x2] is the standard basis for P3, it is

easier to find the transition matrix from 

[1, 2x, 4x2 − 2] to [1,x,x2]. Since

the transition matrix is

Sx = y if and only if x1w1 + ⋯ + xnwn = y1v1 + ⋯ + ynvn

S−1y = x if and only if y1v1 + ⋯ + ynvn = x1w1 + ⋯ + xnwn

1 = 1 ⋅ 1 + 0x + 0x2

2x = 0 ⋅ 1 + 2x + 0x2

4x2 − 2 = −2 ⋅ 1 + 0x + 4x2



S =

The inverse of S will be the transition matrix from 

[1,x,x2] to [1, 2x, 4x2 − 2]:

S−1 =

Given any p(x) = a + bx + cx2
 in P3, to find the

coordinates of p(x) with respect to [1, 2x, 4x2 − 2],

we multiply

  =

Thus,

p(x) = (a +
1
2
c) ⋅ 1 + (

1
2
b) ⋅ 2x +

1
4
c ⋅ (4x2 − 2)

We have seen that each transition matrix is nonsingular.

Actually, any nonsingular matrix can be thought of as a

transition matrix. If S is an n × n nonsingular matrix

and {v1, … , vn} is an ordered basis for V, then define 

{w1, w2, … , wn} by (4). To see that the wj’s are

linearly independent, suppose that

n

∑
j=1

xjwj = 0

It follows from (4) that

n

∑
i=1

(
n

∑
j=1

sijxj)vj = 0

By the linear independence of the vi’s, it follows that

or, equivalently,

⎡⎢⎣1 0 −2
0 2 0
0 0 4

⎤⎥⎦⎡⎢⎣1 0 1
2

0 1
2 0

0 0 1
4

⎤⎥⎦⎡⎢⎣1 0 1
2

0 1
2 0

0 0 1
4

⎤⎥⎦ ⎡⎢⎣abc⎤⎥⎦ ⎡⎢⎣a + 1
2 c

1
2 b
1
4 c

⎤⎥⎦n

j=1
sijxj = 0 i = 1, … ,n∑



Sx = 0

Since S is nonsingular, x must equal 0. Therefore, 

w1, … , wn are linearly independent and hence they

form a basis for V. The matrix S is the transition matrix

corresponding to the change from the ordered basis 

{w1, … , wn} to {v1, … , vn}.

In many applied problems, it is important to use the

right type of basis for the particular application. In

Chapter 5, we will see that the key to solving least

squares problems is to switch to a special type of basis

called an orthonormal basis. In Chapter 6, we will

consider a number of applications involving the

eigenvalues and eigenvectors associated with an n × n

matrix A. The key to solving these types of problems is to

switch to a basis for R
n

 consisting of eigenvectors of A.



Section 3.5 Exercises

1. For each of the following, find the transition matrix corresponding

to the change of basis from {u1, u2} to {e1, e2}:

1. 

2. 

3. 

2. For each of the ordered bases {u1, u2} in Exercise 1, find the

transition matrix corresponding to the change of basis from 

{e1, e2} to {u1, u2}.

3. Let v1 = (3, 2)T
 and v2 = (4, 3)T

. For each ordered basis 

{u1, u2} given in Exercise 1, find the transition matrix from 

{v1, v2} to {u1, u2}.

4. Let E = [(5, 3)T , (3, 2)T ] and let x = (1, 1)T , y = (1, −1)T
,

and z = (10, 7)T
. Determine the values of [x]E, [y]E , and [z]E .

5. Let u1 = (1, 1, 1)
T

, u2 = (1, 2, 2)
T

, and u3 = (2, 3, 4)
T

.

1. Find the transition matrix corresponding to the change

of basis from {e1, e2, e3} to {u1, u2, u3}.

2. Find the coordinates of each of the following vectors with

respect to the ordered basis {u1, u2, u3}:

1. (3, 2, 5)T

2. (1, 1, 2)T

3. (2, 3, 2)T

6. Let v1 = (4, 6, 7)T , v2 = (0, 1, 1)T
, and v3 = (0, 1, 2)T

, and

let u1, u2, and u3 be the vectors given in Exercise 5.

1. Find the transition matrix from {v1, v2, v3} to 

{u1, u2, u3}.

2. If x = 2v1 + 3v2 − 4v3, determine the coordinates of

x with respect to {u1, u2, u3}.

7. Given

u1 = (1, 1)
T

, u2 = (−1, 1)T

u1 = (1, 2)T , u2 = (2, 5)T

u1 = (0, 1)
T

, u2 = (1, 0)T

v1 = [ ], v2 = [ ], S = [ ]
1

2

2

3

3 5

1 −2



find vectors w1 and w2 so that S will be the transition matrix

from {w1, w2} to {v , v2}.

8. Given

find vectors u1 and u2 so that S will be the transition matrix from 

{v1, v2} to {u1, u2}.

9. Let [x, 1] and [2x − 1, 2x + 1] be ordered bases for P2.

1. Find the transition matrix representing the change in

coordinates from [2x − 1, 2x + 1] to [x, 1].

2. Find the transition matrix representing the change in

coordinates from [x, 1] to [2x − 1, 2x + 1].

10. Find the transition matrix representing the change of coordinates

on P3 from the ordered basis [1, x, x
2] to the ordered basis

[1, 1 + x, 1 + x + x
2]

11. Let E = {u1, … , un} and F = {v1, … , vn} be two ordered

bases for R
n

, and set

Show that the transition matrix from E to F can be determined by

calculating the reduced row echelon form of (V |U).

1

v1 = [ ], v2 = [ ], S = [ ]
2

6

1

4

4 1

2 1

U = (u1, … , un), V = (v1, … , vn)



3.6 Row Space and Column

Space
If A is an m × n matrix, each row of A is an n-tuple of

real numbers and hence can be considered as a vector in 

R1×n
. The m vectors corresponding to the rows of A will

be referred to as the row vectors of A. Similarly, each

column of A can be considered as a vector in Rm
, and we

can associate n column vectors with the matrix A.

Definition
If A is an m × n matrix, the subspace of R1×n

 spanned

by the row vectors of A is called the row space of A. The

subspace of Rm
 spanned by the column vectors of A is

called the column space of A.

Example 1

Let

A = [ ]

The row space of A is the set of all 3-tuples of the form

α(1, 0, 0) + β(0, 1, 0) = (α, β, 0)

The column space of A is the set of all vectors of the form

α[ ] + β[ ] + γ[ ] = [ ]

Thus, the row space of A is a two-dimensional subspace

of R1×1
, and the column space of A is R2

.

1 0 0
0 1 0

1
0

0
1

0
0

α

β



Theorem 3.6.1
Two row equivalent matrices have the same row space.

Proof

If B is row equivalent to A, then B can be formed from A

by a finite sequence of row operations. Thus, the row

vectors of B must be linear combinations of the row

vectors of A. Consequently, the row space of B must be a

subspace of the row space of A. Since A is row equivalent

to B, by the same reasoning, the row space of A is a

subspace of the row space of B.

∎

Definition

The rank of a matrix A, denoted rank(A), is the

dimension of the row space of A.

To determine the rank of a matrix, we can reduce the

matrix to row echelon form. The nonzero rows of the row

echelon matrix will form a basis for the row space.

Example 2

Let

A =

Reducing A to row echelon form, we obtain the matrix

U =

⎡⎢⎣ 1 −2 3
2 −5 1
1 −4 −7

⎤⎥⎦⎡⎢⎣ 1 −2 3
0 1 5
0 0 0

⎤⎥⎦



Clearly, (1, −2, 3) and (0, 1, 5) form a basis for the row

space of U. Since U and A are row equivalent, they have

the same row space, and hence the rank of A is 2.

Linear Systems
The concepts of row space and column space are useful

in the study of linear systems. A system Ax = b can be

written in the form

x1 + x2 + ⋯ + xn =

(1)

In Chapter 1 we used this representation to characterize

when a linear system will be consistent. The result,

Theorem 1.3.1, can now be restated in terms of the

column space of the matrix.

Theorem 3.6.2 Consistency

Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b is

in the column space of A.

If b is replaced by the zero vector, then (1) becomes

x1a1 + x2a2 + ⋯ + xnan = 0

(2)

It follows from (2) that the system Ax = 0 will have

only the trivial solution x = 0 if and only if the column

vectors of A are linearly independent.

⎡⎢⎣ a11

a21

⋮
am1

⎤⎥⎦ ⎡⎢⎣ a12

a22

⋮
am2

⎤⎥⎦ ⎡⎢⎣ a1n

a2n

⋮
amn

⎤⎥⎦ ⎡⎢⎣ b1

b2

⋮
bm

⎤⎥⎦



Theorem 3.6.3
Let A be an m×n matrix. The linear system Ax = b is

consistent for every b ∈ Rm
 if and only if the column

vectors of A span Rm
. The system Ax = b has at most

one solution for every b ∈ Rm
 if and only if the column

vectors of A are linearly independent.

Proof

We have seen that the system Ax = b is consistent if

and only if b is in the column space of A. It follows that 

Ax = b will be consistent for every b ∈ R
m

 if and only

if the column vectors of A span R
m

. To prove the second

statement, note that, if Ax = b has at most one solution

for every b, then in particular the system Ax = 0 can

have only the trivial solution, and hence the column

vectors of A must be linearly independent. Conversely, if

the column vectors of A are linearly independent, 

Ax = 0 has only the trivial solution. Now, if x1 and x2

were both solutions of Ax = b, then x1 − x2 would be a

solution of Ax = 0:

A(x1 − x2) = Ax1 − Ax2 = b − b = 0

It follows that x1 − x2 = 0, and hence x1 must equal 

x2.

∎

Let A be an m × n matrix. If the column vectors of A

span R
m

, then n must be greater than or equal to m,

since no set of fewer than m vectors could span R
m

. If

the columns of A are linearly independent, then n must

be less than or equal to m, since every set of more than m

vectors in R
m

 is linearly dependent. Thus, if the column

vectors of A form a basis for R
m

, then n must equal m.



Corollary 3.6.4
An n × n matrix A is nonsingular if and only if the

column vectors of A form a basis for Rn
.

In general, the rank and the dimension of the null space

always add up to the number of columns of the matrix.

The dimension of the null space of a matrix is called the

nullity of the matrix.

Theorem 3.6.5 The Rank—

Nullity Theorem
If A is an m × n matrix, then the rank of A plus the

nullity of A equals n.

Proof

Let U be the reduced row echelon form of A. The system 

Ax = 0 is equivalent to the system Ux = 0. If A has

rank r, then U will have r nonzero rows, and

consequently, the system Ux = 0 will involve r lead

variables and n − r free variables. The dimension of 

N(A) will equal the number of free variables.

∎

Example 3

Let

A =

Find a basis for the row space of A and a basis for N(A).

Verify that dim N(A) = n − r.

⎡⎢⎣ 1 2 −1 1
2 4 −3 0
1 2 1 5

⎤⎥⎦



SOLUTION

The reduced row echelon form of A is given by

U =

Thus, {(1, 2, 0, 3), (0, 0, 1, 2)} is a basis for the row

space of A, and A has rank 2. Since the systems Ax = 0

and Ux = 0 are equivalent, it follows that x is in N(A)
if and only if

The lead variables x1 and x3 can be solved for in terms of

the free variables x2 and x :

Let x2 = α and x4 = β. It follows that N(A) consists

of all vectors of the form

= = α + β

The vectors (−2, 1, 0, 0)T
 and (−3, 0, −2, 1)T

 form a

basis for N(A). Note that

n − r = 4 − 2 = 2 = dim N(A)

The Column Space
The matrices A and U in Example 3 have different

column spaces; however, their column vectors satisfy the

same dependency relations. For the matrix U, the

column vectors u1 and u3 are linearly independent,

while

⎡⎢⎣ 1 2 0 3
0 0 1 2
0 0 0 0

⎤⎥⎦x1 + 2x2 + 3x4 = 0
x3 + 2x4 = 0

4

x1 = −2x2 − 3x4

x3 = −2x4

⎡⎢⎣ x1

x2

x3

x4

⎤⎥⎦ ⎡⎢⎣ −2α − 3β

α

−2β

β

⎤⎥⎦ ⎡⎢⎣ −2
1
0
0

⎤⎥⎦ ⎡⎢⎣ −3
0

−2
1

⎤⎥⎦



The same relations hold for the columns of A: The

vectors a1 and a3 are linearly independent, while

In general, if A is an m × n matrix and U is the row

echelon form of A, then, since Ax = 0 if and only if 

Ux = 0, their column vectors satisfy the same

dependency relations. We will use this property to prove

that the dimension of the column space of A is equal to

the dimension of the row space of A.

Theorem 3.6.6
If A is an m × n matrix, the dimension of the row space

of A equals the dimension of the column space of A.

Proof

If A is an m × n matrix of rank r, the row echelon form

U of A will have r leading 1’s. The columns of U

corresponding to the leading 1’s will be linearly

independent. They do not, however, form a basis for the

column space of A, since, in general, A and U will have

different column spaces. Let UL denote the matrix

obtained from U by deleting all the columns

corresponding to the free variables. Delete the same

columns from A and denote the new matrix by AL. The

matrices AL and UL are row equivalent. Thus, if x is a

solution of ALx = 0, then x must also be a solution of 

ULx = 0. Since the columns of UL are linearly

independent, x must equal 0. It follows from the

remarks preceding Theorem 3.6.3 that the columns of 

AL are linearly independent. Since AL has r columns,

the dimension of the column space of A is at least r.

u2 = 2u1

u4 = 3u1 + 2u3

a2 = 2a1

a4 = 3a1 + 2a3



We have proved that, for any matrix, the dimension of

the column space is greater than or equal to the

dimension of the row space. Applying this result to the

matrix AT
, we see that

Thus, for any matrix A, the dimension of the row space

must equal the dimension of the column space.

∎

We can use the row echelon form U of A to find a basis

for the column space of A. We need only determine the

columns of U that correspond to the leading 1’s. These

same columns of A will be linearly independent and form

a basis for the column space of A.

Note
The row echelon form U tells us only which columns of A

to use to form a basis. We cannot use the column vectors

from U, since, in general, U and A have different column

spaces.

Example 4
Let

A =

The row echelon form of A is given by

dim(row space of A) = dim(column space of AT)
≥ dim(row space of AT)
= dim(column space of A)

⎡⎢⎣ 1 −2 1 1 2
−1 3 0 2 −2

0 1 1 3 4
1 2 5 13 5

⎤⎥⎦



U =

The leading 1’s occur in the first, second, and fifth

columns. Thus,

form a basis for the column space of A.

Example 5
Find the dimension of the subspace of R4

 spanned by

SOLUTION

The subspace Span(x1, x2, x3, x4) is the same as the

column space of the matrix

X =

The row echelon form of X is

The first two columns x1, x2 of X will form a basis for

the column space of X. Thus, dim 

Span(x1, x2, x3, x4) = 2.

⎡⎢⎣ 1 −2 1 1 2
0 1 1 3 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎦a1 = , a2 = , a5 =

⎡⎢⎣ 1
−1

0
1

⎤⎥⎦ ⎡⎢⎣ −2
3
1
2

⎤⎥⎦ ⎡⎢⎣ 2
−2

4
5

⎤⎥⎦x4 =x1 = , x2 = , x3 = ,

⎡⎢⎣ 1
2

−1
0

⎤⎥⎦ ⎡⎢⎣ 2
5

−3
2

⎤⎥⎦ ⎡⎢⎣ 2
4

−2
0

⎤⎥⎦ ⎡⎢⎣ 3
8

−5
4

⎤⎥⎦⎡⎢⎣ 1 2 2 3
2 5 4 8

−1 −3 −2 −5
0 2 0 4

⎤⎥⎦⎡⎢⎣ 1 2 2 3
0 1 0 2
0 0 0 0
0 0 0 0

⎤⎥⎦





Section 3.6 Exercises

1. For each of the following matrices, find a basis for the row space, a

basis for the column space, and a basis for the null space:

1. 

2. 

3. 

2. In each of the following, determine the dimension of the subspace

of R3
 spanned by the given vectors:

1. , ,

2. , ,

3. , , ,

3. Let

A =

1. Compute the reduced row echelon form U of A. Which

column vectors of U correspond to the free variables?

Write each of these vectors as a linear combination of the

column vectors corresponding to the lead variables.

2. Which column vectors of A correspond to the lead

variables of U? These column vectors form a basis for the

column space of A. Write each of the remaining column

⎡⎢⎣ 1 3 2

2 1 4

4 7 8

⎤⎥⎦⎡⎢⎣ −3 1 3 4

1 2 −1 −2

−3 8 4 2

⎤⎥⎦⎡⎢⎣ 1 3 −2 1

2 1 3 2

3 4 5 6

⎤⎥⎦⎡⎢⎣ 1

−2

2

⎤⎥⎦ ⎡⎢⎣ 2

−2

4

⎤⎥⎦ ⎡⎢⎣ −3

3

6

⎤⎥⎦⎡⎢⎣ 111⎤⎥⎦ ⎡⎢⎣ 123⎤⎥⎦ ⎡⎢⎣ 231⎤⎥⎦⎡⎢⎣ 1

−1

2

⎤⎥⎦ ⎡⎢⎣ −2

2

−4

⎤⎥⎦ ⎡⎢⎣ 3

−2

5

⎤⎥⎦ ⎡⎢⎣ 2

−1

3

⎤⎥⎦⎡⎢⎣ 1 2 2 3 1 4

2 4 5 5 4 9

3 6 7 8 5 9

⎤⎥⎦



vectors of A as a linear combination of these basis

vectors.

4. For each of the following choices of A and b, determine whether b

is in the column space of A and state whether the system Ax = b

is consistent:

1. 

2. 

3. 

4. 

5. 

6. 

5. For each consistent system in Exercise 4, determine whether there

will be one or infinitely many solutions by examining the column

vectors of the coefficient matrix A.

6. How many solutions will the linear system Ax = b have if b is in

the column space of A and the column vectors of A are linearly

dependent? Explain.

7. Let A be a 6 × n matrix of rank r and let b beavectorin R
6
. For

each choice of r and n that follows, indicate the possibilities as to

the number of solutions one could have for the linear system 

Ax = b. Explain your answers.

1. n = 7, r = 5

2. n = 7, r = 6

3. n = 5, r = 5

4. n = 5, r = 4

8. Let A be an m × n matrix with m > n. Let b ∈ R
m

 and suppose

that N(A) = {0}.

1. What can you conclude about the column vectors of A?

Are they linearly independent? Do they span R
m

?

Explain.

A = [ ], b = [ ]
1 2

2 4

4

8

A = [ ], b = [ ]
3 6

1 2

1

1

A = [ ], b = [ ]
2 1

3 4

4

6

A = , b =
⎡⎢⎣ 1 1 2

1 1 2

1 1 2

⎤⎥⎦ ⎡⎢⎣ 312⎤⎥⎦A = , b =
⎡⎢⎣ 0 1

1 0

0 1

⎤⎥⎦ ⎡⎢⎣ 225⎤⎥⎦A = , b =
⎡⎢⎣ 1 2

2 4

1 2

⎤⎥⎦ ⎡⎢⎣ 5

10

5

⎤⎥⎦



2. How many solutions will the system Ax = b have if b is

not in the column space of A? How many solutions will

there be if b is in the column space of A? Explain.

9. Let A and B be 6 × 5 matrices. If dim N(A) = 2, what is the

rank of A? If the rank of B is 4, what is the dimension of N(B)?

10. Let A be an m × n matrix whose rank is equal to n. If Ac = Ad,

does this imply that c must be equal to d? What if the rank of A is

less than n? Explain your answers.

11. Let A be an m × n matrix. Prove that

rank(A) ≤ min(m,n)

12. Let A and B be row equivalent matrices.

1. Show that the dimension of the column space of A equals

the dimension of the column space of B.

2. Are the column spaces of the two matrices necessarily

the same? Justify your answer.

13. Let A be a 4 × 3 matrix and suppose that the vectors

form a basis for N(A). If b = a1 + 2a2 + a3, find all solutions

of the system Ax = b.

14. Let A be a 4 × 4 matrix with reduced row echelon form given by

U =

If

find a3 and a4.

15. Let A be a 4 × 5 matrix and let U be the reduced row echelon

form of A. If

z1 = , z2 =
⎡⎢⎣ 112⎤⎥⎦ ⎡⎢⎣ 1

0

−1

⎤⎥⎦⎡⎢⎣ 1 0 2 1

0 1 1 4

0 0 0 0

0 0 0 0

⎤⎥⎦a1 = and a2 =

⎡⎢⎣ −3

5

2

1

⎤⎥⎦ ⎡⎢⎣ 4

−3

7

−1

⎤⎥⎦a1 = , a2 = ,

⎡⎢⎣ 2

1

−3

−2

⎤⎥⎦ ⎡⎢⎣ −1

2

3

1

⎤⎥⎦



U =

1. find a basis for N(A).

2. given that x0 is a solution to Ax = b, where

1. find all solutions to the system.

2. determine the remaining column vectors of A.

16. Let A be a 5 × 8 matrix with rank equal to 5 and let b be any

vector in R
5
. Explain why the system Ax = b must have

infinitely many solutions.

17. Let A be a 4 × 5 matrix. If a1, a2, and a4 are linearly independent

and

determine the reduced row echelon form of A.

18. Let A be a 5 × 3 matrix of rank 3 and let {x , x2, x3} be abasis for 

R
3
.

1. Show that N(A) = {0}.

2. Show that if y1 = Ax1, y2 = Ax2, and y3 = Ax3, then 

y1, y2, and y3 are linearly independent.

3. Do the vectors y1, y2, y3 from part (b) form a basis for 

R5
? Explain.

19. Let A be an m × n matrix with rank equal to n. Show that if 

x ≠ 0 and y = Ax, then y ≠ 0.

20. Prove that a linear system Ax = b is consistent if and only if the

rank of (A | b) equals the rank of A.

21. Let A and B be m × n matrices. Show that

rank(A + B) ≤ rank(A) + rank(B)

22. Let A be an m × n matrix.

1. Show that if B is a nonsingular m × m matrix, then BA

and A have the same null space and hence the same

rank.

⎡⎢⎣ 1 0 2 0 −1

0 1 3 0 −2

0 0 0 1 5

0 0 0 0 0

⎤⎥⎦b = and x0 =

⎡⎢⎣ 0534⎤⎥⎦ ⎡⎢⎣ 32020⎤⎥⎦a3 = a1 + 2a2, a5 = 2a1 − a2 + 3a4

1



2. Show that if C is a nonsingular n × n matrix, then AC

and A have the same rank.

23. Prove Corollary 3.6.4.

24. Show that if A and B are n × n matrices and N(A − B) = R
n

,

then A = B.

25. Let A and B be n × n matrices.

1. Show that AB = O if and only if the column space of B

is a subspace of the null space of A.

2. Show that if AB = O, then the sum of the ranks of A

and B cannot exceed n.

26. Let A A ∈ R
m×n

 and b ∈ R
m

, and let x0 be a particular solution

of the system Ax = b. Prove that if N(A) = {0}, then the

solution x0 must be unique.

27. Let x and y be nonzero vectors in R
m

 and R
n

, respectively, and let

A = xyT
.

1. Show that {x} is a basis for the column space of A and

that {yT} is a basis for the row space of A.

2. What is the dimension of N(A)?

28. Let A ∈ R
m×n

, B ∈ R
m×r

, and C = AB. Show that

1. the column space of C is a subspace of the column space

of A.

2. the row space of C is a subspace of the row space of B.

3. rank(C) ≤ min{rank(A), rank(B)}.

29. Let A ∈ R
m×n

, B ∈ R
n×r

, and C = AB. Show that

1. if A and B both have linearly independent column

vectors, then the column vectors of C will also be linearly

independent.

2. if A and B both have linearly independent row vectors,

then the row vectors of C will also be linearly

independent. [Hint: Apply part (a) to CT
.]

30. Let A ∈ R
m×n

, B ∈ R
n×r

, and C = AB. Show that

1. if the column vectors of B are linearly dependent, then

the column vectors of C must be linearly dependent.

2. if the row vectors of A are linearly dependent, then the

row vectors of C are linearly dependent. [Hint: Apply

part (a) to CT
.]



31. An m × n matrix A is said to have a right inverse if there exists

an n × m matrix C such that AC = Im. The matrix A is said to

have a left inverse if there exists an n × m matrix D such that 

DA = In.

1. Show that if A has a right inverse, then the column

vectors of A span R
m

.

2. Is it possible for an m × n matrix to have a right inverse

if n < m?n ≥ m? Explain.

32. Prove: If A is an m × n matrix and the column vectors of A span 

R
m

, then A has a right inverse. [Hint: Let ej denote the jth

column of Im and solve Ax = ej for j = 1,… ,m.]

33. Show that a matrix B has a left inverse if and only if BT
 has a right

inverse.

34. Let B be an n × m matrix whose columns are linearly

independent. Show that B has a left inverse.

35. Prove that if a matrix B has a left inverse, then the columns of B

are linearly independent.

36. Show that if a matrix U is in row echelon form, then the nonzero

row vectors of U form a basis for the row space of U.



Chapter 3 Exercises

MATLAB Exercises

1. (Change of Basis) Set

and set b = ones(4, 1).

1. We can use the MATLAB function rank to determine

whether the column vectors of a matrix are linearly

independent. What should the rank be if the column

vectors of U are linearly independent? Compute the rank

of U, and verify that its column vectors are linearly

independent and hence form a basis for R4
. Compute the

rank of V, and verify that its column vectors also form a

basis for R
4
.

2. Use MATLAB to compute the transition matrix from the

standard basis for R
4
 to the ordered basis 

E = {u1, u2, u3, u4}. [Note that in MATLAB, the

notation for the jth column vector uj is U(:, j).] Use this

transition matrix to compute the coordinate vector c of b

with respect to E. Verify that

b = c1u1 + c2u2 + c3u3 + c4u4 = Uc

3. Use MATLAB to compute the transition matrix from the

standard basis to the ordered basis F = {v1, v2, v3, v4}
, and use this transition matrix to find the coordinate

vector d of b with respect to F. Verify that

b = d1v1 + d2v2 + d3v3 + d4v4 = Vd

4. Use MATLAB to compute the transition matrix S from E

to F and the transition matrix T from F to E. How are S

and T related? Verify that Sc = d and Td = c.

2. (Rank-Deficient Matrices) In this exercise, we consider how to use

MATLAB to generate matrices with specified ranks.

1. In general, if A is an m × n matrix with rank r, then 

r ≤ min(m,n). Why? Explain. If the entries of A are

random numbers, we would expect that r = min(m,n)

U = round(20 * rand(4)) − 10,

V = round(10 * rand(4))



. Why? Explain. Check this out by generating random 

6 × 6, 8 × 6, and 5 × 8 matrices and using the

MATLAB command rank to compute their ranks.

Whenever the rank of an m × n matrix equals min(m,

n), we say that the matrix has full rank. Otherwise, we

say that the matrix is rank deficient.

2. MATLAB’s rand and round commands can be used to

generate random m × n matrices with integer entries in

a given range [a, b]. This can be done with a command of

the form

A = round((b − a) * rand(m,n)) + a

For example, the command

A = round(4 * rand(6, 8)) + 3

will generate a 6 × 8 matrix whose entries are random

integers in the range from 3 to 7. Using the range [1, 10],

create random integer 10 × 7, 8 × 12, and 10×15 matrices

and in each case check the rank of the matrix. Do these

integer matrices all have full rank?

3. Suppose that we want to use MATLAB to generate

matrices with less than full rank. It is easy to generate

matrices of rank 1. If x and y are nonzero vectors in R
m

and R
n

, respectively, then A = xyT
 will be an m × n

matrix with rank 1. Why? Explain. Verify this in

MATLAB by setting

and using these vectors to construct an 8 × 6 matrix A.

Check the rank of A with the MATLAB command rank.

4. In general,

rank(AB) ≤ min(rank(A), rank(B))

(1)

(See Exercise 28 in Section 3.6.) If A and B are non-

integer random matrices, the relation (1) should be an

equality. Generate an 8 × 6 matrix A by setting

What would you expect the rank of A to be? Explain. Test

the rank of A with MATLAB.

5. Use MATLAB to generate matrices A, B, and C such that

1. A is 8 × 8 with rank 3.

2. B is 6 × 9 with rank 4.

x = round(9 * rand(8, 1)) + 1,

y = round(9 * rand(6, 1)) + 1

X = rand(8, 2),Y = rand(6, 2)

A = X * Y ′



3. C is 10 × 7 with rank 5.

3. (Column Space and Reduced Row Echelon Form) Set

1. How are the column spaces of B and C related? (See

Exercise 28 in Section 3.6.) What would you expect the

rank of A to be? Explain. Use MATLAB to check your

answer.

2. Which column vectors of A should form a basis for its

column space? Explain. If U is the reduced row echelon

form of A, what would you expect its first four columns

to be? Explain. What would you expect its last four rows

to be? Explain. Use MATLAB to verify your answers by

computing U.

3. Use MATLAB to construct another matrix 

D = (E   EY ), where E is a random 6 × 4 matrix and

Y is a random 4 × 2 matrix. What would you expect the

reduced row echelon form of D to be? Compute it with

MATLAB. Show that, in general, if B is an m × n matrix

of rank n and X is an n × k matrix, the reduced row

echelon form of (B BX) will have block structure

4. (Rank-1 Updates of Linear Systems)

1. Set

Use the matrix M to solve the system Ay = b for y.

2. Consider now a new system Cx = b, where C is

constructed as follows:

The matrices C and A differ by the rank-1 matrix E. Use

MATLAB to verify that the rank of E is 1. Use MATLAB’s

“\” operator to solve the system Cx = b and then

compute the residual vector r = b − Cx.

B = round(10 * rand(8, 4))

X = round(10 * rand(4, 3))

C = B * X

A = [B C]

(I  X)if m = n or [ ] if m > n
I X

O O

A = round(10 * rand(8))

b = round(10 * rand(8, 1))

M = inv(A)

u = round(10 * rand(8, 1))

v = round(10 * rand(8, 1))

E = u * v′

C = A + E



3. Let us now solve Cx = b by a new method that takes

advantage of the fact that A and C differ by a rank-1

matrix. This new procedure is called a rank-1 update

method. Set

and then compute the solution x by

x = y − e * z

Compute the residual vector b − Cx and compare it

with the residual vector in part (b). This new method

may seem more complicated, but it actually is much

more computationally efficient.

4. To see why the rank-1 update method works, use

MATLAB to compute and compare

Prove that if all computations had been carried out in

exact arithmetic, these two vectors would be equal. Also,

compute

Prove that if all computations had been carried out in

exact arithmetic, these two vectors would be equal. Use

these identities to prove that Cx = b. Assuming that A

is nonsingular, will the rank-1 update method always

work? Under what conditions could it fail? Explain.

z = M * u, c = v′ * y,

d = v′ * z, e = c/(1 + d)

Cy and b + cu

Cz and (1 + d)u



Chapter Test A True or False
Indicate whether each of the following statements is

true or false. In each case, explain or prove your

answer.

1. If S is a subspace of a vector space V, then S is a vector space.

2. R
2
 is a subspace of R

3
.

3. It is possible to find a pair of two-dimensional subspaces S and T

of R3
 such that S ∩ T = {0}.

4. If S and T are subspaces of a vector space V, then S ∪ T  is a

subspace of V.

5. If S and T are subspaces of a vector space V, then S ∩ T  is a

subspace of V.

6. If x1, x2, … , xn span R
n

, then they are linearly independent.

7. If x1, x2, … , xn span a vector space V, then they are linearly

independent.

8. If x1, x2, … , xk are vectors in a vector space V and

Span(x1, x2, … , xk) = Span(x1, x2, … , xk−1)

then x1, x2, … , xk are linearly dependent.

9. If A is an m × n matrix, then A and AT
 have the same rank.

10. If A is an m × n matrix, then A and AT
 have the same nullity.

11. If U is the reduced row echelon form of A, then A and U have the

same row space.

12. If U is the reduced row echelon form of A, then A and U have the

same column space.

13. Let x1, x2, … , xk be linearly independent vectors in R
n

. If 

k < n and xk+1 is a vector that is not in Span(x1, x2, … , xk),

then the vectors x1, x2, … , xk, xk+1 are linearly independent.

14. Let {u1, u2}, {v1, v2}, and {w1, w2} be bases for R
2
. If X is the

transition matrix corresponding to a change of basis from 

{u1, u2} to {v1, v2} and Y is the transition matrix corresponding

to a change of basis from {v1, v2} to {w1, w2}, then Z = XY  is

the transition matrix corresponding to the change of basis from 

{u1, u2} to {w1, w2}.

15. If A and B are n × n matrices that have the same rank, then the

rank of A2
 must equal the rank of B2

.



Chapter Test B

1. In R
3
, let x1 and x2 be linearly independent vectors and let 

x3 = 0 (the zero vector). Are x1, x2, and x3 linearly

independent? Prove your answer.

2. For each set that follows determine whether it is a subspace of R
2
.

Prove your answers.

1. S1 = {x = [ ] x1 + x2 = 0}

2. S2 = {x = [ ] x1 + x2 = 0}

3. Let

A =

1. Find a basis for N(A) (the null space of A). What is the

dimension of N(A)?

2. Find a basis for the column space of A. What is the rank

of A?

4. How do the dimensions of the null space and column space of a

matrix relate to the number of lead and free variables in the

reduced row echelon form of the matrix? Explain.

5. Answer the following questions and, in each case, give geometric

explanations of your answers:

1. Is it possible to have a pair of one-dimensional subspaces

U1 and U2 of R
3
 such that U1 ∩ U2 = {0}?

2. Is it possible to have a pair of two-dimensional

subspaces V1 and V2 of R
3
 such that V1 ∩ V2 = {0}?

6. Let S be the set of all symmetric 2 × 2 matrices with real entries.

1. Show that S is a subspace of R
2×2

.

2. Find a basis for S.

7. Let A be a 6 × 4 matrix of rank 4.

1. What is the dimension of N(A)? What is the dimension

of the column space of A?

x1

x2 ∣x1

x2 ∣⎡⎢⎣ 1 3 1 3 4

0 0 1 1 1

0 0 2 2 2

0 0 3 3 3

⎤⎥⎦



2. Do the column vectors of A span R
6
? Are the column

vectors of A linearly independent? Explain your answers.

3. How many solutions will the linear system Ax = b

have if b is in the column space of A? Explain.

8. Given the vectors

1. Are x1, x2, x3, and x4 linearly independent in R
3
?

Explain.

2. Do x1, x2 span R
3
? Explain.

3. Do x1, x2, x3 span R3
? Are they linearly independent?

Do they form a basis for R
3
? Explain.

4. Do x1, x2, x4 span R
3
? Are they linearly independent?

Do they form a basis for R
3
? Explain or prove your

answers.

9. Let x1, x2, and x3 be linearly independent vectors in R  and let A

be a nonsingular 4 × 4 matrix. Prove that if

y1 = Ax1, y2 = Ax2, y3 = Ax3

then y1, y2, and y3 are linearly independent.

10. Let A be a 6 × 5 matrix with linearly independent column vectors 

a1, a2, a3 and whose remaining column vectors satisfy

a4 = a1 + 3a2 + a3,   a5 = 2a1 − a3

1. What is the dimension of N(A)? Explain.

2. Determine the reduced row echelon form of A.

11. Let {u1, u2} and {v1, v2} be ordered bases for R
2
, where

and

1. Determine the transition matrix corresponding to a

change of basis from the standard basis {e1, e2} to the

x1 = , x2 = ,

x3 = , x4 =

⎡⎢⎣ 1

2

2

⎤⎥⎦ ⎡⎢⎣ 1

3

3

⎤⎥⎦⎡⎢⎣ 1

5

5

⎤⎥⎦ ⎡⎢⎣ 1

2

3

⎤⎥⎦u1 = [ ], u2 = [ ]
1

3

2

7

v1 = [ ], v2 = [ ]
5

2

4

9

4



ordered basis {u1, u2}. Use this transition matrix to

find the coordinates of x = (1, 1)T  with respect to 

{u1, u2}.

2. Determine the transition matrix corresponding to a

change of basis from the ordered basis {v1, v2} to the

ordered basis {u1, u2}. Use this transition matrix to

find the coordinates of z = 2v1 + 3v2 with respect to 

{u1, u2}.



Chapter 4 Linear

Transformations

Full Alternative Text

Linear mappings from one vector space to another play

an important role in mathematics. This chapter provides

an introduction to the theory of such mappings. In

Section 4.1, the definition of a linear transformation is

given and a number of examples are presented. In

Section 4.2, it is shown that each linear transformation L

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_co-04.xhtml#la_co-04


mapping an n-dimensional vector space V into an m-

dimensional vector space W can be represented by an 

m × n  matrix A. Thus, we can work with the matrix A in

place of the mapping L. In the case that the linear

transformation L maps V into itself, the matrix

representing L will depend on the ordered basis chosen

for V. Hence, L may be represented by a matrix A with

respect to one ordered basis and by another matrix B

with respect to another ordered basis. In Section 4.3, we

consider the relationship between different matrices that

represent the same linear transformation. In many

applications, it is desirable to choose the basis for V so

that the matrix representing the linear transformation is

either diagonal or in some other simple form.



4.1 Definition and Examples
In the study of vector spaces, the most important types of

mappings are linear transformations.

Definition
A mapping L from a vector space V into a vector space W

is said to be a linear transformation if

L(αv1 + βv2) = αL(v1) + βL(v2)

(1)

for all v1, v2 ∈ V  and for all scalars α and β.

If L is a linear transformation mapping a vector space V

into a vector space W, then it follows from (1) that

(2)

and

(3)

Conversely, if L satisfies (2) and (3), then

Thus, L is a linear transformation if and only if L satisfies

(2) and (3).

Notation

L(v1 + v2) = L(v1) + L(v2) (α = β = 1)

L(αv) = αL(v) (v = v1,β = 0)

L(αv1 + βv2) = L(αv1) + L(βv2)

= αL(v1) + βL(v2)



A mapping L from a vector space V into a vector space W

will be denoted

L : V → W

When the arrow notation is used, it will be assumed that

V and W represent vector spaces.

In the case that the vector spaces V and W are the same,

we will refer to a linear transformation L : V → V  as a

linear operator on V. Thus, a linear operator is a linear

transformation that maps a vector space V into itself.

Let us now consider some examples of linear

transformations. We begin with linear operators on R2
.

In this case, it is easier to see the geometric effect of the

operator.

Linear Operators on R2

Example 1
Let L be the operator defined by

L(x) = 3x

for each x ∈ R
2

. Since

L(αx) = 3(αx) = α(3x) = αL(x)

and

L(x + y) = 3(x + y) = 3x + 3y = L(x) + L(y)

it follows that L is a linear operator. We can think of L as

a stretching by a factor of 3 (see Figure 4.1.1). In general,

if α is a positive scalar, the linear operator F(x) = αx

can be thought of as a stretching or shrinking by a factor

of α.



∎

Figure 4.1.1.

Figure 4.1.1. Full Alternative Text

Example 2
Consider the mapping L defined by

L(x) = x1e1

for each x ∈ R
2

. Thus, if x = (x1,x2)T , then 

L(x) = (x1, 0)T . If y = (y1, y2)T , then

αx + βy = [ ]

and it follows that

L(αx + βy) = (αx1 + βy1)e1 = α(x1e1) + β(y1e1) = αL(x) + βL(y)

αx1 + βy1

αx2 + βy2

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-01-001.xhtml#la_fig04-01-001


Hence, L is a linear operator. We can think of L as a

projection onto the x -axis (see Figure 4.1.2).

∎

Figure 4.1.2.

Figure 4.1.2. Full Alternative Text

Example 3
Let L be the operator defined by

L(x) = (x1, −x2)
T

for each x = (x1,x2)T  in R2
. Since

1

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-01-002.xhtml#la_fig04-01-002


it follows that L is a linear operator. The operator L has

the effect of reflecting vectors about the x1-axis (see

Figure 4.1.3).

∎

Figure 4.1.3.

L(αx + βy) = [ ]

= α[ ] + β[ ]

= αL(x) + βL(y)

αx1 + βy1

−(αx2 + βy2)

x1

−x2

y1

−y2



Figure 4.1.3. Full Alternative Text

Example 4
The operator L defined by

L(x) = (−x2,x1)T

is linear, since

The operator L has the effect of rotating each vector in 

R2
 by 90° in the counterclockwise direction (see Figure

4.1.4).

Figure 4.1.4.

L(αx + βy) = [ ]

= α[ ] + β[ ]

= αL(x) + βL(y)

−( )

αx1 + βy1

αx2 + βy2

−x2

x1

−y2

y1
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Figure 4.1.4. Full Alternative Text

Linear Transformations from 

R
n to Rm

Example 5
The mapping L : R2 → R

1
 defined by

L(x) = x1 + x2

is a linear transformation, since

L(αx + βy) = (αx1 + βy1) + (αx2 + βy2)

= α(x1 + x2) + β(y1 + y2)

= αL(x) + βL(y)

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-01-004.xhtml#la_fig04-01-004


∎

Example 6
Consider the mapping M defined by

M(x) = (x2
1 + x2

2)
1/2

Since

M(αx) = (α2x2
1 + α2x2

2)
1/2

= |α|M(x)

it follows that

αM(x) ≠ M(αx)

whenever α < 0 and x ≠ 0. Therefore, M is not a

linear operator.

∎

Example 7
The mapping L from R2

 to R3
 defined by

L(x) = (x2,x1,x1 + x2)
T

is linear, since

L(αx) = (αx2,αx1,αx1 + αx2)
T

= αL(x)

and

Note that if we define the matrix A by

A =

L(x + y) = (x2 + y2,x1 + y1,x1 + y1 + x2 + y2)T

= (x2,x1,x1 + x2)T + (y2, y1, y1 + y2)T

= L(x) + L(y)

⎡⎢⎣ 0 1

1 0

1 1

⎤⎥⎦



then

L(x) = = Ax

for each x ∈ R
2

.

∎

In general, if A is any m × n matrix, we can define a

linear transformation LA from Rn
 to Rm

 by

LA(x) = A(x)

for each x ∈ Rn
. The transformation LA is linear, since

Thus, we can think of each m × n matrix A as defining a

linear transformation from Rn
 to Rm

.

In Example 7, we saw that the linear transformation L

could have been defined in terms of a matrix A. In the

next section, we will see that this is true for all linear

transformations from Rn
 to Rm

.

Linear Transformations from V

to W
If L is a linear transformation mapping a vector space V

into a vector space W, then

1. L(0V ) = 0W  (where 0V  and 0W  are the zero vectors in V and W,

respectively).

2. if v1, …, vn are elements of V and α1, …,αn are scalars, then

L(α1v1 + α2v2 + … + αnvn) = α1L(v1) + α2L(v2) + … + αnL(vn)

3. L(−v) = −L(v) for all v ∈ V .

⎡⎢⎣ x2

x1

x1 + x2

⎤⎥⎦LA(αx + βy) = A(αx + βy)

= αAx + βAy

= αLA(x) + βLA(y)



Statement (i) follows from the condition 

L(αv) = αL(v) with α = 0. Statement (ii) can easily

be proved by mathematical induction. We leave this to

the reader as an exercise. To prove (iii), note that

0W = L(0V ) = L(v + (−v)) = L(v) + L(−v)

Therefore, L(−v) is the additive inverse of L(v); that

is,

L(−v) = −L(v)

Example 8
If V is any vector space, then the identity operator 𝐼 is
defined by

I(v) = v

for all v ∈ V . Clearly, I  is a linear transformation that

maps V into itself:

I(αv1 + βv2) = αv1 + βv2 = αI(v1) + βI(v2)

Example 9
Let L be the mapping from C[a, b] to R

1
 defined by

L(f) = ∫
b

a

f(x)dx

If f and g are any vectors in C[a, b], then

Therefore, L is a linear transformation.

∎

L(αf + βg) = ∫ b

a
(αf + βg)(x)dx

= α ∫ b

a
f(x)dx + β ∫ b

a
g(x)dx

= αL(f) + βL(g)



Example 10
Let D be the linear transformation mapping C1[a, b]
into C[a, b] defined by

D is a linear transformation, since

D(αf + βg) = af′ + βg′ = αD(f) + βD(g)

∎

The Image and Kernel
Let L : V → W  be a linear transformation. We close

this section by considering the effect that L has on

subspaces of V. Of particular importance is the set of

vectors in V that get mapped into the zero vector of W.

Definition
Let L : V → W  be a linear transformation. The kernel

of L, denoted ker(L), is defined by

ker(L) = {v ∈ V |L(v) = 0W}

Definition
Let L : V → W  be a linear transformation and let S be

a subspace of V. The image of S, denoted L(S), is

defined by

The image of the entire vector space, L(V ), is called the

range of L.

D(f) = f′ (the derivatitive of f)

L(S) = {w ∈ W |w = L(v) for some v ∈ S}



Let L : V → W  be a linear transformation. It is easily

seen that ker(L) is a subspace of V, and if S is any

subspace of V, then L(S) is a subspace of W. In

particular, L(V ) is a subspace of W. Indeed, we have the

following theorem.

Theorem 4.1.1
If L : V → W  is a linear transformation and S is a

subspace of V, then

1. ker(L) is a subspace of V.

2. L(S) is a subspace of W.

Proof

We see that ker(L) is nonempty since 0V , the zero

vector of V, is in ker(L). To prove (i), we must show

that ker(L) is closed under scalar multiplication and

addition of vectors.

For closure under scalar multiplication, let v ∈ ker(L)
and α be a scalar. Then

L(αv) = αL(v) = α0W = 0W

Therefore, αv ∈ ker(L).

For closure under addition, let v1, v2 ∈ ker(L). Then

L(v1 + v2) = L(v1) + L(v2) = 0W + 0W = 0W

Therefore, v1 + v2 ∈ ker(L) and hence ker(L) is a

subspace of V.

The proof of (ii) is similar. L(S) is nonempty, since 

0W = L(0V ) ∈ L(S). If w ∈ L(S), then w = L(v)
for some v ∈ S. For any scalar α,

αw = αL(v) = L(αv)



Since αv ∈ S, it follows that αw ∈ L(S), and hence 

L(S) is closed under scalar multiplication. If 

w1, w2 ∈ L(S), then there exist v1, v2 ∈ S such that 

L(v1) = w1 and L(v2) = w2. Thus,

w1 + w2 = L(v1) + L(v2) = L(v1 + v2)

and hence L (S) is closed under addition. It follows that L

(S) is a subspace of W.

∎

Example 11
Let L be the linear operator on R

2
 defined by

L(x) = [ ]

A vector x is in ker(L) if and only if x1 = 0. Thus, 

ker(L) is the one-dimensional subspace of R
2

 spanned

by e2. A vector y is in the range of L if and only if y is a

multiple of e1. Hence, L(R2) is the one-dimensional

subspace of R
2

 spanned by e1.

∎

Example 12
Let L : R3 → R

2
 be the linear transformation defined

by

L(x) = (x1 + x2,x2 + x3)T

and let S be the subspace of R3
 spanned by e1 and e3.

If x ∈ ker(L), then

x1

0

x1 + x2 = 0 and x2 + x3 = 0



Setting the free variable x3 = a, we get

and hence ker(L) is the one-dimensional subspace of 

R
3

 consisting of all vectors of the form a(1, −1, 1)T .

If x ∈ S, then x must be of the form (a, 0, b)T , and

hence L(x) = (a, b)T . Clearly, L(S) = R
2

. Since the

image of the subspace S is all of R
2

, it follows that the

entire range of L must be R2
 [i.e., L(R3) = R2

].

∎

Example 13
Let D : P3 → P3 be the differentiation operator,

defined by

D(p(x)) = p′(x)

The kernel of D consists of all polynomials of degree 0.

Thus, ker(D) = P1. The derivative of any polynomial in

P3 will be a polynomial of degree 1 or less. Conversely,

any polynomial in P2 will have antiderivatives in P3, so

each polynomial in P2 will be the image of polynomials

in P  under the operator D. It then follows that 

D(P3) = P2.

∎

x2 = −a, x1 = a

3



Section 4.1 Exercises

1. Show that each of the following are linear operators on R
2

.

Describe geometrically what each linear transformation

accomplishes.

1. L(x) = (−x1,x2)
T

2. L(x) = −x

3. L(x) = (x2,x1)T

4. L(x) = 1
2

x

5. L(x) = x2e2

2. Let L be the linear operator on R
2

 defined by

L(x) = (x1  cosα − x2  sinα ,  x1  sinα + x2  cosα)T

Express x1,x2, and L(x) in terms of polar coordinates. Describe

geometrically the effect of the linear transformation.

3. Let a be a fixed nonzero vector in R
2

. A mapping of the form

L(x) = x + a

is called a translation. Show that a translation is not a linear

operator. Illustrate geometrically the effect of a translation.

4. Let L : R2 → R
2

 be a linear operator. If

L((1, 2)T) = (−2, 3)T

and

L((1, −1)
T) = (5, 2)

T

find the value of L((7, 5)T ).

5. Determine whether the following are linear transformations from 

R
3

 into R
2

:

1. L(x) = (x2,x3)T

2. L(x) = (0, 0)
T

3. L(x) = (1 + x1,x2)
T

4. L(x) = (x3,x1 + x2)T



6. Determine whether the following are linear transformations from 

R
2

 into R
3

:

1. L(x) = (x1,x2, 1)T

2. L(x) = (x1,x2,x1 + 2x2)
T

3. L(x) = (x1, 0, 0)
T

4. L(x) = (x1,x2,x2
1 + x2

2)
T

7. Determine whether the following are linear operators on R
n×n

:

1. L(A) = 2A

2. L(A) = AT

3. L(A) = A + I

4. L(A) = A − AT

8. Let C be a fixed n × n matrix. Determine whether the following

are linear operators on R
n×n

:

1. L(A) = CA + AC

2. L(A) = C2A

3. L(A) = A2C

9. Determine whether the following are linear transformations from 

P2 to P3:

1. L(p(x)) = x p(x)

2. L(p(x)) = x2 + p(x)

3. L(p(x)) = p(x) + x p(x) + x2p′(x)

10. For each f ∈ C[0, 1], define L(f) = F , where

Show that L is a linear operator on C[0, 1] and then find L(ex)

and L(x2).

11. Determine whether the following are linear transformations from 

C[0, 1] into R
1

:

1. L(f) = f(0)

2. L(f) = |f(0)|

3. L(f) = [f(0) + f(1)]/2

4. L(f) = {∫ 1
0

[f(x)]2dx}
1/2

F(x) = ∫
x

0 f(t)dt 0 ≤ x ≤ 1



12. Use mathematical induction to prove that if L is a linear

transformation from V to W, then

13. Let {v1, …, vn} be a basis for a vector space V, and let L1 and 

L2 be two linear transformations mapping V into a vector space

W. Show that if

L1(vi) = L2(vi)

for each i = 1, …,n, then L1 = L2 [i.e., show that 

L1(v) = L2(v) for all v ∈ V ].

14. Let L be a linear operator on R
1

 and let a = L(1). Show that 

L(x) = ax for all x ∈ R
1

.

15. Let L be a linear operator on a vector space V. Define Ln
, n ≥ 1,

recursively by

Show that Ln
 is a linear operator on V for each n ≥ 1.

16. Let L1 : U → V  and L2 : V → W  be linear transformations,

and let L = L2 ∘ L1 be the mapping defined by

L(u) = L2(L1(u))

for each u ∈ U . Show that L is a linear transformation mapping U

into W.

17. Determine the kernel and range of each of the following linear

operators on R
3

:

1. L(x) = (x3,x2,x1)
T

2. L(x) = (x1,x2, 0)
T

3. L(x) = (x1,x1,x1)T

18. Let S be the subspace of R
3

 spanned by e1 and e2. For each linear

operator L in Exercise 17, find L(S).

19. Find the kernel and range of each of the following linear operators

on P3:

1. L(p(x)) = xp′(x)

2. L(p(x)) = p(x) − p′(x)

3. L(p(x)) = p(0)x − p(1)

20. Let L : V → W  be a linear transformation, and let T be a

subspace of W. The inverse image of T, denoted L−1(T ), is

L(α1v1 + α2v2 + … + αnvn)

= α1L(v1) + α2L(v2) + … + αnL(vn)

L1 = L

Lk+1(v) = L(Lk(v)) for all v ∈ V



defined by

L−1(T ) = {v ∈ V |L(v) ∈ T}

Show that L−1(T ) is a subspace of V.

21. A linear transformation L : V → W  is said to be one-to-one if 

L(v1) = L(v2) implies that v1 = v2 (i.e., no two distinct

vectors v1, v2 in V get mapped into the same vector w ∈ W ).

Show that L is one-to-one if and only if ker(L) = {0V }.

22. A linear transformation L : V → W  is said to map V onto W if 

L(V ) = W . Show that the linear transformation L defined by

L(x) = (x1,x1 + x2,x1 + x2 + x3)T

maps R3
 onto R3

.

23. Which of the operators defined in Exercise 17 are one-to-one?

Which map R
3

 onto R
3

?

24. Let A be a 2 × 2 matrix, and let LA be the linear operator defined

by

LA(x) = Ax

Show that

1. LA maps R
2

 onto the column space of A.

2. if A is nonsingular, then LA maps R
2

 onto R
2

.

25. Let D be the differentiation operator on P3, and let

S = {p ∈ P3|p(0) = 0}

Show that

1. D maps P3 on to the subspace P2, but D : P3 → P2 is

not one-to-one.

2. D : S → P3 is one-to-one but not onto.



4.2 Matrix Representations of

Linear Transformations
In Section 4.1, it was shown that each m × n matrix A

defines a linear transformation LA from R
n

 to R
m

,

where

LA(x) = Ax

for each x ∈ R
n

. In this section, we will see that, for

each linear transformation L mapping R
n

 into R
m

, there

is an m × n matrix A such that

L(x) = Ax

We will also see how any linear transformation between

finite dimensional spaces can be represented by a matrix.

Theorem 4.2.1
If L is a linear transformation mapping R

n
 into R

m
,

there is an m × n matrix A such that

L(x) = Ax

for each x ∈ R
n

. In fact, the jth column vector of A is

given by

Proof

For j = 1, …,n, define

and let

A = (aij) = (a1, a2, …, an)

aj = L(ej) j = 1, 2, …,n

aj = L(ej)



If

x = x1e1 + x2e2 + … + xnen

is an arbitrary element of Rn
, then

∎

We have established that each linear transformation

from Rn
 into Rm

 can be represented in terms of an m×n

matrix. Theorem 4.2.1 tells us how to construct the

matrix A corresponding to a particular linear

transformation L. To get the first column of A, see what L

does to the first basis element e1 of Rn
. Set a1 = L(e1)

. To get the second column of A, determine the effect of L

on e2 and set a2 = L(e2), and so on. Since the

standard basis elements e1, e2, …, en (the column

vectors of the n × n identity matrix) are used for Rn
,

and the column vectors of the m × m identity matrix

are being used as a basis for Rm
, we refer to A as the

standard matrix representation of L. Later (Theorem

4.2.3) we will see how to represent linear

transformations with respect to other bases.

Example 1
Define the linear transformation L : R3 → R

2
 by

L(x) = (x1 + x2,x2 + x3)T

for each x = (x1,x2,x3)T  in R
3

. It is easily verified

that L is a linear operator. We wish to find a matrix A

L(x) = x1L(e1) + x2L(e2) + … + xnL(en)
= x1a1 + x2a2 + … + xnan

= (a1, a2, …, an)

= Ax

⎡⎢⎣ x1

x2

⋮
xn

⎤⎥⎦



such that L(x) = Ax for each x ∈ R3
. To do this, we

must calculate L(e1),L(e2), and L(e3)):

We choose these vectors to be the columns of the matrix

A = [ ]

To check the result, we compute Ax:

Ax = [ ] = [ ]

∎

Example 2
Let L be the linear transformation operator R2

 that

rotates each vector by an angle θ in the counterclockwise

direction. We can see from Figure 4.2.1(a) that e1 is

mapped into (cos θ, sin θ)T  and the image of e2 is 

(− sin θ, cos θ)T . The matrix A representing the

transformation will have (cos θ, sin θ)T  as its first

column and (− sin θ, cos θ)T  as its second column.

A = [ ]

If x is any vector in R2
, then, to rotate x

counterclockwise by an angle θ, we simply multiply by A

[see Figure 4.2.1(b)].

∎

L(e1) = L((1, 0, 0)T) = [ ]

L(e2) = L((0, 1, 0)T) = [ ]

L(e3) = L((0, 0, 1)T) = [ ]

1
0
1
1
0
1

1 1 0
0 1 1

1 1 0
0 1 1

⎡⎢⎣ x1

x2

x3

⎤⎥⎦ x1 + x2

x2 + x3

cos θ − sin θ

sin θ cos θ



Figure 4.2.1.

Figure 4.2.1. Full Alternative Text

Now that we have seen how matrices are used to

represent linear transformations from Rn
 to Rm

, we

may ask whether it is possible to find a similar

representation for linear transformations from V into W,

where V and W are vector spaces of dimension n and m,

respectively. To see how this is done, let 

E = {v1, v2, …, vn} be an ordered basis for V and 

F = {w1, w2, …, wm} be an ordered basis for W. Let

L be a linear transformation mapping V into W. If v is

any vector in V, then we can express v in terms of the

basis E:

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-02-001.xhtml#la_fig04-02-001


v = x1v1 + x2v2 + … + xnvn

We will show that there exists an m × n matrix A

representing the linear transformation L, in the sense

that

The matrix A characterizes the effect of the linear

transformation L. If x is the coordinate vector of v with

respect to E, then the coordinate vector of L(v) with

respect to F is given by

[L(v)]F = Ax

The procedure for determining the matrix representation

A is essentially the same as before. For j = 1, …,n, let 

aj = (a1j, a2j, …, amj)
T

 be the coordinate vector of 

L(vj) with respect to {w1, w2, …, wm}; that is,

Let A = (aij) = (a1, …, an). If

v = x1v1 + x2v2 + … + xnvn

then

For i = 1, …,m, let

yi =
n

Σ
j=1

aijxj

Thus,

y = (y1, y2, …, ym)T = Ax

is the coordinate vector of L (v) with respect to 

{w1, w2, …, wm}. We have established the following

Ax = y L(v) = y1w1 + y2w2 + … + ymwmif and only if

L(vj) = a1jw1 + a2jw2 + … + amjwm 1 ≤ j ≤ n

L(v) = L(
n

Σ
j=1

xjvj)

=
n

Σ
j=1

xjL(vj)

=
n

Σ
j=1

xj(
m

Σ
i=1

aijwi)

=
m

Σ
i=1

(
n

Σ
j=1

aijxj)wi



theorem.

Theorem 4.2.2 Matrix

Representation Theorem
If E = {v1, v2, …, vn} and F = {w1, w2, …, wm}
are ordered bases for vector spaces V and W,

respectively, then, corresponding to each linear

transformation L : V → W , there is an m × n matrix

A such that

A is the matrix representing L relative to the ordered

bases E and F. In fact,

Theorem 4.2.2 is illustrated in Figure 4.2.2. If A is the

matrix representing L with respect to the bases E and F,

and if

then L maps v into w if and only if A maps x into y.

Figure 4.2.2.

[L(v)F = A[v]E] for each v ∈ V

aj = [L(vj)]
F

j = 1, 2, …,n

x = [v]E (the coordinate vector of v with respect to E)
y = [w]F (the coordinate vector of w with respect to F)



Figure 4.2.2. Full Alternative Text

Example 3
Let L be the linear transformation mapping R

2
 into R

2

defined by

L(x) = x1b1 + (x2 + x3)b2

for each x ∈ R
3

, where

Find the matrix A representing L with respect to the

ordered bases {e1, e2, e3} and {b1, b2}.

SOLUTION

The ith column of A is determined by the coordinates of 

L(ei) with respect to {b1, b2} for i = 1, 2, 3. Thus,

A = [ ]

b1 = [ ]
1
1

b2 = [ ]and
−1
1

L(e1) = 1b1 + 0b2

L(e2) = 0b1 + 1b2

L( ) = 0b1 + 0b2e3

1 0 0
0 1 1

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-02-002.xhtml#la_fig04-02-002


∎

Example 4
Let L be a linear transformation mapping R2

 into itself

defined by

L(αb1 + βb2) = (α + β)b1 + 2βb2

where {b1, b2} is the ordered basis defined in Example

3. Find the matrix A representing L with respect to 

{b1, b2}.

SOLUTION

Thus,

A = [ ]

∎

Example 5
The linear transformation D defined by D(p) = p′ maps

P3 into P2. Given the ordered bases [x2,x, 1] and 

[x, 1] for P3 and P2, respectively, we wish to determine

a matrix representation for D. To do this, we apply D to

each of the basis elements of P3.

In P2, the coordinate vectors for D(x2), D(x), and D(1)

are (2, 0)T , (0, 1)T , and (0, 1)T , respectively. The

matrix A is formed with these vectors as its columns.

L(b1) = 1b1 + 0b2

L(b2) = 1b1 + 2b2

1 1
0 2

D(x2) = 2x + 0 ⋅ 1
D(x) = 0x + 1 ⋅ 1
D(1) = 0x + 0 ⋅ 1



A = [ ]

If p(x) = ax2 + bx + c, then the coordinate vector of

p with respect to the ordered basis of P3 is (a, b, c)T . To

find the coordinate vector of D(p) with respect to the

ordered basis of P2, we simply multiply

[ ] = [ ]

Thus,

D(ax2 + bx + c) = 2ax + b

∎

To find the matrix representation A for a linear

transformation L : Rn → R
m

 with respect to the

ordered bases E = {u1, …, un} and 

F = {b1, …, bm}, we must represent each vector 

L(uj) as a linear combination of b1, …, bm. The

following theorem shows that determining this

representation of L(uj) is equivalent to solving the

linear system Bx = L(uj).

Theorem 4.2.3
Let E = {u1, …, un} and F = {b1, …, bm} be

ordered bases for Rn
 and Rm

, respectively. If 

L : Rn → Rm
 is a linear transformation and A is the

matrix representing L with respect to E and F, then

where B = (b1, …, bm)

Proof

If A is representing L with respect to E and F, then, for 

j = 1, …,n,

2 0 0
0 1 0

2 0 0
0 1 0

⎡⎢⎣ abc⎤⎥⎦ 2a
b

aj = B−1L(uj) for j = 1, …,n

( )



The matrix B is nonsingular since its column vectors

form a basis for R
m

. Hence,

∎

One consequence of this theorem is that we can

determine the matrix representation of the

transformation by computing the reduced row echelon

form of an augmented matrix. The following corollary

shows how this is done.

Corollary 4.2.4
If A is the matrix representing the linear transformation

L : Rn → R
m

 with respect to the bases

then the reduced row echelon form of 

(b1, …, bm|L(u1), …,L(un)) is (I|A).

Proof

Let B = (b1, …bm). The matrix 

(B|L(u1), …,L(un)) is row equivalent to

∎

Example 6
Let L : R2 → R3

 be the linear transformation defined

by

T

L(uj) = a1b1 + a2jb2 + … + amjbm

= Baj

aj = B−1L(uj) j = 1, …,n

E = {u1, …, un} F = {b1, …, bm}and

B−1(B|L(u1), …,L(un)) = (I B−1L(u1), …,B−1L(un))
= (I|a1, …, an)
= (I|A)∣



L(x) = (x2 ,  x1 + x2,x1 − x2)T

Find the matrix representations of L with respect to the

ordered bases {u1, u2} and {b1, b2, b3}, where

and

SOLUTION

We must compute L(u1) and L(u2) and then

transform the augmented matrix 

(b1, b2, b3|L(u1),L(u2)) to reduced row echelon

form:

→

The matrix representing L with respect to the given

ordered bases is

A =

The reader may verify that

Application 1 Computer

Graphics and Animation
A picture in the plane can be stored in the computer as a

set of vertices. The vertices can then be plotted and

connected by lines to produce the picture. If there are n

vertices, they are stored in a 2 × n matrix. The x-

u1 = (1, 2)T , u2 = (3, 1)T

b1 = (1, 0, 0)T , b3 = (1, 1, 1)Tb2 = (1, 1, 0)T

L(u1) = (2, 3, −1)T L(u2) = (1, 4, 2)Tand

⎡⎢⎣ 1 1 1
0 1 1
0 0 1∣ 2 1

3 4
−1 2

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0
0 0 1∣−1 −3

4 2
−1 2

⎤⎥⎦⎡⎢⎣ −1 −3
4 2

−1 2

⎤⎥⎦L(u1) = −b1 + 4b2 − b3

L(u2) = −3b1 + 2b2 + 2b3



coordinates of the vertices are stored in the first row and

the y-coordinates in the second. Each successive pair of

points is connected by a straight line.

For example, to generate a triangle with vertices (0, 0),

(1, 1), and (1, −1), we store the pairs as columns of a

matrix:

T = [ ]

An additional copy of the vertex (0, 0) is stored in the

last column of T so that the previous point (1, −1) will

be connected back to (0, 0) [see Figure 4.2.3(a)].

We can transform a figure by changing the positions of

the vertices and then redrawing the figure. If the

transformation is linear, it can be carried out as a matrix

multiplication. Viewing a succession of such drawings

will produce the effect of animation.

The four primary geometric transformations that are

used in computer graphics are as follows:

1. Dilations and contractions. A linear operator of the form

L(x) = cx

is a dilation if c > 1 and a contraction if 0 < c < 1. The operator

L is represented by the matrix cI, where I is the 2 × 2 identity

matrix. A dilation increases the size of the figure by a factor c > 1,

and a contraction shrinks the figure by a factor c < 1. Figure

4.2.3(b) shows a dilation by a factor of 1.5 of the triangle stored in

the matrix T.

2. Reflections about an axis. If Lx is a transformation that reflects a

vector x about the x-axis, then Lx is a linear operator and hence it

can be represented by a 2 × 2 matrix A. Since

it follows that

A = [ ]

0 1 1 0
0 1 −1 0

Lx(e1) = e1 and Lx(e2) = −e2

1 0
0 −1



Figure 4.2.3.



Figure 4.2.3. Full Alternative Text

Similarly, if Ly is the linear operator that reflects a vector about

the y-axis, then Ly is represented by the matrix

[ ]

Figure 4.2.3(c) shows the image of the triangle T after a reflection

about the y-axis. In Chapter 7, we will learn a simple method for

constructing reflection matrices that have the effect of reflecting a

vector about any line through the origin.

3. Rotations. Let L be a transformation that rotates a vector about

the origin by an angle θ in the counterclockwise direction. We saw

in Example 2 that L is a linear operator and that L(x) = Ax,

where

A = [ ]

Figure 4.2.3(d) shows the result of rotating the triangle T by 60°
in the counterclockwise direction.

4. Translations. A translation by a vector a is a transformation of

the form

L(x) = x + a

If a ≠ 0, then L is not a linear transformation and hence L cannot

be represented by a 2 × 2 matrix. However, in computer graphics

it is desirable to do all transformations as matrix multiplications.

The way around the problem is to introduce a new system of

coordinates called homogeneous coordinates. This new system

will allow us to perform translations as linear transformations.

Homogeneous Coordinates
The homogeneous coordinate system is formed by

equating each vector in R
2

 with a vector in R
3

 having

the same first two coordinates and having 1 as its third

coordinate.

[ ] ↔

−1 0
0 1

cos θ − sin θ

sin θ cos θ

x1

x2

⎡⎢⎣ x1

x2

1

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-02-003.xhtml#la_fig04-02-003


When we want to plot a point represented by the

homogeneous coordinate vector (x1,x2, 1)T , we simply

ignore the third coordinate and plot the ordered pair 

(x1,x2).

The linear transformations discussed earlier must now

be represented by 3 × 3 matrices. To do this, we take the

2 × 2 matrix representation and augment it by attaching

the third row and third column of the 3 × 3 identity

matrix. For example, in place of the 2 × 2 dilation

matrix

[ ]

we have the 3 × 3 matrix

Note that

=

If L is a translation by a vector a in R2
, we can find a

matrix representation for L with respect to the

homogeneous coordinate system. We simply take the 

3 × 3 identity matrix and replace the first two entries of

its third column with the entries of a. To see that this

works, consider, for example, a translation

corresponding to the vector a = (6, 2)T . In

homogeneous coordinates, this transformation is

accomplished by the matrix multiplication

Ax = =

Figure 4.2.4(a) shows a stick figure generated from a 

3 × 81 matrix S. If we multiply S by the translation

3 0
0 3

⎡⎢⎣ 3 0 0
0 3 0
0 0 1

⎤⎥⎦⎡⎢⎣ 3 0 0
0 3 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ x1

x2

1

⎤⎥⎦ ⎡⎢⎣ 3x1

3x2

1

⎤⎥⎦⎡⎢⎣ 1 0 6
0 1 2
0 0 1

⎤⎥⎦ ⎡⎢⎣ x1

x2

1

⎤⎥⎦ ⎡⎢⎣ x1 + 6
x2 + 2

1

⎤⎥⎦



matrix A, the graph of AS is the translated image given in

Figure 4.2.4(b).

Figure 4.2.4.

Figure 4.2.4. Full Alternative Text

Application 2 The Yaw, Pitch,

and Roll of an Airplane

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-02-004.xhtml#la_fig04-02-004


The terms yaw, pitch, and roll are commonly used in the

aerospace industry to describe the maneuvering of an

aircraft. Figure 4.2.5(a) shows the initial position of a

model airplane. In describing yaw, pitch, and roll, the

current coordinate system is given in terms of the

position of the vehicle. It is always assumed that the craft

is situated on the xy-plane with its nose pointing in the

direction of the positive x-axis and the left wing pointing

in the direction of the positive y-axis. Furthermore, when

the plane moves, the three coordinate axes move with the

vehicle (see Figure 4.2.5).

Figure 4.2.5.



Figure 4.2.5. Full Alternative Text

A yaw is a rotation in the xy-plane. Figure 4.2.5(b)

illustrates a yaw of 45°. In this case, the craft has been

rotated 45° to the right (clockwise). Viewed as a linear

transformation in 3-space, a yaw is simply a rotation

about the z-axis. Note that if the initial coordinates of the

nose of the model plane are represented by the vector (1,

0, 0), then its xyz coordinates after the yaw

transformation will still be (1, 0, 0), since the coordinate

axis rotated with the craft. In the initial position of the

airplane, the x, y, and z axes are in the same directions as

the front-back, left-right, and top-bottom axes shown in

the figure. We will refer to this initial front, left, top axis

system as the FLT axis system. After the 45° yaw, the

position of the nose of the craft with respect to the FLT

axis system is ( 1
√2

, − 1
√2

, 0).

If we view a yaw transformation L in terms of the FLT

axis system, it is easy to find a matrix representation. If L

corresponds to yaw by an angle u, then L will rotate the

points (1, 0, 0) and (0, 1, 0) to the positions 

(cosu, − sinu, 0) and (sinu, cosu, 0), respectively.

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig04-02-005.xhtml#la_fig04-02-005


The point (0, 0, 1) will remained unchanged by the yaw

since it is on the axis of rotation. In terms of column

vectors, if y1, y2, and y3 are the images of the standard

basis vectors for R3
 under L, then

Therefore, the matrix representation of the yaw

transformation is

Y =

(1)

A pitch is a rotation of the aircraft in the xz-plane. Figure

4.2.5(c) illustrates a pitch of −30∘. Since the angle is

negative, the nose of the craft is rotated 30° downward,

toward the bottom axis of the figure. Viewed as a linear

transformation in 3-space, a pitch is simply a rotation

about the y-axis. As with the yaw, we can find the matrix

for a pitch transformation with respect to the FLT axis

system. If L is a pitch transformation with angle of

rotation v, the matrix representation of L is given by

P =

(2)

A roll is a rotation of the aircraft in the yz-plane. Figure

4.2.5(d) illustrates a roll of 30°. In this case, the left wing

is rotated up 30° toward the top axis in the figure and the

right wing is rotated 30° downward toward the bottom

axis. Viewed as a linear transformation in 3-space, a roll

is simply a rotation about the x-axis. As with the yaw and

pitch, we can find the matrix representation for a roll

transformation with respect to the FLT axis system. If L

is a roll transformation with angle of rotation w, the

matrix representation of L is given by

y1 = L(e1) = , y2 = L(e2) = , y3 = L(e3) =
⎡⎢⎣ cosu

− sinu

0

⎤⎥⎦ ⎡⎢⎣ sinu

cosu
0

⎤⎥⎦ ⎡⎢⎣ 0
0
1

⎤⎥⎦⎡⎢⎣ cosu sinu 0
− sinu cosu 0

0 0 1

⎤⎥⎦⎡⎢⎣ cos v 0 − sin v

0 1 0
sin v 0 cos v

⎤⎥⎦



R =

(3)

If we perform a yaw by an angle u and then a pitch by an

angle v, the composite transformation is linear; however,

its matrix representation is not equal to the product PY.

The effect of the yaw on the standard basis vectors e1, e2

, and e3 is to rotate them to the new directions y1, y2,

and y3. So the vectors y1, y2, and y3 will define the

directions of the x, y, and z axes when we do the pitch.

The desired pitch transformation is then a rotation about

the new y-axis (i.e., the axis in the direction of the vector 

y2). The vectors y1 and y3 form a plane, and when the

pitch is applied, they are both rotated by an angle v in

that plane. The vector y2 will remain unaffected by the

pitch, since it lies on the axis of rotation. Thus, the

composite transformation L has the following effect on

the standard basis vectors:

The images of the standard basis vectors form the

columns of the matrix representing the composite

transformation:

It follows that matrix representation of the composite is

a product of the two individual matrices representing the

yaw and the pitch, but the product must be taken in the

reverse order, with the yaw matrix Y on the left and the

pitch matrix P on the right. Similarly, for a composite

transformation of a yaw with angle u, followed by a pitch

with angle v, and then a roll with angle w, the matrix

⎡⎢⎣ 1 0 0
0 cosw − sinw

0 sinw cosw

⎤⎥⎦e1

yaw
y1

picth

cos v y1 + sin v y3

e2

yaw
y2

picth

y2

e3

yaw
y3

picth

− sin v y1 + cos v y3

→ →

→ →

→ →

(cos v y1 + sin v y3, y2, − sin v y1 + cos v y3) = (y1, y2, y3)

= YP

⎡⎢⎣ cos v 0 − sin v

0 1 0
sin v 0 cos v

⎤⎥⎦



representation of the composite transformation would be

the product YPR.



Section 4.2 Exercises

1. Refer to Exercise 1 of Section 4.1. For each linear transformation

L, find the standard matrix representation of L.

2. For each of the following linear transformations L mapping R
3

into R
2

, find a matrix A such that L L(x) = Ax for every x in R
3

:

1. L((x1,x2,x3)T = (x1 + x2, 0)T )

2. L((x1,x2,x3)T ) = (x1 + x2)T

3. L((x1,x2,x3)T ) = (x2 − x1,x3 − x2)T

3. For each of the following linear operators L on R
3

, find a matrix A

such that L(x) = Ax for every x in R
3

:

1. L((x1,x2,x3)T) = (x3,x2,x1)T

2. L((x1,x2,x3)T) = (x1,x1 + x2,x1 + x2 + x3)T

3. L((x1,x2,x3)T) = (2x3,x2 + 3x1, 2x1 − x3)T

4. Let L be the linear operator on R
3

 defined by

L(x) =

Determine the standard matrix representation A of L, and use A to

find L (x) for each of the following vectors x:

1. x = (1, 1, 1)T

2. x = (2, 1, 1)T

3. x = (−5, 3, 2)T

5. Find the standard matrix representation for each of the following

linear operators:

1. L is the linear operator that rotates each x in R
2

 by 45°

in the clockwise direction.

2. L is the linear operator that reflects each vector x in R
2

about the x1-axis and then rotates it 90° in the

counterclockwise direction.

⎡⎢⎣2x1 − x2 − x3

2x2 − x1 − x3

2x3 − x1 − x2

⎤⎥⎦



3. L doubles the length of x and then rotates it 30° in the

counterclockwise direction.

4. L reflects each vector x about the line x2 = x1 and then

projects it onto the x1-axis.

6. Let

b1 = , b2 = , b3 =

and let L be the linear transformation from R
2

 into R
3

 defined by

L(x) = x1b1 + x2b2 + (x1 + x2)b3

Find the matrix A representing L with respect to the ordered bases

{e1, e2} and {b1, b2, b3}.

7. Let

y1 = , y2 = , y3 =

and let ⌶ be the identity operator on R
3

.

1. Find the coordinates of ⌶(e ), ⌶(e ) and ⌶(e ) with

respect to {y1, y2, y3}.

2. Find a matrix A such that Ax is the coordinate vector of x

with respect to {y1, y2, y3}

8. Let y1, y2, and y3 be defined as in Exercise 7, and let L be the

linear operator on R
3

 defined by

L(c1y1 + c2y2 + c3y3) = (c1 + c2 + c3)y1 + (2c1 + c3)y2 − (2c2 + c3)y3

1. Find a matrix representing L with respect to the ordered

basis {y1, y2, y3}.

2. For each of the following, write the vector x as a linear

combination of y1, y2,, and y3 and use the matrix from

part (a) to determine L (x):

1. x = (7, 5, 2)T

2. x = (3, 2, 1)T

3. x = (1, 2, 3)T

9. Let

⎡⎢⎣1

1

0

⎤⎥⎦ ⎡⎢⎣1

0

1

⎤⎥⎦ ⎡⎢⎣0

1

1

⎤⎥⎦⎡⎢⎣1

1

1

⎤⎥⎦ ⎡⎢⎣1

1

0

⎤⎥⎦ ⎡⎢⎣1

0

0

⎤⎥⎦1 2 3



R =

The column vectors of R represent the homogeneous coordinates

of points in the plane.

1. Draw the figure whose vertices correspond to the column

vectors of R. What type of figure is it?

2. For each of the following choices of A, sketch the graph

of the figure represented by AR and describe

geometrically the effect of the linear transformation:

1. A =

2. A =

3. A =

10. For each of the following linear operators on R
2

, find the matrix

representation of the transformation with respect to the

homogeneous coordinate system:

1. The transformation L that rotates each vector by 120° in

the counterclockwise direction

2. The transformation L that translates each point 3 units

to the left and 5 units up

3. The transformation L that contracts each vector by a

factor of one-third

4. The transformation that reflects a vector about the y-axis

and then translates it up 2 units

11. Determine the matrix representation of each of the following

composite transformations.

1. A yaw of 90°, followed by a pitch of 90°

2. A pitch of 90°, followed by a yaw of 90°

3. A pitch of 45°, followed by a roll of −90°

4. A roll of −90°, followed by a pitch of 45°

5. A yaw of 45°, followed by a pitch of −90° and then a roll

of −45°

⎡⎢⎣0 0 1 1 0

0 1 1 0 0

1 1 1 1 1

⎤⎥⎦⎡⎢⎣ 1
2 0 0

0 1
2 0

0 0 1

⎤⎥⎦⎡⎢⎣ 1
√2

1
√2

0

− 1
√2

1
√2

0

0 0 1

⎤⎥⎦⎡⎢⎣1 0 2

0 1 −3

0 0 1

⎤⎥⎦



6. A roll of −45°, followed by a pitch of −90° and then a

yaw of 45°

12. Let Y, P, and R be the yaw, pitch, and roll matrices given in

equations (1), (2), and (3), respectively, and let Q = YPR.

1. Show that Y, P, and R all have determinants equal to 1.

2. The matrix Y represents a yaw with angle u. The inverse

transformation should be a yaw with angle −u. Show

that the matrix representation of the inverse

transformation is Y T
 and that Y T = Y −1

.

3. Show that Q is nonsingular and express Q−1
 in terms of

the transposes of Y, P, and R.

13. Let L be the linear transformation mapping p2 into R
2

 defined by

L(p(x)) = [ ]

Find a matrix A such that

L(α + βx) = A[ ]

14. The linear transformation L defined by

L(p(x)) = p′(x) + p(0)

maps p3 into p2. Find the matrix representation of L with respect

to the ordered bases [x2,x, 1] and [2, 1, −x]. For each of the

following vectors p(x) in p3, find the coordinates of L (p(x)) with

respect to the ordered basis [2, 1, −x]:

1. x2 + 2x − 3

2. x2 + 1

3. 3x

4. 4x2 + 2x

15. Let S be the subspace of C[a, b] spanned by ex,xex, and x2ex. Let

D be the differentiation operator of S. Find the matrix

representing D with respect to [ex,xex,x2ex].

16. Let L be a linear operator on R
n

. Suppose that L(x) = 0 for

some x ≠ 0. Let A be the matrix representing L with respect to

the standard basis {e1, e2, …., en}. Show that A is singular.

17. Let L be a linear operator on a vector space V. Let A be the matrix

representing L with respect to an ordered basis {v1, …, vn} of V

[i.e., L(vj) =
n

Σ
i=1

aijvi, j = 1, ….,n]. Show that Am
 is the

matrix representing Lm
 with respect to {v1, …, vn}.

∫ 1
0 p(x)dx

p(0)

α

β



18. Let E = {u1, u2, u3} and F = {b1, b2}, where

u1 = , u2 = , u3 =

and

For each of the following linear transformations L from R3
 into 

R
2

, find the matrix representing L with respect to the ordered

bases E and F:

1. L(x) = (x3,x1)T

2. L(x) = (x1 + x2,x1 − x3)T

3. L(x) = (2x2, −x1)T

19. Suppose that L1 : V → W  and L2 : W → Z are linear

transformations and E, F, and G are ordered bases for V, W, and Z,

respectively. Show that, if A represents L1 relative to E and F and

B represents L2 relative to F and G, then the matrix C = BA

represents L2 ∘ L1 : V → Z relative to E and G. Hint: Show that

BA[v]E = [(L2 ∘ L1)(v)]G for all v ∈ V .

20. Let V and W be vector spaces with ordered bases E and F,

respectively. If L : V → W  is a linear transformation and A is

the matrix representing L relative to E and F, show that

1. v ∈ ker(L) if and only if [v]E ∈ N(A).

2. w ∈ L (V) if and only if [w]F  is in the column space of

A.

⎡⎢⎣ 1

0

−1

⎤⎥⎦ ⎡⎢⎣1

2

1

⎤⎥⎦ ⎡⎢⎣−1

1

1

⎤⎥⎦b1 = (1, −1)T , b2 = (2, −1)T



4.3 Similarity
If L is a linear operator on an n-dimensional vector space

V, the matrix representation of L will depend on the

ordered basis chosen for V. By using different bases, it is

possible to represent L by different n × n matrices. In

this section, we consider different matrix representations

of linear operators and characterize the relationship

between matrices representing the same linear operator.

Let us begin by considering an example in R
2

. Let L be

the linear transformation mapping R
2

 into itself defined

by

L(x) = (2x1, x1 + x2)T

Since

it follows that the matrix representing L with respect to 

{e1, e2} is

A = [ ]

If we use a different basis for R
2

, the matrix

representation of L will change. If, for example, we use

for a basis, then to determine the matrix representation

of L with respect to {u1, u2}, we must determine L(u1)
and L(u2). and express these vectors as linear

combinations of u1 and u2. We can use the matrix A to

determine L(u1) and L(u2):

L(e1) = [ ]
2
1

and L(e2) = [ ]
0
1

2 0
1 1

u1 = [ ]
1
1

and u2 = [ ]
−1

1



To express these vectors in terms of u1 and u2, we use a

transition matrix to change from the ordered basis 

{e1, e2}, to {u1, u2}. Let us first compute the

transition matrix from {u1, u2} to {e1, e2}. This is

simply

U = (u1, u2) = [ ]

The transition matrix from {e1, e2} to {u1, u2} will

then be

U −1 = [ ]

To determine the coordinates of L(u1) and L(u2) with

respect to {u1, u2}, we multiply the vectors by U −1
:

Thus,

and the matrix representing L with respect to {u1, u2}
is

B = [ ]

How are A and B related? Note that the columns of B are

Hence,

1 1 1 1

L(u1) = Au1 = [ ][ ] = [ ]

L(u2) = Au2 = [ ][ ] = [ ]

2 0
1 1

1
1

2
2

2 0
1 1

−1
1

−2
0

1 −1
1 1

1
2

1
2

− 1
2

1
2

U −1L(u1) = U −1Au1 = [ ][ ] = [ ]

U −1L(u2) = U −1Au2 = [ ][ ] = [ ]

1
2

1
2

− 1
2

1
2

2
2

2
0

1
2

1
2

− 1
2

1
2

−2
0

−1
1

L(u1) = 2u1 + 0u2

L(u2) = −1u1 + 1u2

2 −1
0 1

[ ] = U −1Au1
2
0

and [ ] = U −1Au2
−1

1



B = (U −1Au1, U −1Au2) = U −1A(u1, u2) = U −1AU

Thus, if

1. B is the matrix representing L with respect to {u1, u2},

2. A is the matrix representing L with respect to {e1, e2}.

3. U is the transition matrix corresponding to the change of basis

from {u1, u2} to {e1, e2},

then

B = U −1AU

(1)

The results that we have established for this particular

linear operator on R2
 are typical of what happens in a

much more general setting. We will show next that the

same sort of relationship as that given in (1) will hold for

any two matrix representations of a linear operator that

maps an n-dimensional vector space into itself.

Theorem 4.3.1
Let E = {v1, …, vn} and F = {w1, …, wn} be two

ordered bases for a vector space V, and let L be a linear

operator on V. Let S be the transition matrix

representing the change from F to E. If A is the matrix

representing L with respect to E, and B is the matrix

representing L with respect to F, then B = S−1AS.

Proof

Let x be any vector in Rn
 and let

v = x1w1 + x2w2 + … + xnwn

Let

(2)

y = Sx, z = Bxt = Ay,



It follows from the definition of S that y = [v]E  and

hence

v = y1v1 + … + ynvn

Since A represents L with respect to E, and B represents

L with respect to F, we have

The transition matrix from E to F is S−1
. Therefore,

S−1t = z

(3)

It follows from (2) and (3) that

S−1ASx = S−1Ay = S−1
t = z = Bx

(see Figure 4.3.1). Thus,

S−1ASx = Bx

Figure 4.3.1.

Figure 4.3.1. Full Alternative Text

for every x ∈ R
n

, and hence S−1AS = B.

t = [L(v)]E z = [L(v)]Fand
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∎

Another way of viewing Theorem 4.3.1 is to consider S as

the matrix representing the identity transformation ⌶

with respect to the ordered bases

If

S represents ⌶ relative to F and E,

A represents L relative to E,

S−1
 represents ⌶ relative to E and F,

then L can be expressed as a composite operator ⌶oLo⌶,

and the matrix representation of the composite will be

the product of the matrix representations of the

components.

Thus, the matrix representation of ⌶ o L o ⌶ relative to F

is S−1AS. If B is the matrix representing L relative to F,

then B must equal S−1AS (see Figure 4.3.2).

Figure 4.3.2.

F = {w1, …, wn} and E = {v1, …, vn}



Figure 4.3.2. Full Alternative Text

Definition
Let A and B be n × n matrices. B is said to be similar

to A if there exists a nonsingular matrix S such that 

B = S−1AS.

Note that if B is similar to A, then A = (S−1)
−1

BS−1

is similar to B. Thus, we may simply say that A and B are

similar matrices.

It follows from Theorem 4.3.1 that, if A and B are n × n

matrices representing the same operator L, then A and B

are similar. Conversely, suppose that A represents L with

respect to the ordered basis {v1, …, vn} and 

B = S−1AS for some nonsingular matrix S. If 

w1, …, wn are defined by

then { , …, } is an ordered basis for V, and B is

the matrix representing L with respect to { , …, }.

Example 1
Let D be the differentiation operator on p3. Find the

matrix B representing D with respect to [1, x, x2] and

the matrix A representing D with respect to 

[1, 2x, 4x2 − 2].

SOLUTION

w1 = s11v1 + s21v2 + … + sn1vn

w2 = s12v1 + s22v2 + … + sn2vn

⋮
wn = s1nv1 + s2nv2 + … + snnvn

w1 wn

w1 wn

D(1) = 0 ⋅ 1 + 0 ⋅ x + 0 ⋅ x2

D(x) = 1 ⋅ 1 + 0 ⋅ x + 0 ⋅ x2

D(x2) = 0 ⋅ 1 + 2 ⋅ x + 0 ⋅ x2
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The matrix B is then given by

B =

Applying D to 1, 2x, and 4x2 − 2, we obtain

Thus,

A =

The transition matrix S corresponding to the change of

basis from [1, 2x, 4x2 − 2] to [1, x, x2] and its inverse

are given by

(See Example 6 from Section 3.5.) The reader may verify

that A = S−1BS.

Example 2
Let L be the linear operator mapping R3

 into R3
 defined

by L(x) = Ax, where

Thus, the matrix A represents L with respect to 

{e1, e2, e3}. Find the matrix representing L with

respect to {y1, y2, y3}, where

⎡⎢⎣0 1 0
0 0 2
0 0 0

⎤⎥⎦D(1) = 0 ⋅ 1 + 0 ⋅ 2x + 0 ⋅ (4x2 − 2)

D(2x) = 2 ⋅ 1 + 0 ⋅ 2x + 0 ⋅ (4x2 − 2)

D(4x2 − 2) = 0 ⋅ 1 + 4 ⋅ 2x + 0 ⋅ (4x2 − 2)

⎡⎢⎣0 2 0
0 0 4
0 0 0

⎤⎥⎦S =
⎡⎢⎣1 0 −2

0 2 0
0 0 4

⎤⎥⎦ and S−1 =
⎡⎢⎣1 0 1

2

0 1
2 0

0 0 1
4

⎤⎥⎦A =
⎡⎢⎣2 2 0

1 1 2
1 1 2

⎤⎥⎦



SOLUTION

Thus, the matrix representing L with respect to 

{y1, y2, y3} is

D =

We could have found D by using the transition matrix 

Y = (y1, y2, y3) and computing

D = Y −1AY

This was unnecessary due to the simplicity of the action

of L on the basis {y1, y2, y3}.

∎

In Example 2, the linear operator L is represented by a

diagonal matrix D with respect to the basis {y1, y2, y3}
. It is much simpler to work with D than with A. For

example, it is easier to compute Dx and Dnx than Ax

and Anx. Generally, it is desirable to find as simple a

representation as possible for a linear operator. In

particular, if the operator can be represented by a

diagonal matrix, this is usually the preferred

representation. The problem of finding a diagonal

representation for a linear operator will be studied in

Chapter 6.

y1 = ,
⎡⎢⎣ 1

−1
0

⎤⎥⎦ y3 =y2 = ,
⎡⎢⎣−2

1
1

⎤⎥⎦ ⎡⎢⎣1
1
1

⎤⎥⎦L(y1) = Ay1 = 0 = 0y1 + 0y2 + 0y3

L(y2) = Ay2 = y2 = 0y1 + 1y2 + 0y3

L(y3) = Ay3 = 4y3 = 0y1 + 0y2 + 4y3

⎡⎢⎣0 0 0
0 1 0
0 0 4

⎤⎥⎦



Section 4.3 Exercises

1. For each of the following linear operators L on R
2

, determine the

matrix A representing L with respect to {e1, e2} (see Exercise 1 of

Section 1.2) and the matrix B representing L with respect to 

{u1 = (1, 1)
T

, u2 = (−1, 1)
T}:

1. L(x) = (−x1, x2)
T

2. L(x) = −x

3. L(x) = (x2, x1)T

4. L(x) = 1
2

x

5. L(x) = x2e2

2. Let {u1, u2} and {v1, v2} be ordered bases for R
2

, where

and

Let L be the linear transformation defined by

L(x) = (−x1, x2)T

and let B be the matrix representing L with respect to {u1, u2}
[from Exercise 1(a)].

1. Find the transition matrix S corresponding to the change

of basis from {u1, u2} to {v1, v2}.

2. Find the matrix A representing L with respect to 

{v1, v2} by computing SBS−1
.

3. Verify that

3. Let L be the linear transformation on R
3

 defined by

L(x) =

u1 = [ ], u2 = [ ]
1

1

−1

1

v1 = [ ], v2 = [ ]
2

1

1

0

L(v1) = a11v1 + a21v2

L(v2) = a12v1 + a22v2

⎡⎢⎣ 2x1 − x2 − x3

2x2 − x1 − x3

2x3 − x1 − x2

⎤⎥⎦



and let A be the standard matrix representation of L (see Exercise

4 of Section 4.2). If u1 = (1, 1, 0)
T

, u2 = (1, 0, 1)
T

, and 

u3 = (0, 1, 1)T
, then {u1, u2, u3} is an ordered basis for R

3

and U = (u1, u2, u3) is the transition matrix corresponding to a

change of basis from {u1, u2, u3} to the standard basis 

{e1, e2, e3}. Determine the matrix B representing L with respect

to the basis {u1, u2, u3} by calculating U −1AU .

4. Let L be the linear operator mapping R
3

 into R
3

 defined by 

L(x) = Ax, where

A =

and let

v1 = , v2 = , v3 =

Find the transition matrix V corresponding to a change of basis

from {v1, v2, v3} to {e1, e2, e3}, and use it to determine the

matrix B representing L with respect to {v1, v2, v3}.

5. Let L be the operator on p3 defined by

L(p(x)) = xp ′(x) + p′′(x)

1. Find the matrix A representing L with respect to 

[1, x, x2].

2. Find the matrix B representing L with respect to 

[1, x, 1 + x2].

3. Find the matrix S such that B = S−1AS.

4. If p(x) = a0 + a1x + a2(1 + x2), calculate 

Ln(p(x)).

6. Let V be the subspace of C[a, b] spanned by 1, ex, e−x
, and let D

be the differentiation operator on V.

1. Find the transition matrix S representing the change of

coordinates from the ordered basis [1, ex, e−x] to the

ordered basis 

[1, cosh x, sinh x].[cosh x =
1

2
(ex + e−x), sinh x =

1

2
(ex − e−x).]

2. Find the matrix A representing D with respect to the

ordered basis [1, cosh x, sinh x].

3. Find the matrix B representing D with respect to 

[1, e, e−x].

4. Verify that B = S−1AS.

⎡⎢⎣ 3 −1 −2

2 0 −2

2 −1 −1

⎤⎥⎦⎡⎢⎣ 1

1

1

⎤⎥⎦ ⎡⎢⎣ 1

2

0

⎤⎥⎦ ⎡⎢⎣ 0

−2

1

⎤⎥⎦



7. Prove that if A is similar to B and B is similar to C, then A is

similar to C.

8. Suppose that A = SΛS−1
, where Λ is a diagonal matrix with

diagonal elements λ1, λ2, …, λn.

1. Show that Asi
= λisi, i = 1, …, n.

2. Show that if x = α1s1 + α2s2 + … + αnsn, then

Ak
x = α1λk

1s1 + α2λk
2s2 + … + αnλk

nsn

3. Suppose that |λi| < 1 for i = 1, …, n. What happens

to Ak
x as k → ∞? Explain.

9. Suppose that A = ST , where S is nonsingular. Let B = TS.

Show that B is similar to A.

10. Let A and B be n × n matrices. Show that if A is similar to B, then

there exist n × n matrices S and T, with S nonsingular, such that

11. Show that if A and B are similar matrices, then 

det(A) = det(B).

12. Let A and B be similar matrices. Show that

1. AT
 and BT

 are similar.

2. Ak
 and Bk

 are similar for each positive integer k.

13. Show that if A is similar to B and A is nonsingular, then B must

also be nonsingular and A−1
 and B−1

 are similar.

14. Let A and B be similar matrices and let λ be any scalar. Show that

1. A − λI  and B − λI  are similar.

2. det(A − λI) = det(B − λI).

15. The trace of an n × n matrix A, denoted tr(A), is the sum of its

diagonal entries; that is,

tr(A) = a11 + a22 + … + anm

Show that

1. tr(AB) = tr(BA)

2. if A is similar to B, then tr(A) = tr(B).

A = ST and B = TS



Chapter 4 Exercises

MATLAB Exercises

1. Use MATLAB to generate a matrix W and a vector x by setting

The columns of W can be used to form an ordered basis:

F = {w1, w2, w3, w4, w5}

Let L : R5 → R
5
 be a linear operator such that

and

1. Determine the matrix A representing L with respect to F,

and enter it in MATLAB.

2. Use MATLAB to compute the coordinate vector 

y = W−1
x of x with respect to F.

3. Use A to compute the coordinate vector z of L (x) with

respect to F.

4. W is the transition matrix from F to the standard basis

for R
5
. Use W to compute the coordinate vector of L (x)

with respect to the standard basis.

2. Set A = triu(one s(5)) * tril(one s(5)). If L denotes the

linear operator defined by L(x) = Ax for all x in R
n

, then A is

the matrix representing L with respect to the standard basis for

R . Construct a 5 × 5 matrix U by setting

U = hankel(ones(5,1),1:5)

Use the MATLAB function rank to verify that the column vectors

of U are linearly independent. Thus, E = {u1, u2, u3, u4, u5} is

an ordered basis for R
5
. The matrix U is the transition matrix

from E to the standard basis.

1. Use MATLAB to compute the matrix B representing L

with respect to E. (The matrix B should be computed in

W = triu(one s(5)) and x = [1 : 5]′

L(w1) = w2, L(w2) = w3, L(w3) = w4

L(w4) = 4w1 + 3w2 + 2w3 + w4

L(w5) = w1 + w2 + w3 + 3w4 + w5

5



terms of A, U, and U −1
).

2. Generate another matrix by setting

V = toeplitz([1, 0, 1, 1, 1])

Use MATLAB to check that V is nonsingular. It follows

that the column vectors of V are linearly independent

and hence form an ordered basis F for R
5
. Use MATLAB

to compute the matrix C, which represents L with respect

to F. (The matrix C should be computed in terms of A, V,

and V −1
.)

3. The matrices B and C from parts (a) and (b) should be

similar. Why? Explain. Use MATLAB to compute the

transition matrix S from F to E. Compute the matrix C in

terms of B, S, and S−1
. Compare your result with the

result from part (b).

3. Let

A = toeplitz(1 : 7),

S = compan(ones(8, 1))



Chapter Test A True or False
For each statement that follows, answer true if the

statement is always true and false otherwise. In the case

of a true statement, explain or prove your answer. In

the case of a false statement, give an example to show

that the statement is not always true.

1. Let L : Rn → R
n

 be a linear transformation. If L(x1) = L(x2),

then the vectors x1 and x2 must be equal.

2. If L1 and L2 are both linear operators on a vector space V, then 

L1 + L2 is also a linear operator on V, where L1 + L2 is the

mapping defined by

(L1 + L2)(v) = L1(v) + L2(v) for all v ∈ V .

3. If L : V → V  is a linear transformation and x ∈ ker(L), then 

L(v + x) = L(v) for all v ∈ V .

4. If L1 rotates each vector x in R
2
 by 60° and then reflects the

resulting vector about the x-axis, and if L2 is a transformation that

does the same two operations, but in the reverse order, then 

L1 = L2.

5. The set of all vectors x used in the homogeneous coordinate

system (see the application on computer graphics and animation

in Section 4.2) forms a subspace of R
3
.

and set B = S−1 * A * S. The matrices A and B are similar. Use

MATLAB to verify that the following properties hold for these two

matrices:

1. det(B) = det(A)

2. BT = STAT(ST)
−1

3. B−1 = S−1A−1S

4. B9 = S−1A9S

5. B − 3I = S−1(A − 3I)S

6. det(B − 3I) = det(A − 3I)

7. tr(B) = tr(A)(Note that the trace of a matrix A can be

computed with the MATLAB command trace.)

These properties will hold in general for any pair of

similar matrices (see Exercises 11-15 of Section 4.3).

6. Let L : R2 → R
2
 be a linear transformation, and let A be the

standard matrix representation of L. If L2
 is defined by

L2(x) = L(L(x))for all x ∈ R
2



then L2
 is a linear transformation and its standard matrix

representation is A2
.

7. Let E = {x1, x2, …, xn} be an ordered basis for R
n

. If 

L1 : Rn → Rn
 and L2 : Rn → Rn

 have the same matrix

representation with respect to E, then L1 = L2.

8. Let L : Rn → R
n

 be a linear transformation. If A is the standard

matrix representation of L, then an n × n matrix B will also be a

matrix representation of L if and only if B is similar to A.

9. Let A, B, and C be n × n matrices. If A is similar to B and B is

similar to C, then A is similar to C.

10. Any two matrices with the same trace are similar. [This statement

is the converse of part (b) of Exercise 15 in Section 4.3.]



Chapter Test B

1. Determine whether the following are linear operators on R
2
:

1. L is the operator defined by L(x) = (x1 + x2, x1)
T .

2. L is the operator defined by L(x) = (x1x2, x1)
T
.

2. Let L be a linear operator on R
2
 and let

v1 = [ ], v2 = [ ], v3 = [ ]

If

L(v1) = [ ]    and     L(v2) = [ ]

find the value of L(v3).

3. Let L be the linear operator on R
3
 defined by

L(x) =

and let S = Span((1, 0, 1)
T).

1. Find the kernel of L.

2. Determine L (S).

4. Let L be the linear operator on R
3
 defined by

L(x) =

Determine the range of L.

5. Let L : R2 → R
3
 be defined by

L(x) =

Find a matrix A such that L(x) = Ax for each x in R
2
.

6. Let L be the linear operator on R
2
 that rotates a vector by 30°. in

the counterclockwise direction and then reflects the resulting

vector about the y-axis. Find the standard matrix representation

of L.

7. Let L be the translation operator on R
2
 defined by

1

1

−1

2

1

7

2

5

−3

1

⎡⎢⎣ x2 − x1

x3 − x2

x3 − x1

⎤⎥⎦⎡⎢⎣ x2

x1

x1 + x2

⎤⎥⎦⎡⎢⎣ x1 + x2

x1 − x2

3x1 + 2x2

⎤⎥⎦



Find the matrix representation of L with respect to the

homogeneous coordinate system.

8. Let

u1 = [ ], u2 = [ ]

and let L be the linear operator that rotates vectors in R
2
 by 45°.

in the counterclockwise direction. Find the matrix representation

of L with respect to the ordered basis [u1, u2].

9. Let

u1 = [ ], u2 = [ ]

and

v1 = [ ], v2 = [ ]

and let L be a linear operator on R
2
 whose matrix representation

with respect to the ordered basis is {u1, u2} is

A = [ ]

1. Determine the transition matrix from the basis {v1, v2}
to the basis {u1, u2}.

2. Find the matrix representation of L with respect to 

{v1, v2}.

10. Let A and B be similar matrices.

1. Show that det(A) = det(B).

2. Show that if λ is any scalar, then 

det(A − λI) = det(B − λI).

L(x) = x + a, where a = [ ]
2

5

3

1

5

2

3

1

5

2

1

−2

1

−1

2 1

3 2



Chapter 5 Orthogonality

Full Alternative Text

We can add to the structure of a vector space by defining

a scalar or inner product. Such a product is not a true

vector multiplication, since to every pair of vectors it

associates a scalar rather than a third vector. For

example, in R
2
, we can define the scalar product of two

vectors x and y to be x
T
y. We can think of vectors in R

2

as directed line segments beginning at the origin. It is

not difficult to show that the angle between two line
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segments will be a right angle if and only if the scalar

product of the corresponding vectors is zero. In general,

if V is a vector space with a scalar product, then two

vectors in V are said to be orthogonal if their scalar

product is zero.

We can think of orthogonality as a generalization of the

concept of perpendicularity to any vector space with an

inner product. To see the significance of this, consider

the following problem: Let l be a line passing through the

origin, and let Q be a point not on l. Find the point P on l

that is closest to Q. The solution P to this problem is

characterized by the condition that QP is perpendicular

to OP (see Figure 5.0.1). If we think of the line l as

corresponding to a subspace of R
2
 and v = OQ as a

vector in R
2
, then the problem is to find a vector in the

subspace that is “closest” to v. The solution p will then be

characterized by the property that p is orthogonal to 

v − p (see Figure 5.0.1). In the setting of a vector space

with an inner product, we are able to consider general

least squares problems. In these problems, we are given

a vector v in V and a subspace W. We wish to find a

vector in W that is “closest” to v. A solution p must be

orthogonal to v − p. This orthogonality condition

provides the key to solving the least squares problem.

Least squares problems occur in many statistical

applications involving data fitting.

Figure 5.0.1.



Figure 5.0.1. Full Alternative Text
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5.1 The Scalar Product in Rn

Two vectors x and y in R
n

 may be regarded as n × 1
matrices. We can then form the matrix product xTy.

This product is a 1 × 1 matrix that may be regarded as a

vector in R1
 or, more simply, as a real number. The

product xTy is called the scalar product of x and y. In

particular, if x = (x1, …,xn)T  and 

y = (y1, …, yn)T , then

xTy = x1y1 + x2y2 + … + xnyn

Example 1
If

then

xTy = (3, −2, 1) = 3 ⋅ 4 − 2 ⋅ 3 + 1 ⋅ 2 = 8

The Scalar Product in R2 and 

R
3

In order to see the geometric significance of the scalar

product, let us begin by restricting our attention to R
2

and R
3

. Vectors in R
2

 and R
3

 can be represented by

directed line segments. Given a vector x in either R
2

 or 

R
3

, its Euclidean length can be defined in terms of the

scalar product.

x =
⎡⎢⎣ 3

−2
1

⎤⎥⎦ and y =
⎡⎢⎣4

3
2

⎤⎥⎦⎡⎢⎣4
3
2

⎤⎥⎦



∥x∥ = (xTx)
1/2

=

Given two nonzero vectors x and y, we can think of them

as directed line segments starting at the same point. The

angle between the two vectors is then defined as the

angle θ between the line segments. We can measure the

distance between the vectors by measuring the length of

the vector joining the terminal point of x to the terminal

point of y (see Figure 5.1.1). Thus, we have the following

definition.

Figure 5.1.1.

Figure 5.1.1. Full Alternative Text

⎧⎪⎨⎪⎩√x2
1 + x2

2 if x ∈ R
2

√x2
1 + x2

2 + x2
3 if x ∈ R

3
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Definition
Let x and y be vectors in either R2

 or R3
. The distance

between x and y is defined to be the number ‖x − y‖.

Example 2

If x = (3, 4)T  and y = (−1, 7)T , then the distance

between x and y is given by

‖y − x‖ = √(−1 − 3)2 + (7 − 4)2 = 5

The angle between two vectors can be computed using

the following theorem.

Theorem 5.1.1
If x and y are two nonzero vectors in either R2

 or R3

and θ is the angle between them, then

xTy = ∥x∥  ∥y∥ cos θ

(1)

Proof

The vectors x, y, and y − x may be used to form a

triangle as in Figure 5.1.1. By the law of cosines, we have

‖y − x‖2 = ∥x∥2 + ∥y∥2 − 2∥x∥ ∥y∥ cos θ

and hence it follows that

 

∥x∥∥y∥  cos θ = 1
2 (∥x∥2 + ∥y∥2 − ∥y − x∥2)

= 1
2 (∥x∥2 + ∥y∥2 − (y − x)T (y − x))

= 1
2 (∥x∥2 + ∥y∥2 − (yTy − yTx − xTy + xTx))

= xTy



∎

If x and y are nonzero vectors, then we can specify their

directions by forming unit vectors

If θ is the angle between x and y, then

cos θ =
xTy

‖x‖∥y∥
= uTv

The cosine of the angle between the vectors x and y is the

scalar product of the corresponding direction vectors u

and v.

Example 3
Let x and y be the vectors in Example 2. The directions

of these vectors are given by the unit vectors

The cosine of the angle θ between the two vectors is

cos θ = uTv =
1

√2

and hence θ =
π

4
.

Corollary 5.1.2 Cauchy—

Schwarz Inequality
If x and y are vectors in either R

2
 or R

3
, then

xTy ≤ ∥x∥  ∥y∥

u =
1

∥x∥
x and v =

1

∥y∥
y

u =
1

∥x∥
x =

⎡⎢⎣ 3
5
4
5

⎤⎥⎦ and v =
1

∥y∥
y =

⎡⎢⎣−
1

5√2
7

5√2

⎤⎥⎦∣ ∣



(2)

with equality holding if and only if one of the vectors is

0 or one vector is a multiple of the other.

Proof

The inequality follows from (1). If one of the vectors is 0,

then both sides of (2) are 0. If both vectors are nonzero,

it follows from (1) that equality can hold in (2) if and only

if cos θ = ±1. But this would imply that the vectors are

either in the same or opposite directions and hence that

one vector must be a multiple of the other.

∎

If xTy = 0, it follows from Theorem 5.1.1 that either

one of the vectors is the zero vector or cos θ = 0. If 

cos θ = 0, the angle between the vectors is a right angle.

Definition
The vectors x and y in R

2
 (or R

3
) are said to be

orthogonal if xTy = 0.

Example 4

1. The vector 0 is orthogonal to every vector in R
2

.

2. The vectors [ ] and [ ] are orthogonal in R
2

.

3. The vectors  and  are orthogonal in R
3

.

Scalar and Vector Projections

3
2

−4
6

⎡⎢⎣ 2
−3
1

⎤⎥⎦ ⎡⎢⎣1
1
1

⎤⎥⎦



The scalar product can be used to find the component of

one vector in the direction of another. Let x and y be

nonzero vectors in either R2
 or R3

. We would like to

write x as a sum of the form p + z, where p is in the

direction of y and z is orthogonal to p (see Figure 5.1.2).

To do this, let u = (1/∥y∥)y. Thus, u is a unit vector

(length 1) in the

Figure 5.1.2.

Figure 5.1.2. Full Alternative Text

direction of y. We wish to find α such that p = αu is

orthogonal to z = x − αu. For p and z to be

orthogonal, the scalar α must satisfy

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-01-002.xhtml#la_fig05-01-002


The scalar α is called the scalar projection of x onto y,

and the vector p is called the vector projection of x onto

y.

Scalar projection of x onto y:

α =
xTy

∥y∥

Vector projection of x onto y:

p = αu = α
1

∥y∥
y =

xTy

yTy
y

Example 5
The point Q in Figure 5.1.3 is the point on the line 

y = 1
3 x that is closest to the point (1, 4). Determine the

coordinates of Q.

Figure 5.1.3.

α = ‖x‖ cos θ

=
‖x‖‖y‖ cos θ

∥y∥

=
xTy

∥y∥



Figure 5.1.3. Full Alternative Text

SOLUTION

The vector w = (3, 1)T  is a vector in the direction of

the line y = 1
3 x. Let v = (1, 4)T . If Q is the desired

point, then QT
 is the vector projection of v onto w.

QT = (
vTw

wTw
)w =

7

10
[ ] = [ ]

Thus, Q = (2.1, 0.7) is the closest point.

Notation

3
1

2.1
0.7
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If P1 and P2 are two points in 3-space, we will denote

the vector from P1 to P2 by P1P2.

If N is a nonzero vector and P0 is a fixed point, the set of

points P such that P0P  is orthogonal to N forms a plane

π in 3-space that passes through P0. The vector N and

the plane π are said to be normal to each other. A point 

P = (x, y, z) will lie on π if and only if

(P0P)
T

N = 0

If N = (a, b, c)T  and P0 = (x0, y0, z0), this equation

can be written in the form

a(x − x0) + b(y − y0) + c(z − z0) = 0

Example 6
Find the equation of the plane passing through the point 

(2, −1, 3) and normal to the vector N = (2, 3, 4)T .

SOLUTION

P0P = (x − 2, y + 1, z − 3)T . The equation is 

(P0P)
T

N = 0, or

2(x − 2) + 3(y + 1)4(z − 3) = 0

The span of two linearly independent vectors x and y in 

R3
 corresponds to a plane through the origin in 3-space.

To determine the equation of the plane, we must find a

vector normal to the plane. In Section 2.3, it was shown

that the cross product of the two vectors is orthogonal to

each vector. If we take N = x × y as our normal

vector, then the equation of the plane is given by

n1x + n2y + n3z = 0

−→

−→

→

−→

−→



Example 7
Find the equation of the plane that passes through the

points

SOLUTION

Let

The normal vector N must be orthogonal to both x and y.

If we set

N = x × y =

then N will be a normal vector to the plane that passes

through the given points. We can then use any one of the

points to determine the equation of the plane. Using the

point P1, we see that the equation of the plane is

6(x − 1) + (y − 1) − 8(z − 2) = 0

Example 8
Find the distance from the point (2, 0, 0) to the plane 

x + 2y + 2z = 0.

SOLUTION

The vector N = (1, 2, 2)T  is normal to the plane and

the plane passes through the origin. Let v = (2, 0, 0)T .

The distance d from (2, 0, 0) to the plane is simply the

absolute value of the scalar projection of v onto N. Thus,

P1(1, 1, 2), P3 = (3, −3, 3)P2 = (2, 3, 3),

x = P1P2 =
→ ⎡⎢⎣1

2
1

⎤⎥⎦ and y = P1P3 =
→ ⎡⎢⎣ 2

−4
1

⎤⎥⎦⎡⎢⎣ 6
1

−8

⎤⎥⎦



d =
vTN

‖N‖
=

2

3

If x and y are nonzero vectors in R
3

 and θ is the angle

between the vectors, then

cos θ =
xTy

‖x‖∥y∥

It then follows that

sin θ = √1 − cos2θ =√1 −
(xTy)2

∥x∥2∥y∥2
=
√∥x∥2∥y∥2 − (xTy)2

‖x‖∥y∥

and hence

Thus, we have, for any nonzero vectors x and y in R
3

,

= ∥x∥∥y∥ sin θ

If either x or y is the zero vector, then x × y = 0 and

hence the norm of x × y will be 0.

Orthogonality in Rn

The definitions that have been given for R
2

 and R
3

 can

all be generalized to R
n

. Indeed, if x ∈ R
n

, then the

Euclidean length of x is defined by

∥x∥ = (xTx)
1/2

= (x2
1 + x2

2 + … + x2
n)

1/2

If x and y are two vectors in Rn
, then the distance

between the vectors is ‖y − x‖.

The Cauchy–Schwarz inequality holds in R
n

. (We will

prove this in Section 5.4.) Consequently,

T

∣ ∣∥x∥∥y∥ sin θ = √∥x∥2∥y∥2 − (xTy)2

= √(x2
1 + x2

2 + x2
3)(y

2
1 + y2

2 + y2
3) − (x1y1 + x2y2 + x3y3)2

= √(x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

= ‖x × y‖

‖x × y‖



−1 ≤
xTy

‖x‖∥y∥
≤ 1

(3)

for any nonzero vectors x and y in Rn
. In view of (3), the

definition of the angle between two vectors that was used

for R2
 can be generalized to Rn

. Thus, the angle θ

between two nonzero vectors x and y in Rn
 is given by

cos θ =
xTy

∥x∥∥y∥
, 0 ≤ θ ≤ π

In talking about angles between vectors, it is usually

more convenient to scale the vectors so as to make them

unit vectors. If we set

then the angle θ between u and v is clearly the same as

the angle between x and y, and its cosine can be

computed simply by taking the scalar product of the two

unit vectors:

cos θ =
xTy

‖x‖∥y∥
= uTv

The vectors x and y are said to be orthogonal if 

xTy = 0. Often the symbol ⊥ is used to indicate

orthogonality. Thus, if x and y are orthogonal, we will

write x ⊥ y. Vector and scalar projections are defined in

Rn
 in the same way that they were defined for R2

.

If x and y are vectors in R
n

, then

‖x + y‖2 = (x + y)T (x + y) = ∥x∥2 + 2xTy + ∥y∥2

(4)

In the case that x and y are orthogonal, equation (4)

becomes the Pythagorean law

‖x + y‖2 = ∥x∥2 + ∥y∥2

u =
1

∥x∥
x and v =

1

∥y∥
y



The Pythagorean law is a generalization of the

Pythagorean theorem. When x and y are nonzero

orthogonal vectors in R2
, we can use these vectors and

their sum x + y to form a right triangle as in Figure

5.1.4. The Pythagorean law relates the lengths of the

sides of the triangle. Indeed, if we set

a = ∥x∥,   b = ∥y∥, c = ‖x + y‖

Figure 5.1.4.

Figure 5.1.4. Full Alternative Text

then

c2 = a2 + b2(the famous Pythagorean theorem)

In many applications, the cosine of the angle between

two nonzero vectors is used as a measure of how closely

the directions of the vectors match up. If cos θ is near 1,

then the angle between the vectors is small and hence the

vectors are in nearly the same direction. A cosine value

near zero would indicate that the angle between the

vectors is nearly a right angle.
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Application 1
Information Retrieval Revisited

In Section 1.3, we considered the problem of searching a

database for documents that contain certain keywords. If

there are m possible key search words and a total of n

documents in the collection, then the database can be

represented by an m × n matrix A. Each column of A

represents a document in the database. The entries of the

jth column correspond to the relative frequencies of the

keywords in the jth document.

Refined search techniques must deal with vocabulary

disparities and the complexities of language. Two of the

main problems are polysemy (words having multiple

meanings) and synonymy (multiple words having the

same meaning). On the one hand, some of the words that

you are searching for may have multiple meanings and

could appear in contexts that are completely irrelevant to

your particular search. For example, the word calculus

would occur frequently in both mathematical papers and

in dentistry papers. On the other hand, most words have

synonyms, and it is possible that many of the documents

may use the synonyms rather than the specified search

words. For example, you could search for an article on

rabies using the keyword dogs; however, the author of

the article may have preferred to use the word canines

throughout the paper. To handle these problems, we

need a technique to find the documents that best match

the list of search words without necessarily matching

every word on the list. We want to pick out the column

vectors of the database matrix that most closely match a

given search vector. To do this, we use the cosine of the

angle between two vectors as a measure of how closely

the vectors match up.

In practice, both m and n are quite large, as there are

many possible keywords and many documents to search.



For simplicity, let us consider an example where 

m = 10 and n = 8. Suppose that a Web site has eight

modules for learning linear algebra and each module is

located on a separate Web page. Our list of possible

search words consists of

determinants, eigenvalues, linear, matrices, numerical,

orthogonality, spaces, systems, transformations, vector

(This list of keywords was compiled from the chapter

headings for this book.) Table 5.1.1 shows the frequencies

of the keywords in each of the modules. The (2, 6) entry

of the table is 5, which indicates that the keyword

eigenvalues appears five times in the sixth module.

Table 5.1.1 Frequency of

Keywords

KeywordsModules
M1M2M3M4M5M6M7M8

determinants 0 6 3 0 1 0 1 1

eigenvalues 0 0 0 0 0 5 3 2

linear 5 4 4 5 4 0 3 3

matrices 6 5 3 3 4 4 3 2

numerical 0 0 0 0 3 0 4 3

orthogonality 0 0 0 0 4 6 0 2

spaces 0 0 5 2 3 3 0 1

systems 5 3 3 2 4 2 1 1

transformations 0 0 0 5 1 3 1 0

vector 0 4 4 3 4 1 0 3



The database matrix is formed by scaling each column of

the table so that all column vectors are unit vectors.

Thus, if A is the matrix corresponding to Table 5.1.1, then

the columns of the database matrix Q are determined by

setting

qj =
1

‖aj‖
aj    j = 1, …, 8

To do a search for the keywords orthogonality, spaces,

and vector, we form a search vector x whose entries are

all 0 except for the three rows corresponding to the

search rows. To obtain a unit search vector, we put 
1

√3

in each of the rows corresponding to the search words.

For this example, the database matrix Q and search

vector x (with entries rounded to three decimal places)

are given by

Q = , x =

If we set y = QTx, then

yi = qT
i x = cos θi

where θi is the angle between the unit vectors x and qi.

For our example,

y = (0.000, 0.229, 0.567, 0.331, 0.635, 0.577, 0.000, 0.535)T

Since y5 = 0.635 is the entry of y that is closest to 1, the

direction of the search vector x is closest to the direction

of q5 and hence module 5 is the one that best matches

our search criteria. The next-best matches come from

modules 6 (y6 = 0.577) and 3(y3 = 0.567). If a

⎡⎢⎣0.000 0.594 0.327 0.000 0.100 0.000 0.147 0.154
0.000 0.000 0.000 0.000 0.000 0.500 0.442 0.309
0.539 0.396 0.436 0.574 0.400 0.000 0.442 0.463
0.647 0.495 0.327 0.344 0.400 0.400 0.442 0.309
0.000 0.000 0.000 0.000 0.300 0.000 0.590 0.463
0.000 0.000 0.000 0.000 0.400 0.600 0.000 0.309
0.000 0.000 0.546 0.229 0.300 0.300 0.000 0.154
0.539 0.297 0.327 0.229 0.400 0.200 0.147 0.154
0.000 0.000 0.000 0.574 0.100 0.300 0.147 0.000
0.000 0.396 0.436 0.344 0.400 0.100 0.000 0.463

⎤⎥⎦ ⎡⎢⎣0.000
0.000
0.000
0.000
0.000
0.577
0.577
0.000
0.000
0.577

⎤⎥⎦



document doesn’t contain any of the search words, then

the corresponding column vector of the database matrix

will be orthogonal to the search vector. Note that

modules 1 and 7 do not have any of the three search

words and consequently

This example illustrates some of the basic ideas behind

database searches. Using modern matrix techniques, we

can improve the search process significantly. We can

speed up searches and at the same time correct for errors

due to polysemy and synonymy. These advanced

techniques are referred to as latent semantic indexing

(LSI) and depend on a matrix factorization, the singular

value decomposition, which we will discuss in Section

6.5.

There are many other important applications involving

angles between vectors. In particular, statisticians use

the cosine of the angle between two vectors as a measure

of how closely the two vectors are correlated.

Application 2
Statistics—Correlation and Covariance Matrices

Suppose that we wanted to compare how closely exam

scores for a class correlate with scores on homework

assignments. As an example, we consider the total scores

on assignments and tests of a mathematics class at the

University of Massachusetts Dartmouth. The total scores

for homework assignments during the semester for the

class are given in the second column of Table 5.1.2. The

third column represents the total scores for the two

exams given during the semester, and the last column

contains the scores on the final exam. In each case, a

perfect score would be 200 points. The last row of the

table summarizes the class averages.

y1 = qT
1 x = 0 and y7 = qT

7 x = 0



Table 5.1.2 Math Scores Fall

1996

StudentScores
AssignmentsExamsFinal

S1 198 200 196

S2 160 165 165

S3 158 158 133

S4 150 165 91

S5 175 182 151

S6 134 135 101

S7 152 136   80

Average 161 163 131

We would like to measure how student performance

compares between each set of exam or assignment

scores. To see how closely the two sets of scores are

correlated and allow for any differences in difficulty, we

need to adjust the scores so that each test has a mean of

0. If, in each column, we subtract the average score from

each of the test scores, then the translated scores will

each have an average of 0. Let us store these translated

scores in a matrix:

X =

The column vectors of X represent the deviations from

the mean for each of the three sets of scores. The three

⎡⎢⎣ 37 37 65
−1 2 34
−3 −5 2

−11 2 −40
14 19 20

−27 −28 −30
−9 −27 −51

⎤⎥⎦



sets of translated data specified by the column vectors of

X all have mean 0, and all sum to 0. To compare two sets

of scores, we compute the cosine of the angle between

the corresponding column vectors of X. A cosine value

near 1 indicates that the two sets of scores are highly

correlated. For example, correlation between the

assignment scores and the exam scores is given by

cos θ =
xT

1 x2

∥x1∥∥x2∥
≈ 0.92

A perfect correlation of 1 would correspond to the case

where the two sets of translated scores are proportional.

Thus, for a perfect correlation, the translated vectors

would satisfy

and if the corresponding coordinates of x1 and x2 were

paired off, then each ordered pair would lie on the line 

y = αx. Although the vectors x1 and x2 in our example

are not perfectly correlated, the coefficient of 0.92 does

indicate that the two sets of scores are highly correlated.

Figure 5.1.5 shows how close the actual pairs are to lying

on a line y = αx. The slope of the line in the figure was

determined by setting

α =
xT

1 x1

xT
1 x1

=
2625

2506
≈ 1.05

Figure 5.1.5.

x2 = αx1 (α > 0)



Figure 5.1.5. Full Alternative Text
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This choice of slope yields an optimal least squares fit to

the data points. (See Exercise 7 of Section 5.3.)

If we scale x1 and x2 to make them unit vectors

then the cosine of the angle between the vectors will

remain unchanged, and it can be computed simply by

taking the scalar product uT
1 u2. Let us scale all three

sets of translated scores in this way and store the results

in a matrix:

U =

If we set C = U TU , then

C =

and the (i, j) entry of C represents the correlation

between the ith and jth sets of scores. The matrix C is

referred to as a correlation matrix.

The three sets of scores in our example are all positively

correlated, since the correlation coefficients are all

positive. A negative coefficient would indicate that two

data sets were negatively correlated, and a coefficient of

0 would indicate that they were uncorrelated. Thus, two

sets of test scores would be uncorrelated if the

corresponding vectors of deviations from the mean were

orthogonal.

Another statistically important quantity that is closely

related to the correlation matrix is the covariance

u1 =
1

∥x1∥
x1 and u2 =

1

∥x2∥
x2

⎡⎢⎣ 0.74 0.65 0.62
−0.02 0.03 0.33
−0.06 −0.09 0.02
−0.22 0.03 −0.38
−0.28 0.33 0.19
−0.54 −0.49 −0.29
−0.18 −0.47 −0.49

⎤⎥⎦⎡⎢⎣ 1 0.92 0.83
0.92 1 0.83
0.83 0.83 1

⎤⎥⎦



matrix. Given a collection of n data points representing

values of some variable x, we compute the mean x̄ of the

data points and form a vector x of the deviations from

the mean. The variance, s2
, is defined by

s2 =
1

n − 1

n

∑
1

x2
i =

xTx

n − 1
6

and the standard deviation s is the square root of the

variance. If we have two data sets X1 and X2, each

containing n values of a variable, we can form vectors x1

and x2 of deviations from the mean for both sets. The

covariance is defined by

cov(X1,X2) =
xT

1 x

n − 1

If we have more than two data sets, we can form a matrix

X whose columns represent the deviations from the

mean for each data set and then form a covariance

matrix S by setting

S =
1

n − 1
XTX

The covariance matrix for the three sets of mathematics

scores is

The diagonal entries of S are the variances for the three

sets of scores, and the off-diagonal entries are the

covariances.

S =
1

6

=

⎡⎢⎣37 −1 −3 −11 14 −27 −9
37 2 −5 2 19 −28 −27
65 34 2 −40 20 −30 −51

⎤⎥⎦⎡⎢⎣ 37 37 65
−1 2 34
−3 −5 2

−11 2 −40
14 19 20

−27 −28 −30
−9 −27 −51

⎤⎥⎦⎡⎢⎣417.7 437.5 725.7
437.5 546.0 830.0
725.7 830.0 1814.3

⎤⎥⎦



To illustrate the importance of the correlation and

covariance matrices, we will consider an application to

the field of psychology.

Application 3
Psychology—Factor Analysis and Principal Component

Analysis

Factor analysis had its start at the beginning of the 20th

century with the efforts of psychologists to identify the

factor or factors that make up intelligence. The person

most responsible for pioneering this field was the

psychologist Charles Spearman. In a 1904 paper,

Spearman analyzed a series of exam scores at a

preparatory school. The exams were taken by a class of

23 pupils in a number of standard subject areas and also

in pitch discrimination. The correlation matrix reported

by Spearman is summarized in Table 5.1.3.

Table 5.1.3 Spearman’s

Correlation Matrix

ClassicsFrenchEnglishMathDiscrim.Music

Classics 1 0.83 0.78 0.70 0.66 0.63

French 0.83 1 0.67 0.67 0.65 0.57

English 0.78 0.67 1 0.64 0.54 0.51

Math 0.70 0.67 0.64 1 0.45 0.51

Discrim. 0.66 0.65 0.54 0.45 1 0.40

Music 0.63 0.57 0.51 0.51 0.40 1



Using this and other sets of data, Spearman observed a

hierarchy of correlations among the test scores for the

various disciplines. This led him to conclude that “all

branches of intellectual activity have in common one

fundamental function (or group of fundamental

functions), …” Although Spearman did not assign names

to these functions, others have used terms such as verbal

comprehension, spatial, perceptual, and associative

memory to describe the hypothetical factors.

The hypothetical factors can be isolated mathematically

using a method known as principal component analysis.

The basic idea is to form a matrix X of deviations from

the mean and then factor it into a product UW, where the

columns of U correspond to the hypothetical factors.

While in practice the columns of X are positively

correlated, the hypothetical factors should be

uncorrelated. Thus, the column vectors of U should be

mutually orthogonal (i.e., uT
i uj = 0 whenever i ≠ j).

The entries in each column of U measure how well the

individual students exhibit the particular intellectual

ability represented by that column. The matrix W

measures to what extent each test depends on the

hypothetical factors.

The construction of the principal component vectors

relies on the covariance matrix S =
1

n − 1
XTX. Since

it depends on the eigenvalues and eigenvectors of S, we

will defer the details of the method until Chapter 6. In

Section 6.5, we will revisit this application and learn an

important factorization called the singular value

decomposition, which is the main tool of principal

component analysis.
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Section 5.1Exercises

1. Find the angle between the vectors v and w in each of the

following:

1. v = (2, 1, 3)T , w = (6, 3, 9)T

2. v = (2, −3)T , w = (3, 2)T

3. v = (4, 1)T , w = (3, 2)T

4. v = (−2, 3, 1)T , w = (1, 2, 4)T

2. For each pair of vectors in Exercise 1, find the scalar projection of

v onto w. Also find the vector projection of v onto w.

3. For each of the following pairs of vectors x and y, find the vector

projection p of x onto y and verify that p and x − p are

orthogonal:

1. x = (3, 4)T , y = (1, 0)T

2. x = (3, 5)T , y = (1, 1)T

3. x = (2, 4, 3)T , y = (1, 1, 1)T

4. x = (2, −5, 4)T , y = (1, 2, −1)T

4. Let x and y be linearly independent vectors in R
2

. If ∥x∥ = 2 and

∥y∥ = 3, what, if anything, can we conclude about the possible

values of xT y ?

5. Find the point on the line y = 2x that is closest to the point (5, 2).

6. Find the point on the line y = 2x + 1 that is closest to the point

(5, 2).

7. Find the distance from the point (1, 2) to the line 4x − 3y = 0.

8. In each of the following, find the equation of the plane normal to

the given vector N and passing through the point P0:

1. N = (2, 4, 3)T , P0 = (0, 0, 0)

2. N = (−3, 6, 2)T , P0 = (4, 2, −5)

3. N = (0, 0, 1)T , P0 = (3, 2, 4)

9. Find the equation of the plane that passes through the points∣ ∣P1 = (2, 3, 1) P3 = (3, 4, 4)P2 = (5, 4, 3)



10. Find the distance from the point (1, 1, 1) to the plane 

2x + 2y + z = 0.

11. Find the distance from the point (2, 1, −2) to the plane

6(x − 1) + 2(y − 3) + 3(z + 4) = 0

12. If x = (x1, x2)T , y = (y1, y2)T
, and z = (z1, z2)T

 are

arbitrary vectors in R
2

, prove that

1. xT x ≥ 0

2. xT y = yT x

3. xT (y + z) = xT y + xT y

13. Show that if u and v are any vectors in R
2

, then 

∥u + v∥2 ≤ (∥u∥ + ∥v∥)2
 and hence ∥u + v∥ ≤ ‖u‖‖v‖.

When does equality hold? Give a geometric interpretation of the

inequality.

14. Let x1, x2, and x3 be vectors in R
3

. If x1 ⊥ x2 and x2 ⊥ x3, is

it necessarily true that x1 ⊥ x2 ?Prove your answer.

15. Let A be a 2 × 2 matrix with linearly independent column vectors 

a1 and a2. If a1 and a2 are used to form a parallelogram P with

altitude h (see the figure), show that

1. h2∥a2∥2 = ∥a1∥2∥a2∥2 − (aT
1 a2)

2

2. Area of P = |det(A)|

5.2-4 Full Alternative Text

16. If x and y are linearly independent vectors in R
3

, then they can be

used to form a parallelogram P in the plane through the origin

corresponding to Span(x, y). Show that

Area of P = ‖x × y‖

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig05-01-001.xhtml#la_unfig05-01-001


17. Let

1. Determine the angle between x and y.

2. Determine the distance between x and y.

18. Let x and y be vectors in R
n

 and define

1. Show that p ⊥ z. Thus, p is the vector projection of x

onto y; that is, x = p + z, where p and z are

orthogonal components of x, and p is a scalar multiple of

y.

2. If ∥p∥ = 6 and ∥z∥ = 8, determine the value of ∥x∥.

19. Use the database matrix U from Application 1 and search for the

keywords orthogonality, spaces, vector; only this time, give the

keyword orthogonality twice the weight of the other two key

search vector words. Which of the eight modules best matches the

search criteria? [Hint: Form the search vector using the weights 2,

1, 1 in the rows corresponding to the search words and then scale

the vector to make it a unit vector.]

20. Five students in an elementary school take aptitude tests in

English, mathematics, and science. Their scores are given in the

following table. Determine the correlation matrix and describe

how the three sets of scores are correlated.

Scores
StudentEnglishMathematicsScience

S1 61 53 53

S2 63 73 78

S3 78 61 82

S4 65 84 96

S5 63 59 71

Average 66 66 76

x =

⎡⎢⎣ 4

4

−4

4

⎤⎥⎦ and y =

⎡⎢⎣ 4

2

2

1

⎤⎥⎦p =
xT y

xT y
y and z = x − p



21. Let t be a fixed real number and let

Show that x is a unit vector in R
n+1

.

Hint:

1 + s2 + s4 + … + s2n−2 =
1 − s2n

1 − s2

c = cos t,    s = sin  t,

x = (c, cs, cs2, …csn−1, sn)
T



5.2 Orthogonal Subspaces
Let A be an m × n matrix and let x ∈ N(A), the null

space of A. Since Ax = 0, we have

ai1x1 + ai2x2 + … + ainxn = 0

(1)

for i = 1, …,m. Equation (1) says that x is orthogonal

to the ith column vector of AT
 for i = 1, …,m. Since x

is orthogonal to each column vector of AT
, it is

orthogonal to any linear combination of the column

vectors of AT
. So if y is any vector in the column space of

AT
, then xTy = 0. Thus, each vector in N(A) is

orthogonal to every vector in the column space of AT
.

When two subspaces of R
n

 have this property, we say

that they are orthogonal.

Definition
Two subspaces X and Y of R

n
 are said to be orthogonal

if xTy = 0 for every x ∈ X and every y ∈ Y . If X and

Y are orthogonal, we write X ⊥ Y .

Example 1
Let X be the subspace of R

3
 spanned by e1, and let Y be

the subspace spanned by e2. If x ∈ X, these vectors

must be of the form

Thus,

T

x =
⎡⎢⎣ x1

0

0

⎤⎥⎦ and y =
⎡⎢⎣ 0

y2

0

⎤⎥⎦



xTy = x1 ⋅ 0 + 0 ⋅ y2 + 0 ⋅ 0 = 0

Therefore, X ⊥ Y .

The concept of orthogonal subspaces does not always

agree with our intuitive idea of perpendicularity. For

example, the floor and wall of the classroom “look”

orthogonal, but the xy-plane and the yz-plane are not

orthogonal subspaces. Indeed, we can think of the

vectors x1 = (1, 1, 0)T  and x2 = (0, 1, 0)T  as lying in

the xy- and yz-planes, respectively. Since

xT
1 x2 = 1 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 1 = 1

the subspaces are not orthogonal. The next example

shows that the subspace corresponding to the z-axis is

orthogonal to the subspace corresponding to the xy-

plane.

Example 2
Let X be the subspace of R

3
 spanned by e1 and e2, and

let Y be the subspace spanned by e3. If x ∈ X and 

y ∈ Y , then

xTy = x1 ⋅ 0 + x2 ⋅ 0 + 0 ⋅ y3 = 0

Thus, X ⊥ Y . Furthermore, if z is any vector in R
3

 that

is orthogonal to every vector in Y, then z ⊥ e3, and

hence

z3 = zTe3 = 0

But if z3 = 0, then z ∈ X. Therefore, X is the set of all

vectors in R3
 that are orthogonal to every vector in Y

(see Figure 5.2.1).

Figure 5.2.1.



Figure 5.2.1. Full Alternative Text

Definition
Let Y be a subspace of R

n
. The set of all vectors in R

n

that are orthogonal to every vector in Y will be denoted 

Y ⊥
. Thus,

Y ⊥ = {x ∈ R
n xTy = 0  for every y ∈ Y }

The set Y ⊥
 is called the orthogonal complement of

Y.

Note ∣
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The subspaces X = Span(e1) and X = Span(e2) of 

R3
 given in Example 1 are orthogonal, but they are not

orthogonal complements. Indeed,

Remarks

1. If X and Y are orthogonal subspaces of R
n

, then X ∩ Y = {0}.

2. If Y is a subspace of R
n

, then Y ⊥
 is also a subspace of R

n
.

Proof of (1)

If x ∈ X ∩ Y  and X ⊥ Y , then ∥x∥2 = xTx = 0 and

hence x = 0.

∎

Proof of (2)

If x ∈ Y ⊥
 and α is a scalar, then for any y ∈ Y ,

(αx)Ty = α(xTy) = α ⋅ 0 = 0

Therefore, αx ⊂ Y ⊥
. If x1 and x2 are elements of Y ⊥

,

then

(x1 + x2)Ty = xT
1 y + xT

2 y = 0 + 0 = 0

for each y ∈ Y . Hence, x1 + x2 ∈ Y ⊥
. Therefore, Y ⊥

is a subspace of Rn
.

∎

Fundamental Subspaces
Let A be an m × n matrix. We saw in Chapter 3 that a

vector b ∈ Rm
 is in the column space of A if and only if 

b = Ax for some x ∈ Rn
. If we think of A as a linear

X⊥ = Span(e2, e3) and Y ⊥ = Span(e1, e3)



transformation mapping R
n

 into R
m

, then the column

space of A is the same as the range of A. Let us denote

the range of A by R(A). Thus,

The column space of AT ,R(A)T ), is a subspace of R
n

:

R(AT) = {y ∈ R
n y = ATx    for some  x ∈ R

m}

The column space of R(AT) is essentially the same as

the row space of A, except that it consists of vectors in 

R
n

 (n × 1 matrices) rather than n-tuples. Thus, 

y ∈ R(AT)) if and only if yT
 is in the row space of A.

We have seen that R(AT) ⊥ N(A). The following

theorem shows that N(A) is actually the orthogonal

complement of R(AT).

Theorem 5.2.1 Fundamental

Subspaces Theorem
If A is an m × n matrix, then 

N(A) = R(AT)
⊥
andN(AT) = R(A)⊥

.

Proof

On the one hand, we have already seen that 

N(A) ⊥ R(AT), and this implies that 

N(A) ⊂ R(AT)
⊥

. On the other hand, if x is any vector

in R(AT)
⊥

, then x is orthogonal to each of the column

vectors of AT
 and, consequently, Ax = 0. Thus, x must

be an element of N(A) and hence N(A) = R(AT)
⊥

.

This proof does not depend on the dimensions of A. In

particular, the result will also hold for the matrix 

B = AT
. Consequently,

N(AT) = N(B) = R(BT)
⊥

= R(A)⊥

R(A) = {b ∈ R
m|b = Ax    for some x ∈ R

n}

= the column space of A∣



∎

Example 3
Let

A = [ ]

The column space of A consists of all vectors of the form

[ ] = α[ ]

Note that if x is any vector in R2
 and b = Ax, then

b = [ ][ ] = [ ] = x1[ ]

The null space of AT
 consists of all vectors of the form 

β(−2, 1). Since (1, 2)T  and (−2, 1)T  are orthogonal, it

follows that every vector in R(A) will be orthogonal to

every vector in N(AT). The same relationship holds

between R(AT) and N(A). R(AT) consists of vectors

of the form αe1, and N(A) consists of all vectors of the

form βe2. Since e1 and e2 are orthogonal, it follows that

each vector in R(AT) is orthogonal to every vector in

N(A).

Theorem 5.2.1 is one of the most important theorems in

this chapter. In Section 5.3, we will see that the result 

N(AT) = R(A)⊥
 provides a key to solving least

squares problems. For the present, we will use Theorem

5.2.1 to prove the following theorem, which, in turn, will

be used to establish two more important results about

orthogonal subspaces.

Theorem 5.2.2

1 0

2 0

α

2α

1

2

1 0

2 0

x1

x2

1x1

2x1

1

2



If S is a subspace of Rn
, then S + dim S⊥ = n.

Furthermore, if {x1, …, xr} is a basis for S and 

{xr+1, …, xn} is a basis for S⊥
, then 

{x1, …, xr, xr+1, …, xn} is a basis for Rn
.

Proof

If S = {0}, then S⊥ = R
n

 and

dim S + dim S⊥ = 0 + n = n

If S ≠ {0}, then let {x1, …, xr}, be a basis for S and

define X to be an r × n matrix whose ith row is xT
i

 for

each i. By construction, the matrix X has rank r and 

R(XT) = S. By Theorem 5.2.1,

S⊥ = R(XT)
⊥

= N(X)

It follows from Theorem 3.6.5 that

dim  S⊥ = dim  N(X) = n − r

To show that {x1, …, xr, xr+1, …, xn} is a basis for 

R
n

, it suffices to show that the n vectors are linearly

independent. Suppose that

c1x1 + … + crxr + cr+1xr + cr+1xr+1 + … + cnxn = 0

Let y = c1x1 + … + crxr and 

z = cr+1xr+1 + … + cnxn. We then have

Thus, y and z are both elements of S ∩ S⊥
. But 

S ∩ S⊥ = {0}. Therefore,

Since x1, …, xr are linearly independent,

c1 = c2 = ⋯ = cr = 0

Similarly, xr+1, …, xn are linearly independent and

hence

y + z = 0

y = −z

c1x1 + … + crxr = 0

cr+1xr+1 + … + cnxn = 0



cr+1 = cr+2 = ⋯ = cn = 0

So x1, x2, …, xn are linearly independent and form a

basis for Rn
.

∎

Given a subspace S of R
n

, we will use Theorem 5.2.2 to

prove that each x ∊ R
n

 can be expressed uniquely as a

sum y + z, where y ∈ S andz ∈ S⊥
.

Definition
If U and V are subspaces of a vector space W and each 

w ∈ W  can be written uniquely as a sum u + v, where 

u ∈ U  and v ∈ V , then we say that W is a direct sum

of U and V, and we write W = U ⊕ V .

Theorem 5.2.3
If S is a subspace of Rn

, then

R
n = S ⊕ S⊥

Proof

The result is trivial if either S = {0} or S = R
n

. In the

case where dim S = r, 0 < r < n, it follows from

Theorem 5.2.2 that each vector x ∈ R
n

 can be

represented in the form

x = c1x1 + … + crxr + crxr+1 + … + cnxn

where {x1, …, xr} is a basis for S and {xr+1, …, xn}
is a basis for S⊥

. If we let

then u ∈ S, v ∈ S⊥
, and x = u + v. To show

uniqueness, suppose that x can also be written as a sum 

y + z, where y ∊ S and z ∊ S⊥
. Thus,

u = c1x1 + … + crxr and v = cr+1xr+1 + … + cnxn



But u − y ∈ S and z − v ∈ S⊥
, so each is in S ∩ S⊥

.

Since

S ∩ S⊥ = {0}

it follows that

∎

Theorem 5.2.4

If S is a subspace of Rn
, then (S⊥)

⊥
= S.

Proof

On the one hand, if x ∈ S, then x is orthogonal to each

y in S⊥
. Therefore, x ∈ (S⊥)

⊥
 and hence S ⊂ (S⊥)

⊥

. On the other hand, suppose that z is an arbitrary

element of (S⊥)
⊥

. By Theorem 5.2.3, we can write z as

a sum u + v, where u ∈ S and v ∈ S⊥
. Since v ∈ S⊥

,

it is orthogonal to both u and z. It then follows that

0 = vTz = vTu + vTv = vTv

and, consequently, v = 0. Therefore, z = u ∈ S and

hence S = (S⊥)
⊥

.

∎

It follows from Theorem 5.2.4 that if T is the orthogonal

complement of a subspace S, then S is the orthogonal

complement of T, and we may say simply that S and T

are orthogonal complements. In particular, it follows

from Theorem 5.2.1 that N(A) and R(AT) are

orthogonal complements of each other and that N(AT)

u + v

u − v

x = y + z=

z − v=

u = y and v = z



and R(A) are orthogonal complements. Hence, we may

write

⊥
= R(A)

Recall that the system Ax = b is consistent if and only

if b ∈ R(A). Since R(A) = N(AT)
⊥

, we have the

following result, which may be considered a corollary to

Theorem 5.2.1.

Corollary 5.2.5
If A is an m × n matrix and b ∈ Rm

, then either there

is a vector x ∈ Rn
 such that Ax = b or there is a

vector y ∈ R
m

 such that ATy = 0 and yTb ≠ 0.

Corollary 5.2.5 is illustrated in Figure 5.2.2 for the case

where R(A) is a two-dimensional subspace of R3
. The

angle θ in the figure will be a right angle if and only if 

b ∈ R(A).

Figure 5.2.2.

N(A)⊥ = R(AT) and N(AT)



Figure 5.2.2. Full Alternative Text

Example 4
Let

A =
⎡⎢⎣ 1 1 2

0 1 1

1 3 4

⎤⎥⎦
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Find the bases for N(A), R(AT),N(AT), and R(A).

SOLUTION

We can find bases for N(A) and R(AT) by transforming

A into reduced row echelon form:

→ →

Since (1, 0, 1) and (0, 1, 1) form a basis for the row space

of A, it follows that (1, 0, 1)T  and (0, 1, 1)T  form a

basis for R(AT). If x ∈ N(A), it follows from the

reduced row echelon form of A that

Thus,

x1 = x2 = −x3

Setting x3 = α, we see that N(A) consists of all vectors

of the form α(−1, −1, 1)T . Note that (−1, −1, 1)T  is

orthogonal to (1, 0, 1)T  and (0, 1, 1)T .

To find bases for R(A) and N(AT), transform AT
 to

reduced row echelon form.

→ →

Thus, (1, 0, 1)T  and (0, 1, 2)T  form a basis for R(A). If 

x ∈ N(AT), then x1 = −x3,x2 = −2x3. Hence, 

N(AT) is the subspace of R3
 spanned by (−1, −2, 1)T

. Note that (−1, −2, 1)T  is orthogonal to (1, 0, 1)T  and

(0, 1, 2)T .

We saw in Chapter 3 that the row space and the column

space have the same dimension. If A has rank r, then

T

⎡⎢⎣ 1 1 2

0 1 1

1 3 4

⎤⎥⎦ ⎡⎢⎣ 1 1 2

0 1 1

0 2 2

⎤⎥⎦ ⎡⎢⎣ 1 0 1

0 1 1

0 0 0

⎤⎥⎦x1 + x3

x2 + x3

0=

0=

⎡⎢⎣ 1 0 1

1 1 3

2 1 4

⎤⎥⎦ ⎡⎢⎣ 1 0 1

0 1 2

0 1 2

⎤⎥⎦ ⎡⎢⎣ 1 0 1

0 1 2

0 0 0

⎤⎥⎦



dim R(A) = dim R(AT) = r

Actually, A can be used to establish a one-to-one

correspondence between R(AT) and R(A).

We can think of an m × n matrix A as a linear

transformation from R
n

 to R
m

:

x ∈ R
n → Ax ∈ R

m

Since R(AT) and N(A) are orthogonal complements in 

Rn
,

R
n = R(AT) ⊕ N(A)

Each vector x ∈ Rn
 can be written as a sum

It follows that

and hence

R(A) = {Ax | xRn} = {Ay | y  ∈ R(AT}

Thus, if we restrict the domain of A to R(AT), then A

maps R(AT) onto R(A). Furthermore, the mapping is

one-to-one. Indeed, if x1, x2 ∈ R(AT) and

Ax1 = Ax2

then

A(x1 − x2) = 0

and hence

x1 − x2 ∈ R(AT) ∩ N(A)

Since R(AT) ∩ N(A) = {0}, it follows that x1 = x2.

Therefore, we can think of A as determining a one-to-one

correspondence between R(AT) and R(A). Since each 

b ∈ R(A) corresponds to exactly one y ∈ R(AT), we

can define an inverse transformation from R(A) to 

x = y + z, z ∈ N(A)y ∈ R(AT),

Ax = Ay + Az = Ay for each x ∈ R
n



R(AT). Indeed, every m × n matrix A is invertible

when viewed as a linear transformation from R(AT) to

R(A).

Example 5

Let A = [ ].R(AT) is spanned by e1 and e2,

and N(A) is spanned by e3. Any vector x ∈ R3
 can be

written as a sum

x = y + z

where

If we restrict ourselves to vectors y ∈ R(AT), then

y = → Ay =

In this case, R(A) = R
2

 and the inverse transformation

from R(A) to R(AT) is defined by

b = →

2 0 0

0 3 0

y = (x1,x2, 0)T ∈ R(AT) and z = (0, 0,x3)T ∈ N(A)

⎡⎢⎣ x1

x2

0

⎤⎥⎦ ⎡⎢⎣ 2x1

3x2

⎤⎥⎦⎡⎢⎣ b1

b2

⎤⎥⎦ ⎡⎢⎣ 1
2 b1

1
3 b2

0

⎤⎥⎦



Section 5.2 Exercises

1. For each of the following matrices, determine a basis for each of

the subspaces R(AT), N(A), R(A), and N(AT
).

1. A = [ ]

2. A = [ ]

3. A =

4. A =

2. Let S be the subspace of R
3
 spanned by x = (1, −1, 1)T

.

1. Find a basis for S⊥
.

2. Give a geometrical description of S and S⊥
.

3. 1. Let S be the subspace of R
3
 spanned by the vectors 

x = (x1, x2, x3)
T

 and y = (y1, y2, y3)
T

. Let

A = [ ]

Show that S⊥ = N(A).

2. Find the orthogonal complement of the subspace of R
3

spanned by (1, 2, 1)T
 and (1, −1, 2)T

.

4. Let S be the subspace of R
4
 spanned by x1 = (1, 0, −2, 1)

T
 and 

x2 = (0, 1, 3, −2)T
. Find a basis for S⊥

.

5. Let A be a 3 × 2 matrix with rank 2. Give geometric descriptions

of R(A) and N(AT), and describe geometrically how the

subspaces are related.

6. Is it possible for a matrix to have the vector (3, 1, 2) in its row

space and (2, 1, 1)
T

 in its null space? Explain.

3 4

6 8

1 3 1

2 4 0

⎡⎢⎣ 4 −2

1 3

2 1

3 4

⎤⎥⎦⎡⎢⎣ 1 0 0 0

0 1 1 1

0 0 1 1

1 1 2 2

⎤⎥⎦ x1 x2 x3

y1 y2 y3



7. Let aj be a nonzero column vector of an m × n matrix A. Is it

possible for aj to be in N(AT)? Explain.

8. Let S be the subspace of R
n

 spanned by the vectors x1, x2, …, xk

. Show that y ∈ S⊥
 if and only if y ⊥ xi for i = 1, …, k.

9. If A is an m × n matrix of rank r, what are the dimensions of

N(A) and N(AT)? Explain.

10. Prove Corollary 5.2.5.

11. Prove: If A is an m × n matrix and x ∈ R
n

, then either Ax = 0
or there exists y ∈ R(AT) such that xTy ≠ 0. Draw a picture

similar to Figure 5.2.2 to illustrate this result geometrically for the

case where N(A) is a two-dimensional subspace of R
3
.

12. Let A be an m × n matrix. Explain why the following are true.

1. Any vector x in Rn
 can be uniquely written as a sum 

y + z, where y ∈ N(A) and z ∈ R(AT).

2. Any vector b ∈ R
m

 can be uniquely written as a sum 

u + v, where u ∈ N(AT) and v ∈ R(A).

13. Let A be an m × n matrix. Show that

1. if x ∈ N(ATA), then Ax is in both R(A) and N(AT).

2. N(ATA) = N(A).

3. A and ATA have the same rank.

4. if A has linearly independent columns, then ATA is

nonsingular.

14. Let A be an m × n matrix, B an n × r matrix, and C = AB.

Show that

1. N(B) is a subspace of N(C).

2. N(C)⊥
 is a subspace of N(B)⊥

 and, consequently, 

R(C)⊥
 is a subspace of R(B)⊥

.

15. Let U and V be subspaces of a vector space W. Show that if 

W = U ⊕ V , then U ∩ V = {0}.

16. Let A be an m × n matrix of rank r and let {x1, …, xr} be a

basis for R(AT). Show that {Ax1, …, Axr} is a basis for R(A).

17. Let x and y be linearly independent vectors in R
n

 and let 

S = Span(x, y). We can use x and y to define a matrix A by

setting

A = xyT + yxT

1. Show that A is symmetric.



2. Show that N(A) = S⊥
.

3. Show that the rank of A must be 2.



5.3 Least Squares Problems
A standard technique in mathematical and statistical

modeling is to find a least squares fit to a set of data

points in the plane. The least squares curve is usually the

graph of a standard type of function, such as a linear

function, a polynomial, or a trigonometric polynomial.

Since the data may include errors in measurement or

experiment-related inaccuracies, we do not require the

curve to pass through all the data points. Instead, we

require the curve to provide an optimal approximation in

the sense that the sum of squares of errors between the y

values of the data points and the corresponding y values

of the approximating curve are minimized.

The technique of least squares was developed

independently by Adrien-Marie Legendre and Carl

Friedrich Gauss. The first paper on the subject was

published by Legendre in 1806, although there is clear

evidence that Gauss had discovered it as a student nine

years prior to Legendre’s paper and had used the method

to do astronomical calculations. Figure 5.3.1 is a portrait

of Gauss.

Figure 5.3.1.



Pearson Education, Inc.

Figure 5.3.1. Full Alternative Text

Application 1
Astronomy—The Ceres Orbit of Gauss

On January 1, 1801, the Italian astronomer Giuseppe

Piazzi discovered the asteroid Ceres. He was able to track

the asteroid for six weeks, but it was lost due to

interference caused by the sun. A number of leading

astronomers published papers predicting the orbit of the

asteroid. Gauss also published a forecast, but his

predicted orbit differed considerably from the others.
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Ceres was relocated by one observer on December 7 and

by another on January 1, 1802. In both cases, the

position was very close to that predicted by Gauss. Gauss

won instant fame in astronomical circles and for a time

was more well known as an astronomer than as a

mathematician. The key to his success was the use of the

method of least squares.

Least Squares Solutions of

Overdetermined Systems
A least squares problem can generally be formulated as

an overdetermined linear system of equations. Recall

that an overdetermined system is one involving more

equations than unknowns. Such systems are usually

inconsistent. Thus, given an m × n system Ax = b

with m > n, we cannot expect in general to find a vector 

x ∈ Rn
 for which Ax equals b. Instead, we can look for

a vector x for which Ax is “closest” to b. As you might

expect, orthogonality plays an important role in finding

such an x.

If we are given a system of equations Ax = b, where A

is an m × n matrix with m > n and b ∈ R
m

, then, for

each x ∈ R
n

, we can form a residual

r(x) = b = Ax

The distance between b and Ax is given by

‖b − Ax‖ = ‖ r(x)‖

We wish to find a vector x ∈ R
n

 for which ‖ r(x)‖
will be a minimum. Minimizing ‖ r(x)‖ is equivalent

to minimizing ‖ r(x)‖2
. A vector x̂ that accomplishes

this is said to be a least squares solution of the system 

Ax = b.



If x̂ is a least squares solution of the system Ax = b

and p = Ax̂, then p is a vector in the column space of A

that is closest to b. The next theorem guarantees that

such a closest vector p not only exists, but is unique.

Additionally, it provides an important characterization of

the closest vector.

Theorem 5.3.1
Let S be a subspace of Rm

. For each b ∈ Rm
, there is a

unique element p of S that is closest to b; that is,

‖b − y‖ > ‖b − p‖

for any y ≠ p in S. Furthermore, a given vector p in S

will be closest to a given vector b ∈ R
m

 if and only if 

b − p ∈ S⊥
.

Proof

Since Rm = S ⊕ S⊥
, each element b in Rm

 can be

expressed uniquely as a sum

b = p + z

where p ∈ S and z ∈ S⊥
. If y is any other element of S,

then

‖b − y‖2 = ‖(b − p) + (p − y)‖2

Since p − y ∈ S and b − p = z ∈ S⊥
, it follows from

the Pythagorean law that

‖b − y‖2 = ‖b − p‖2 + ‖p − y‖2

Therefore,

‖b − y‖ > ‖b − p‖

Thus, if p ∈ S and b − p ∈ S⊥
, then p is the element

of S that is closest to b. Conversely, if q ∈ S and 



b − q ∉ S⊥
, then q ≠ p, and it follows from the

preceding argument (with y = q) that

‖b − q‖ > ‖b − p‖

∎

In the special case that b is in the subspace S to begin

with, we have

and

b = b + 0

By the uniqueness of the direct sum representation,

A vector x̂ will be a solution of the least squares problem 

Ax = b if and only if p = Ax̂ is the vector in R(A) that

is closest to b. The vector p is said to be the projection of

b onto R(A). It follows from Theorem 5.3.1 that

b − p = b = Ax̂ = r(x̂)

must be an element of R(A⊥). Thus, x̂ is a solution of

the least squares problem if and only if

r(x̂) ∈ R(A⊥)

(1)

(see Figure 5.3.2).

Figure 5.3.2.

b = p + z, z ∈ S⊥p ∈ S

p = b z = 0and



Figure 5.3.2. Full Alternative Text

How do we find a vector x̂ satisfying (1)? The key to

solving the least squares problem is provided by

Theorem 5.2.1, which states that

R(A⊥) = N(AT)

A vector x̂ will be a least squares solution to the system 

Ax = b if and only if

r(x̂) ∈ N(AT)

or, equivalently,

0 = AT r(x̂) = AT (b − Ax̂)

Thus, to solve the least squares problem Ax = b, we

must solve

AT Ax = AT b

(2)

Equation (2) represents an n × n system of linear

equations. These equations are called the normal

equations. In general, it is possible to have more than

one solution of the normal equations; however, if x̂ and 
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ŷ are both solutions, then, since the projection p of b

onto R(A) is unique,

Ax̂ = Aŷ = p

The following theorem characterizes the conditions

under which the least squares problem Ax = b will

have a unique solution.

Theorem 5.3.2
If A is an m × n matrix of rank n, the normal equations

AT Ax = AT b

have a unique solution

x̂ = (AT A)
−1

AT b

and x̂ is the unique least squares solution of the system 

Ax = b.

Proof

We will first show that AT A is nonsingular. To prove

this, let z be a solution of

AT Ax = 0

(3)

Then Az ∈ N(AT). Clearly, Az ∈ R(A) = N(AT)
⊥

. Since N(AT) ∩ N(AT)
⊥ = {0}, it follows that 

Az = 0. If A has rank n, the column vectors of A are

linearly independent and, consequently, Ax = 0 has

only the trivial solution. Thus, z = 0 and (3) has only

the trivial solution. Therefore, by Theorem 1.5.2, AT A is

nonsingular. It follows that x̂ = (AT A)
−1

AT b is the

unique solution of the normal equations and,

consequently, the unique least squares solution of the

system Ax = b.



∎

The projection vector

p = Ax̂ = A(AT A)
−1

AT b

is the element of R(A) that is closest to b in the least

squares sense. The matrix P = A(AT A)
−1

AT
 is called

the projection matrix.

Application 2
Spring Constants

Hooke’s law states that the force applied to a spring is

proportional to the distance that the spring is stretched.

Thus, if F is the force applied and x is the distance that

the spring has been stretched, then F = kx. The

proportionality constant k is called the spring constant.

Some physics students want to determine the spring

constant for a given spring. They apply forces of 3, 5, and

8 pounds, which have the effect of stretching the spring

4, 7, and 11 inches, respectively. Using Hooke’s law, they

derive the following system of equations:

The system is clearly inconsistent, since each equation

yields a different value of k. Rather than use any one of

these values, the students decide to compute the least

squares solution of the system.

4k

7k

11k

3=
5=
8=

(4, 7, 11) (k) = (4, 7, 11)

186k = 135
k ≈ 0.726

⎡⎢⎣ 4
7
11

⎤⎥⎦ ⎡⎢⎣ 3
5
8

⎤⎥⎦



Example 1
Find the least squares solution of the system

SOLUTION

The normal equations for this system are

[ ] [ ] = [ ]

This simplifies to the 2 × 2 system

[ ][ ] = [ ]

The solution of the 2 × 2 system is ( 83
50 , 71

50 )
T

.

Scientists often collect data and try to find a functional

relationship among the variables. For example, the data

may involve temperatures T0, T1, …, Tn of a liquid

measured at times t0, t1, …, tn, respectively. If the

temperature T can be represented as a function of the

time t, this function can be used to predict the

temperatures at future times. If the data consist of n + 1
points in the plane, it is possible to find a polynomial of

degree n or less passing through all the points. Such a

polynomial is called an interpolating polynomial.

Actually, since the data usually involve experimental

error, there is no reason to require that the function pass

through all the points. Indeed, lower degree polynomials

that do not pass through the points exactly usually give a

truer description of the relationship between the

variables. If, for example, the relationship between the

variables is actually linear and the data involve slight

errors, it would be disastrous to use an interpolating

polynomial (see Figure 5.3.3).

x1 + x2 = 3
−2x1 + 3x2 = 1

2x1 − x2 = 2

1 −2 2
1 3 −1

⎡⎢⎣ 1 1
−2 3
2 −1

⎤⎥⎦ x1

x2

1 −2 2
1 3 −1

⎡⎢⎣ 3
1
2

⎤⎥⎦9 −7
−7 11

x1

x2

5
4



Figure 5.3.3.



Figure 5.3.3. Full Alternative Text

Given a table of data

x x1 x2 ⋯ xm

y y1 y2 ⋯ ym

we wish to find a linear function

y = c0 + c1x

that best fits the data in the least squares sense. If we

require that

we get a system of m equations in two unknowns.

[ ] =

(4)

The linear function whose coefficients are the least

squares solution of (4) is said to be the best least squares

fit to the data by a linear function.

Example 2
Given the data

x 0 3 6

y 1 4 5

yi = c0 + c1xi for i = 1, …, m

⎡⎢⎣ 1 x1

1 x2

⋮ ⋮
1 xm

⎤⎥⎦ c0

c1

⎡⎢⎣ y1

y2

⋮

my

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-03-003.xhtml#la_fig05-03-003


find the best least squares fit by a linear function.

SOLUTION

For this example, the system (4) becomes

Ac = y

where

A = , c = [ ], and   y =

The normal equations

AT Ac = AT y

simplify to

[ ][ ] = [ ]

(5)

The solution of this system is ( 4
3 , 2

3 ). Thus, the best

linear least squares fit is given by

y =
4
3

+
2
3

x

Example 2 could also have been solved using calculus.

The residual r(c) is given by

r(c) = y − Ac

and

Thus,  can be thought of as a function of two

variables, f(c0, c1). The minimum of this function will

occur when its partial derivatives are zero:

⎡⎢⎣ 1 0
1 3
1 6

⎤⎥⎦ c0

c1

⎡⎢⎣ 1
4
5

⎤⎥⎦3 9
9 45

c0

c1

10
42

‖r(c)‖2 = ‖y − Ac‖2

= [1 − (c0 + 0c1)]2 + [4 − (c0 + 3c1)]2 + [5 − (c0 + 6c1)]2

= f(c0, c1)

‖r(c)‖2



Dividing both equations through by −2 gives the same

system as (5) (see Figure 5.3.4).

Figure 5.3.4.

Figure 5.3.4. Full Alternative Text

If the data do not resemble a linear function, we could

use a higher degree polynomial. To find the coefficients 

c0, c1, …, cn of the best least squares fit to the data

∂f
∂c0

= −2(10 − 3c0 − 9c1) = 0

∂f
∂c1

= −6(14 − 3c0 − 15c1) = 0
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x x1 x2 … xm

y y1 y2 … ym

by a polynomial of degree n, we must find the least

squares solution the system:

=

(6)

Example 3
Find the best quadratic least squares fit to the data

x 0 1 2 3

y 3 2 4 4

SOLUTION

For this example, the system (6) becomes

=

Thus, the normal equations are

=

⎡⎢⎣ 1 x1 x2
1 ⋯ xn

1

1 x2 x2
2 … xn

2

⋮
1 xm x2

m ⋯ x1
m

⎤⎥⎦ ⎡⎢⎣ c0

c1

⋮
cn

⎤⎥⎦ ⎡⎢⎣ 1
y2

⋮
ym

y ⎤⎥⎦⎡⎢⎣ 1 0 0
1 1 1
1 2 4
1 3 9

⎤⎥⎦ ⎡⎢⎣ c0

c1

c2

⎤⎥⎦ ⎡⎢⎣ 3
2
4
4

⎤⎥⎦⎡⎢⎣ 1 1 1 1
0 1 2 3
0 1 4 9

⎤⎥⎦ ⎡⎢⎣ 1 0 0
1 1 1
1 2 4
1 3 9

⎤⎥⎦ ⎡⎢⎣ c0

c1

c2

⎤⎥⎦ ⎡⎢⎣ 1 1 1 1
0 1 2 3
0 1 4 9

⎤⎥⎦ ⎡⎢⎣ 3
2
4
4

⎤⎥⎦



These simplify to

=

The solution of this system is (2.75, −0.25, 0.25). The

quadratic polynomial that gives the best least squares fit

to the data is

p(x) = 2.75 − 0.25x + 0.25x2

Application 3
Coordinate Metrology

Many manufactured goods, such as rods, disks, and

pipes, are circular in shape. A company will often employ

quality control engineers to test whether items produced

on the production line are meeting industrial standards.

Sensing machines are used to record the coordinates of

points on the perimeter of the manufactured products.

To determinehow close these points are to being circular,

we can fit a least squares circle to the data and check to

see how close the measured points are to the circle. (See

Figure 5.3.5.)

Figure 5.3.5.

⎡⎢⎣ 4 6 14
6 14 36
14 36 98

⎤⎥⎦ ⎡⎢⎣ c0

c1

c2

⎤⎥⎦ ⎡⎢⎣ 13
22
54

⎤⎥⎦



Figure 5.3.5. Full Alternative Text

To fit a circle
2 2
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(x − c1)2 + (y − c2)2 = r2

(7)

to n sample pairs of coordinates 

(x1, y1), (x2, y2), …, (xn, yn), we must determine the

center (c1, c2) and the radius r. Rewriting equation (7),

we get

2xc1 + 2yc2 + (r2 − c2
1 − c2

2) = x2 + y2

If we set c3 = r2 − c2
1 − c2

2, then the equation takes the

form

2xc1 + 2yc2 + c3 = x2 + y2

Substituting each of the data points into this equation,

we obtain the overdetermined system

=

Once we find the least squares solution c, the center of

the least squares circle is (c1, c2), and the radius is

determined by setting

r = √c3 + c2
1 + c2

2

To measure how close the sampled points are to the

circle, we can form a residual vector r by setting

ri = r2 − (xi − c1)2 − (yi − c2)2   i = 1, …, n

We can then use ∥r∥ as a measure of how close the

points are to the circle.

Application 4
Management Science: The Analytic Hierarchy Process

Revisited

⎡⎢⎣ 2x1 2y1 1
2x2 2y2 1

⋮ ⋮ ⋮
2xn 2yn 1

⎤⎥⎦ ⎡⎢⎣ c1

c2

c3

⎤⎥⎦ ⎡⎢⎣ x2
1 + y2

1

x2
2 + y2

2

⋮
x2

n + y2
n

⎤⎥⎦



In Section 1.3, we looked at an example of how one can

use the analytic hierarchy process from management

science as a tool for making hiring decisions in a

mathematics department. The process involves selecting

the criteria upon which the decision is based and

assigning weights to the criteria. In the example, hiring

decisions were based on rating the candidates in the

areas of Research, Teaching, and Professional Activities.

For each of these areas, the committee assigned weights

to all of candidates. The weights are measurements of the

relative strengths of the candidates in each area. Once all

of the weights have been assigned, the overall ranking of

the candidates can be determined by multiplying a

matrix times a vector.

The key to the whole process is the assignment of

weights. In our example, the evaluation of teaching will

involve qualitative judgments by the search committee.

These judgments must then be translated into weights.

The evaluation of research can be both quantitative

based on the number of pages the candidates have

published in journals and qualitative based on the

quality of the papers published. A standard technique for

determining weights based on qualitative judgments is to

first make pairwise comparisons between the candidates,

and then use those comparisons to determine weights.

The method we describe here leads to an overdetermined

linear system. We will compute the weights by finding

the least squares solution to the system.

Later in Chapter 6 (Section 8), we will examine an

alternative “eigenvector” method that is commonly used

to determine weights based on pairwise comparisons. In

that method, one forms a comparison matrix C whose (i,

j) entry represents the weight of the ith characteristic or

alternative relative to the jth characteristic or alternative.

The method depends upon an important theorem about

positive matrices (i.e., matrices whose entries are all

positive real numbers) that we will study in Section 6.8.



The “eigenvector” method was recommended by T. L.

Saaty, the developer of the analytic hierarchy process

theory.

For our search example, the committee assigned weights

for the three criteria based on the qualitative judgments

that Teaching and Research were equally important and

that both were twice as important as Professional

Activities. To reflect these judgments the weights 

w1, w2, w3 for Research, Teaching, and Professional

Activities must satisfy,

w1 = w2,   w1 = 2w3,   w2 = 2w3

Additionally, the weights must all add up to 1. Thus, the

weights must be solutions to the system

Although the system is overdetermined, it does have a

unique solution w = (0.4, 0.4, 0.2)T
. Usually,

overdetermined systems turn out to be inconsistent. In

fact, had the committee used four criteria and made

pairwise comparisons based on their human judgments,

it is quite likely that the system they would end up with

(seven equations and four unknowns) would be

inconsistent. For an inconsistent system, one could

determine weights that add up to 1 by finding the least

squares solution to a linear system. We illustrate how

this is done in the next example.

Example 4
Suppose the search committee for the mathematics

position has narrowed the field down to four candidates:

Dr. Gauss, Dr. Ipsen, Dr. O’Leary, and Dr. Taussky. To

determine the weights for research, the committee

w1 − w2 + 0w3 = 0
w1 + 0w2 − 2w3 = 0
0w1 + w2 − 2w3 = 0

w1 + w2 + w3 = 1



decides to evaluate both the quantity and quality of the

publications. The committee feels that quality is more

important than quantity so in comparing the two, they

give quantity of publications a weight of 0.4 and quality a

weight of 0.6. The hierarchy structure of the decision

process is shown in Figure 5.3.6. All of the weights

computed by the committee are included in the figure.

We will examine how the weights for quantity and

quality of publications were determined and then

combine all of the weights in the figure to calculate a

vector r containing the overall ratings of the candidates.

Figure 5.3.6.



Analytic Hierarchy Process Chart

Figure 5.3.6. Full Alternative Text

The quantitative research weights are computed by

taking the number of pages published by a candidate and

dividing by the total number of pages published by all

candidates combined. These weights are given in Table

5.3.1.

Table 5.3.1 Quantity of

Research Weights

CandidatePagesWeights

Gauss 700 0.35

Ipsen 400 0.20

O’Leary 500 0.25

Taussky 400 0.20

Total 2000 1.00
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To rate the quality of research, the committee did

comparisons of the quality of publications for each pair

of candidates. If for a particular pair the quality was

rated equal, then the candidates were given equal

weights. It was agreed that no candidate would receive a

quality weight that was more than twice the rate of

another candidate. Thus, if candidate i had more

impressive publications than candidate j, then weights

would be assigned so that

wi = βwj or  wj =
1
β

wi  where 1 < β ≤ 2

After studying the publications of all the candidates, the

committee agreed upon the following pairwise

comparisons of the weights:

w1 = 1.75w2,  w1 = 1.5w3,  w1 = 1.25w4,   w2 = 0.75w3,   w2 = 0.50w4,   w3 = 0.75w4

These conditions lead to the linear system

For our solution w to be a weight vector, its entries must

add up to 1.

w1 + w2 + w3 + w4 = 1

Given that the AHP weights must satisfy this last

equation exactly, we can solve for w4:

w4 = 1 − w1 − w2 − w3

(8)

and rewrite the other equations to form a 6 × 3 system

1w1 − 1.75w2 + 0w3 + 0w4

1w1 + 0w2 − 1.5w3 + 0w4

1w1 + 0w2 + 0w3 − 1.25w4

0w1 + 1w2 − 0.75w3 + 0w4

0w1 + 1w2 + w3 − 0.50w4

0w1 + 0w2 + 1w3 − 0.75w4

0=
0=
0=
0=
0=
0=



Although this system is inconsistent, it does have a

unique least squares solution 

w1 = 0.3289,  w2 = 0.1739,  w3 = 0.2188. It follows

from equation (8) that w4 = 0.2784.

The final step in our decision process is to combine the

rating vectors from the categories and subcategories of

evaluation. We multiply each of these vectors by the

appropriate weight given in the chart and then combine

them to form the overall rating vector r.

The candidate with the highest rating is O’Leary. Gauss

comes in second. Ipsen and Taussky are third and fourth,

respectively.

1w1 − 1.75w2 + 0w3

1w1 + 0w2 − 1.5w3

2.25w1 + 1.25w2 + 1.25w3

0w1 + 1w2 − 0.75w3

0.5w1 + 1.5w2 + 0.5w3

0.75w1 + 0.75w2 + 1.75w3

0=
0=
1.25=
0=
0.5=

= 0.75

r = 0.40 0.40 + 0.60 + 0.40 + 0.20

= 0.40 + 0.40 + 0.20 =

⎡⎢⎣ ⎡⎢⎣ 0.35
0.20
0.25
0.20

⎤⎥⎦ ⎡⎢⎣ 0.3289
0.1739
0.2188
0.2784

⎤⎥⎦ ⎤⎥⎦ ⎡⎢⎣ 0.21
0.29
0.33
0.17

⎤⎥⎦ ⎡⎢⎣ 0.23
0.28
0.28
0.21

⎤⎥⎦⎡⎢⎣ 0.3373
0.1843
0.2313
0.2470

⎤⎥⎦ ⎡⎢⎣ 0.21
0.29
0.33
0.17

⎤⎥⎦ ⎡⎢⎣ 0.23
0.28
0.28
0.21

⎤⎥⎦ ⎡⎢⎣ 0.2649
0.2457
0.2805
0.2088

⎤⎥⎦



Section 5.3 Exercises

1. Find the least squares solution of each of the following systems:

1. 

2. 

3. 

2. For each of your solutions x̂ in Exercise 1:

1. determine the projection p = Ax̂.

2. calculate the residual r(x̂).

3. verify that r(x̂) ∈ N(AT).

3. For each of the following systems Ax = b, find all least squares

solutions:

1. A = ,  b =

2. A = ,  b =

4. For each of the systems in Exercise 3, determine the projection p

of b onto R(A) and verify that b − p is orthogonal to each of the

column vectors of A.

5. 1. Find the best least squares fit by a linear function to the

data

x −1 0 1 2

y 0 1 3 9

x1 + x2 = 3

2x1 − 3x2 = 1

0x1 + 0x2 = 2

−x1 + x2 = 10

2x1 + x2 = 5

x1 − 2x2 = 20

x1 + x2 + x3 = 4

−x1 + x2 + x3 = 0

−x2 + x3 = 1

x1         + x3 = 2

⎡⎢⎣ 1 2

2 4

−1 −2

⎤⎥⎦ ⎡⎢⎣3

2

1

⎤⎥⎦⎡⎢⎣ 1 1 3

−1 3 1

1 2 4

⎤⎥⎦ ⎡⎢⎣−2

0

8

⎤⎥⎦



2. Plot your linear function from part (a) along with the

data on a coordinate system.

6. Find the best least squares fit to the data in Exercise 5 by a

quadratic polynomial. Plot the points x = 1, 0, 1, 2 for your

function and sketch the graph.

7. Given a collection of points (x1, y1), (x2, y2), …, (xn, yn), let

and let y = c0 + c1x be the linear function that gives the best

least squares fit to the points. Show that if x̄ = 0, then

8. The point (x̄, ȳ) is the center of mass for the collection of points

in Exercise 7. Show that the least squares line must pass through

the center of mass. [Hint: Use a change of variables z = x − x̄ to

translate the problem so that the new independent variable has

mean 0.]

9. Let A be an m × n matrix of rank n and let P = A(AT A)
−1

AT
.

1. Show that Pb = b for every b ∈ R(A). Explain this

property in terms of projections.

2. If b ∈ R(A)⊥
, show that Pb = 0.

3. Give a geometric illustration of parts (a) and (b) if R(A)

is a plane through the origin in R
3

.

10. Let A be an 8 × 5 matrix of rank 3, and let b be a nonzero vector

in N(AT).

1. Show that the system Ax = b must be inconsistent.

2. How many least squares solutions will the system 

Ax = b have? Explain.

11. Let P = A(AT A)
−1

AT
, where A is an m × n matrix of rank n.

1. Show that P 2 = P .

2. Prove that P k = P  for k = 1, 2, ….

3. Show that P is symmetric. [Hint:If B is nonsingular, then

(B−1)
T

= (BT)
−1

.]

x = (x1, x2, …, xn)T y = (y1, y2, …, yn)T

x̄ =
1

n

n

Σ
i=1

xi ȳ = 1
n

n

Σ
i=1

yi

c0 = ȳ and c1 =
xT y

xT x



12. Show that if

[ ][ ] = [ ]

then x̂ is a least squares solution of the system Ax = b and r is

the residual vector.

13. Let A ∈ R
m×n

 and let x̂ be a solution of the least squares

problem Ax = b. Show that a vector y ∈ R
n

 will also be a

solution if and only if y = x̂ + z, for some vector z ∈ N(A).

[Hint: N(AT A) = N(A).]

14. Find the equation of the circle that gives the best least squares

circle fit to the points (−1, −2), (0, 2.4), (1.1, −4), and 

(2.4, −1.6).

15. Suppose that in the search procedure described in Example 4, the

search committee made the following judgments in evaluating the

teaching credentials of the candidates:

1. Gauss and Taussky have equal teaching credentials.

2. O’Leary’s teaching credentials should be given 1.25 times

the weight of Ipsen’s credentials and 1.75 times the

weight given to the credentials of both Gauss and

Taussky.

3. Ipsen’s teaching credentials should be given 1.25 times

the weight given to the credentials of both Gauss and

Taussky.

1. Use the method given in Application 4 to determine a

weight vector for rating the teaching credentials of the

candidates.

2. Use the weight vector from part (a) to obtain overall

ratings of the candidates.

A I

0 AT

ˆ

r

x b

0



5.4 Inner Product Spaces
Scalar products are useful not only in R

n
, but also in a

wide variety of contexts. To generalize this concept to

other vector spaces, we introduce the following

definition.

Definition and Examples

Definition
An inner product on a vector space V is an operation

on V that assigns, to each pair of vectors x and y in V, a

real number ⟨x, y⟩ satisfying the following conditions:

1. ⟨x, x⟩ ≥ 0 with equality if and only if x = 0

2. ⟨x, y⟩ = ⟨y, x⟩ for all x and y in V

3. ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩ for all x, y, z in V and all

scalars α and β

A vector space V with an inner product is called an

inner product space.

The Vector Space Rn

The standard inner product for R
n

 is the scalar product

⟨x, y⟩ = x
T

y

Given a vector w with positive entries, we could also

define an inner product on R
n

 by



⟨x, y⟩ =
n

∑
i=1

xiyiwi

(1)

The entries wi are referred to as weights.

The Vector Space Rm×n

Given A and B in Rm×n
, we can define an inner product

by

⟨A,B⟩ =
m

∑
i=1

n

∑
j=1

aijbij

We leave it to the reader to verify that (2) does indeed

define an inner product on R
m×n

.

The Vector Space C[a, b]
We may define an inner product on C[a, b] by

⟨f, g⟩ = ∫
b

a

f(x) g(x)dx

(3)

Note that

⟨f, f⟩ = ∫
b

a

(f(x))2dx ≥ 0

If f(x0) ≠ 0 for some x0 in [a, b], then, since (f(x))2

is continuous, there exists a subinterval I of [a, b]

containing x0 such that (f(x))2 ≥ (f(x0))2/2 for all x

in I. If we let p represent the length of I, then it follows

that

⟨f, f⟩ = ∫
b

a

(f(x))2dx ≥ ∫
I

(f(x))2dx ≥
(f(x0))2P

2
> 0

So if ⟨f, f⟩ = 0, then f (x) must be identically zero on

[a, b]. We leave it to the reader to verify that (3) satisfies



the other two conditions specified in the definition of an

inner product.

If w(x) is a positive continuous function on [a, b], then

⟨f, g⟩ = ∫
b

a

f(x)g(x)w(x)dx

(4)

also defines an inner product on C[a, b]. The function

w(x) is called a weight function. Thus, it is possible to

define many different inner products on C[a, b].

The Vector Space Pn

Let x1,x2, …,xn be distinct real numbers. For each

pair of polynomials in Pn, define

⟨p, q⟩ =
n

∑
i=1

P(xi) g(xi)

(5)

It is easily seen that (5) satisfies conditions (ii) and (iii)

of the definition of an inner product. To show that (i)

holds, note that

⟨p, p⟩ =
n

∑
i=1

(p(xi))2 ≥ 0

If ⟨p, p⟩ = 0, then x1,x2, …,xn must be roots of 

p(x) = 0. Since p(x) is of degree less than n, it must be

the zero polynomial.

If w(x) is a positive function, then

⟨p, q⟩ =
n

∑
i=1

P(xi)q(xi)w(xi)

also defines an inner product on Pn.



Basic Properties of Inner

Product Spaces
The results presented in Section 5.1 for scalar products in

Rn
 all generalize to inner product spaces. In particular, if

v is a vector in an inner product space V, the length, or

norm of v is given by

∥v∥ = √⟨v, v⟩

Two vectors u and v are said to be orthogonal if 

⟨u, v⟩ = 0. As in Rn
, a pair of orthogonal vectors will

satisfy the Pythagorean law.

Theorem 5.4.1 The

Pythagorean Law
If u and v are orthogonal vectors in an inner product

space V, then

∥u + v∥2 = ∥u∥2 + ∥v∥2

Proof

Interpreted in R
2

, this is just the familiar Pythagorean

theorem as shown in Figure 5.4.1.

Figure 5.4.1.

∥u + v∥2 = ⟨u + v, u + v⟩

= ⟨u, u⟩ + 2⟨u, v⟩ + ⟨v, v⟩

= ∥u∥2 + ∥v∥2



Figure 5.4.1. Full Alternative Text

Example 1
Consider the vector space C[−1, 1] with an inner

product defined by (3). The vectors 1 and x are

orthogonal, since

⟨1,x⟩ = ∫
1

−1
1 ⋅ xdx = 0

To determine the lengths of these vectors, we compute

It follows that

Since 1 and x are orthogonal, they satisfy the

Pythagorean law:

2 = 2 + 2 = 2 +
2

3
=

8

3

The reader may verify that

2 = ⟨1 + x, 1 + x⟩ = ∫
1

−1
(1 + x)2dx =

8

3

⟨1, 1⟩ = ∫ 1
−1 1 ⋅ 1 dx = 2

⟨x,x⟩ = ∫ 1
−1 x

2dx =
2

3

∥1∥ = (⟨1, 1⟩)1/2 = √2

∥x∥ = (⟨x,x⟩)1/2 =
√6
3

‖1 + x‖ ∥1∥ ∥x∥

‖1 + x‖

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-04-001.xhtml#la_fig05-04-001


Example 2
For the vector space C[−π,π], if we use a constant

weight function w(x) = 1/π to define an inner product

⟨f, g⟩ =
1
π
∫

π

−π

f(x)g(x)dx

(6)

then

Thus, cos x and sin x are orthogonal unit vectors with

respect to this inner product. It follows from the

Pythagorean law that

‖ cosx + sinx‖ = √2

The inner product (6) plays a key role in Fourier analysis

applications involving a trigonometric approximation of

functions. We will look at some of these applications in

Section 5.5.

For the vector space R
m×n

, the norm derived from the

inner product (2) is called the Frobenius norm and is

denoted by ∥ ⋅ ∥F . Thus, if A ∈ R
m×n

, then

‖A‖F = (⟨A,A⟩)1/2 = (
m

∑
i=1

n

∑
j=1

a2
ij)

1/2

Example 3
If

⟨cosx, sinx⟩

⟨cosx, cosx⟩

⟨sinx, sinx⟩

1

π
∫ π

−π cosx  sinx dx = 0=

1

π
∫ π

−π cosx  cosx dx = 1=

1

π
∫ π

−π sinx  sinx dx = 1=

A =
⎡⎢⎣1 1

1 2
3 3

⎤⎥⎦ and B =
⎡⎢⎣−1 1

3 0
−3 4

⎤⎥⎦



then

⟨A,B⟩ = 1 ⋅ −1 + 1 ⋅ 1 + 1 ⋅ 3 + 2 ⋅ 0 + 3 ⋅ −3 + 3 ⋅ 4 = 6

Hence, A is not orthogonal to B. The norms of these

matrices are given by

Example 4
In P5, define an inner product by (5) with 

xi = (i − 1)/4 for i = 1, 2, …, 5. The length of the

function P(x) = 4x is given by

‖4x‖ = (⟨4x, 4x⟩)1/2 = (
5

∑
i=1

16x2
i)

1/2

= (
5

∑
i=1

(i − 1)2)

1/2

= √30

Definition
If u and v are vectors in an inner product space V and 

v ≠ 0, then the scalar projection of u onto v is given

by

α =
⟨u, v⟩

∥v∥

and the vector projection of u on to v is given by

p = α(
1

∥v∥
v) =

⟨u, v⟩

⟨v, v⟩
v

(7)

Observations
If v ≠ 0 and p is the vector projection of u onto v, then

1. u − p and p are orthogonal.

‖A‖F = (1 + 1 + 1 + 1 + 9 + 9)1/2 = 5

‖B‖F = (1 + 1 + 9 + 0 + 9 + 16)1/2 = 6



2. u = p if and only if u is a scalar multiple of v.

Proof of Observation I

Since

⟨p, p⟩ = ⟨
α

∥v∥
v,

α

∥v∥
v⟩ = (

α

∥v∥
)

2

⟨v, v⟩ = α2

and

⟨u, p⟩ =
(⟨u, v⟩)2

⟨v, v⟩
= α2

it follows that

⟨u − p, p⟩ = ⟨u, p⟩ − ⟨p, p⟩ = α2 − α2 = 0

Therefore, u − p and p are orthogonal.

∎

Proof of Observation II

If u = βv, then the vector projection of u onto v is

given by

p =
⟨βv, v⟩

⟨v, v⟩
v = βv = u

Conversely, if u = p, it follows from (7) that

∎

Observations I and II are useful for establishing the

following theorem.

Theorem 5.4.2 The Cauchy—

Schwarz Inequality

u = βv where β =
α

∥v∥



If u and v are any two vectors in an inner product space

V, then

|⟨u, v⟩| ≤ ∥u∥  ∥v∥

(8)

Equality holds if and only if u and v are linearly

dependent.

Proof

If v = 0, then

|⟨u, v⟩| = 0 = ∥u∥   ∥v∥

If v ≠ 0, then let p be the vector projection of u onto v.

Since p is orthogonal to u − p, it follows from the

Pythagorean law that

∥p∥2 + ‖u − p‖2 = ∥u∥2

Thus,

(⟨u, v⟩)2

∥v∥2
= ∥p∥2 = ∥u∥2 − ‖u − p‖2

and hence

(⟨u, v⟩)2 = ∥u∥2∥v∥2 − ‖u − p‖2∥v∥2 ≤ ∥u∥2∥v∥2

Therefore,

|⟨u, v⟩| ≤ ‖u‖  ∥v∥

Equality holds in (9) if and only if u = p. It follows from

observation II that equality will hold in (8) if and only if 

v = p or u is a multiple of v. More simply stated,

equality will hold if and only if u and v are linearly

dependent.

One consequence of the Cauchy–Schwarz inequality is

that if u and v are nonzero vectors, then

−1 ≤
⟨u, v⟩

∥u∥∥v∥
≤ 1



and hence there is a unique angle θ in [0, π] such that

cos θ =
⟨u, v⟩

‖u‖∥v∥

(10)

Thus, equation (10) can be used to define the angle θ

between two nonzero vectors u and v.

Norms
The word norm in mathematics has its own meaning that

is independent of an inner product and its use here

should be justified.

Definition
A vector space V is said to be a normed linear space

if, to each vector v ∈ V, there is associated a real number

∥v∥, called the norm of v, satisfying

1. ∥v∥ ≥ 0 with equality if and only if v = 0.

2. ∥αv∥ = |α|∥v∥ for any scalar α.

3. ∥v + w∥ ≤ ∥v∥ + ∥w∥ for all v, w ∈ V.

The third condition is called the triangle inequality (see

Figure 5.4.2).

Figure 5.4.2.



Figure 5.4.2. Full Alternative Text

Theorem 5.4.3
If V is an inner product space, then the equation

defines a norm on V.

Proof

It is easily seen that conditions I and II of the definition

are satisfied. We leave this for the reader to verify and

proceed to show that condition III is satisfied.

Thus,

∥u + v∥ ≤ ∥u∥ + ∥v∥

∎

It is possible to define many different norms on a given

vector space. For example, in R
n

 we could define

∥v∥ = √⟨v, v⟩ v ∈ Vfor all

∥u + v∥2 = ⟨u + v, u + v⟩

= ⟨u, u⟩ + 2⟨u, v⟩ + ⟨v, v⟩

≤ ∥u∥2 + 2‖u‖  ∥v∥ + ∥v∥2 (Cauchy − Schwarz)
= (∥u∥ + ∥v∥)2

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-04-002.xhtml#la_fig05-04-002


∥x∥1 =
n

∑
i=1

|xi|

for every x = (x1,x2, …,xn)T . It is easily verified that

∥ ⋅ ∥1 defines a norm on Rn
. Another important norm

on Rn
 is the uniform norm or infinity norm, which is

defined by

∥x∥∞ = max
1≤i≤n

|xi|

More generally, we could define a norm on R
n

 by

∥x∥p = (
n

∑
i=1

|xi|
p)

1/p

for any real number p ≥ 1. In particular, if p = 2, then

∥x∥2 = (
n

∑
i=1

|xi|2)

1/2

= √⟨x, x⟩

The norm ∥ ⋅ ∥2 is the norm on R
n

 derived from the

inner product. If p ≠ 2, ∥ ⋅ ∥p does not correspond to

any inner product. In the case of a norm that is not

derived from an inner product, the Pythagorean law will

not hold. For example,

are orthogonal; however,

∥x1∥2
∞ + ∥x2∥2

∞ = 4 + 16 = 20

while

‖x1 + x2‖
2
∞ = 16

If, however, ∥ ⋅ ∥2 is used, then

∥x1∥2
2 + ∥x2∥2

2 = 5 + 20 = 25 = ‖x1 + x2‖2
2

Example 5

x1 = [ ]
1
2

and x2 = [ ]
−4
2



Let x be the vector (4, −5, 3)T  in R3
. Compute 

∥x∥1, ∥x∥2, and ∥x∥∞.

It is also possible to define different matrix norms for 

R
m×n

. In Chapter 7, we will study other types of matrix

norms that are useful in determining the sensitivity of

linear systems.

In general, a norm provides a way of measuring the

distance between vectors.

Definition
Let x and y be vectors in a normed linear space. The

distance between x and y is defined to be the number 

‖y − x‖.

Many applications involve finding a unique closest vector

in a subspace S to a given vector v in a vector space V. If

the norm used for V is derived from an inner product,

then the closest vector can be computed as a vector

projection of v onto the subspace S. This type of

approximation problem is discussed further in the next

section.

∥x∥1

∥x∥2

∥x∥∞

|4| + |−5| + |3| = 12=

√ = 5√2= 16 + 25 + 9
max(|4|, |−5|, |3|) = 5=



Section 5.4 Exercises

1. Let x = (−1, −1, 1, 1)T  and y = (1, 1, 5, −3)T . Show that 

x ⊥ y. Calculate ∥x∥2, ∥y∥2, ‖x + y‖2 and verify that the

Pythagorean law holds.

2. Let x = (1, 1, 1, 1)T  and y = (8, 2, 2, 0)T .

1. Determine the angle θ between x and y.

2. Find the vector projection p of x onto y.

3. Verify that x − p is orthogonal to p.

4. Compute ‖x − p‖2, ∥p∥2, ∥x∥2 and verify that the

Pythagorean law is satisfied.

3. Use equation (1) with weight vector w = ( 1
4 , 1

2 , 1
4 )

T
 to define

an inner product for R
3

, and let x = (1, 1, 1)T  and 

y = (−5, 1, 3)T .

1. Show that x and y are orthogonal with respect to this

inner product.

2. Compute the values of ∥x∥ and ∥y∥ with respect to this

inner product.

4. Given

A =  and B =

determine the value of each of the following:

1. ⟨A,B⟩

2. ‖A‖F

3. ‖B‖F

4. ‖A + B‖F

5. Show that equation (2) defines an inner product on R
m×n

.

6. Show that the inner product defined by equation (3) satisfies the

last two conditions of the definition of an inner product.

7. In C[0, 1], with inner product defined by (3), compute

⎡⎢⎣1 2 2
1 0 2
3 1 1

⎤⎥⎦ ⎡⎢⎣−4 1 1
−3 3 2
1 −2 −2

⎤⎥⎦



1. ⟨ex, e−x⟩

2. ⟨x, sinπx⟩

3. ⟨x2,x3⟩

8. In C[0, 1], with inner product defined by (3), consider the vectors 1

and x.

1. Find the angle θ between 1 and x.

2. Determine the vector projection p of 1 onto x and verify

that 1 − p is orthogonal to p.

3. Compute ‖1 − p‖, ∥p∥, ∥1∥ and verify that the

Pythagorean law holds.

9. In C[−π,π] with inner product defined by (6), show that cos mx

and sin nx are orthogonal and that both are unit vectors.

Determine the distance between the two vectors.

10. Show that the functions x and x2
 are orthogonal in P5 with the

inner product defined by (5), where xi = (i − 3)/2 for 

i = 1, …, 5.

11. In P5 with the inner product as in Exercise 10 and the norm

defined by

∥p∥ = √(p, p) = {
5

∑
i=1

[p(xi)]2}

1/2

compute

1. ∥x∥

2. ‖x2‖

3. the distance between x and x2

12. If V is an inner product space, show that

∥v∥ = √⟨v, v⟩

satisfies the first two conditions in the definition of a norm.

13. Show that

∥x∥1 =
n

∑
i=1

|xi|

defines a norm on R
n

.

14. Show that

∥x∥∞ = max
1≤i≤n

|xi|



defines a norm on R
n

.

15. Compute ∥x∥1, ‖x‖2 and ∥x∥∞ for each of the following

vectors in R
3

:

1. x = (−3, 4, 0)T

2. x = (−1, −1, 2)T

3. x = (1, 1, 1)T

16. Let x = (5, 2, 4)T  and y = (3, 3, 2)T . Compute 

‖x − y‖1, ‖x − y‖1, and ‖x − y‖∞. Under which norm

are the two vectors closest together? Under which norm are they

farthest apart?

17. Let x and y be vectors in an inner product space. Show that if 

x ⊥ y, then the distance between x and y is

( x
2 + ∥y∥2)

1/2

18. Show that if u and v are vectors in an inner product space that

satisfy the Pythagorean law

∥u + v∥2 = ∥u∥2 + ∥v∥2

then u and v must be orthogonal.

19. In R
n

 with inner product

⟨x, y⟩ = x
T

y

derive a formula for the distance between two vectors 

x = (x1, …,xn)T  and y = (y1, …, yn)T .

20. Let A be a nonsingular n × n matrix and for each vector x in R
n

define

∥x∥A = ‖Ax‖2

(11)

Show that (11) defines a norm on R
n

.

21. Let x ∈ R
n

. Show that ∥x∥∞ ≤ ∥x∥2.

22. Let x ∈ R
2

. Show that ∥x∥2 ≤ ∥x∥1. [Hint: Write x in the form 

x1e1 + x2e2 and use the triangle inequality.]

23. Give an example of a nonzero vector x ∈ R
2

 for which

∥x∥∞ = ∥x∥2 = ∥x∥1

24. Show that in any vector space with a norm,

∥ − v∥ = ∥v∥

25. Show that for any u and v in a normed vector space,

∥ ∥ ∥ ∥ ∥ ∥∥ ∥



∥u + v∥ ≥ ∥u∥ − ∥v∥

26. Prove that, for any u and v in an inner product space V,

∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2

Give a geometric interpretation of this result for the vector space 

R
2

.

27. The result of Exercise 26 is not valid for norms other than the

norm derived from the inner product. Give an example of this in 

R
2

 using ∥ ⋅ ∥1.

28. Determine whether the following define norms on C[a, b]:

1. ‖f‖ = |f(a)| + |f(b)|

2. ‖f‖ = ∫ b

a
|f(x)|dx

3. ‖f‖ = max
a≤x≤b

|f(x)|

29. Let x ∈ R
n

 and show that

1. ∥x∥1 ≤ n∥x∥∞

2. ∥x∥2 ≤ √n∥x∥∞

Give examples of vectors in Rn
 for which equality holds in parts

(a) and (b).

30. Sketch the set of points (x1,x2) = x
T

 in R
2

 such that

1. ∥x∥2 = 1

2. ∥x∥1 = 1

3. ∥x∥∞ = 1

31. Let K be an n × n matrix of the form

K =

where c2 + s2 = 1. Show that ‖K‖F = √n.

32. The trace of an n × n matrix C, denoted tr(C), is the sum of its

diagonal entries; that is,

tr(C) = c11 + c22 + … + cnn

If A and B are m × n matrices, show that

⎡⎢⎣1 −c −c … −c −c

0 s −sc … −sc −sc

0 0 s2 … −s2c −s2c

⋮
0 0 0 ⋯ sn−2 −sn−2c

0 0 0 … 0 sn−1

⎤⎥⎦



1. ‖A‖2
F = tr(ATA)

2. ‖A + B‖2
F = ‖A‖2

F + 2tr(ATB) + ‖B‖2
F

33. Consider the vector space R
n

 with inner product ⟨x, y⟩ = x
T

y.

Show that for any n × n matrix A,

1. ⟨Ax, y⟩ = ⟨x,AT
y⟩

2. ⟨ATAx, x⟩ = ||Ax||2



5.5 Orthonormal Sets
In R2

, it is generally more convenient to use the

standard basis {e1, e2} than to use some other basis,

such as {(2, 1)T , (3, 5)T}. For example, it would be

easier to find the coordinates of (x1,x2)T  with respect

to the standard basis. The elements of the standard basis

are orthogonal unit vectors. In working with an inner

product space V, it is generally desirable to have a basis

of mutually orthogonal unit vectors. Such a basis is

convenient not only in finding coordinates of vectors, but

also in solving least squares problems.

Definition
Let v1, v2, …, vn be nonzero vectors in an inner

product space V. If ⟨vi, vj⟩ = 0 whenever i ≠ j, then 

{v1, v2, …, vn} is said to be an orthogonal set of

vectors.

Example 1

The set {(1, 1, 1)T , (2, 1, −3)T , (4, −5, 1)T} is an

orthogonal set in R3
, since

Theorem 5.5.1

(1, 1, 1)(2, 1, −3)T = 0

(1, 1, 1)(4, −5, 1)T = 0

(2, 1, −3)(4, −5, 1)T = 0



If {v1, v2, …, vn} is an orthogonal set of nonzero

vectors in an inner product space V, then 

v1, v2, …, vn are linearly independent.

Proof

Suppose that v1, v2, …, vn are mutually orthogonal

nonzero vectors and

c1v1 + c2v2 + … + cnvn = 0

(1)

If 1 ≤ j ≤ n, then, taking the inner product of vj with

both sides of equation (1), we see that

and hence all the scalars c1, c2, …, cn must be 0.

∎

Definition
An orthonormal set of vectors is an orthogonal set of

unit vectors.

The set {u1, u2, …, un} will be orthonormal if and

only if

⟨ui, uj⟩ = δij

where

δij = {

Given any orthogonal set of nonzero vectors 

{v1, v2, …vn}, it is possible to form an orthonormal

set by defining

c1⟨vj, v1⟩ + c2⟨vj, v2⟩ + … + cn⟨vj, vn⟩ = 0
cj‖vj‖2 = 0

1 if i = j

0 if i ≠ j

ui = (
1

∥vi∥
)vi for i = 1, 2, …,n



The reader may verify that {u1, u2, …, un} will be an

orthonormal set.

Example 2
We saw in Example 1 that if 

v1 = (1, 1, 1)T , v2 = (2, 1, −3)T , and 

v3 = (4, −5, 1)T , then {v1, v2, v3} is an orthogonal

set in R
3

. To form an orthonormal set, let

Example 3
In C[−π,π] with inner product

⟨f, g⟩ =
1
π
∫

π

−π

f(x)g(x)dx

(2)

the set {1, cos x, cos 2x, …, cos nx} is an orthogonal set of

vectors, since for any positive integers j and k

The functions cos x, cos 2x, …, cos nx are already unit

vectors since

To form an orthonormal set, we need only find a unit

vector in the direction of 1.

u1 = (
1

∥v1∥
) v1 = 1

√3
(1, 1, 1)T

u2 = ( 1

∥v2∥
) v2 = 1

√14
(2, 1, −3)T

u3 = (
1

∥v3∥
) v3 = 1

√42
(4, −5, 1)T

⟨1, cos kx⟩ =
1
π
∫ π

−π
cos  kx dx = 0

⟨cos jx, cos kx⟩ =
1
π
∫ π

−π
cos jx  cos  kx dx = 0 (j ≠ k)

⟨cos kx, cos kx⟩ =
1
π
∫
π

−π cos2 kx dx = 1 for  k = 1, 2, …,n



∥1∥2 = ⟨1, 1⟩ =
1
π
∫

π

−π

1 dx = 2

Thus, 1/√2 is a unit vector, and hence 

{1/√2, cosx, cos 2x, …, cosnx} is an ortho-

normal set of vectors.

It follows from Theorem 5.5.1 that if 

B = {u1, u2, …, uk} is an orthonormal set in an

inner product space V, then B is a basis for the subspace 

S = Span(u1, u2, …, uk). We say that B is an

orthonormal basis for S. It is generally much easier to

work with an orthonormal basis than with an ordinary

basis. In particular, it is much easier to calculate the

coordinates of a given vector v with respect to an

orthonormal basis. Once these coordinates have been

determined, they can be used to compute ∥v∥.

Theorem 5.5.2
Let {u1, u2, …, un} be an orthonormal basis for an

inner product space V. If v =
n

Σ
i=1

ciui, then 

ci = ⟨v, ui⟩.

Proof

⟨v, ui⟩ = ⟨
n

∑
j=1

cjuj, uj⟩ =
n

∑
j=1

cj⟨uj, ui⟩ =
n

∑
j=1

cjδji = ci

As a consequence of Theorem 5.5.2, we can state two

more important results.

∎

Corollary 5.5.3



Let {u1, u2, …, un} be an orthonormal basis for an

inner product space V. If u =
n

Σ
i=1

aiui and v =
n

Σ
i=1

biui

then

⟨u, v⟩ =
n

∑
i=1

aibi

Proof

By Theorem 5.5.2,

Therefore,

⟨u, v⟩ = ⟨
n

∑
i=1

aiui, v⟩ =
n

∑
i=1

ai⟨ui, v⟩ =
n

∑
i=1

ai⟨v, ui⟩ =
n

∑
i=1

aibi

Corollary 5.5.4 Parseval’s

Formula
If {u1, …, un} is an orthonormal basis for an inner

product space V and v =
n

Σ
i=1

ciui, then

∥v∥2 =
n

∑
i=1

c2
i

Proof

If v =
n

Σ
i=1

ciui, then, by Corollary 5.5.3,

∥v∥2 = ⟨v, v⟩ =
n

∑
i=1

c2
i

∎

Example 4

⟨v, ui⟩ = bi i = 1, …,n



The vectors

form an orthonormal basis for R2
. If x ∈ R2

, then

It follows from Theorem 5.5.2 that

x =
x1 + x2

√2
u1 +

x1 − x2

√2
u2

and It follows from Corollary 5.5.4 that

∥x∥2 = (
x1 + x2

√2
)

2

+ (
x1 − x2

√2
)

2

= x2
1 + x2

2

Example 5

Given that {1/√2, cos 2x} is an orthonormal set in 

C[−π,π] (with an inner product as in Example 3),

determine the value of ∫ π

−π
sin4 xdx without computing

antiderivatives.

SOLUTION

Since

sin2 x =
1 − cos  2x

2
=

1

√2

1

√2
+ (−

1
2
) cos 2x

it follows from Parseval’s formula that

∫
π

−π

sin4 xdx = π‖ sin2 x‖
2

= π(
1
2

+
1
4
) =

3π
4

Orthogonal Matrices

u1 = (
1

√2
,

1

√2
)

T

and u2 = (
1

√2
, −

1

√2
)

T

xTu1 =
x1 + x2

√2
and xTu2 =

x1 − x2

√2



Of particular importance are n × n matrices whose

column vectors form an orthonormal set in R
n

.

Definition
An n × n matrix Q is said to be an orthogonal matrix

if the column vectors of Q form an orthonormal set in Rn

.

Theorem 5.5.5
An n × n matrix Q is orthogonal if and only if 

QTQ = I.

Proof

It follows from the definition that an n × n matrix Q is

orthogonal if and only if its column vectors satisfy

qT
i qj = δij

However, qT
i qj is the (i, j) entry of the matrix QTQ.

Thus, Q is orthogonal if and only if QTQ = I.

∎

It follows from the theorem that if Q is an orthogonal

matrix, then Q is invertible and Q−1 = QT
.

Example 6
For any fixed θ, the matrix

Q = [ ]

is orthogonal and

cos θ − sin θ

sin θ cos θ



Q−1 = QT = [ ]

The matrix Q in Example 6 can be thought of as a linear

transformation from R  onto R2
 that has the effect of

rotating each vector by an angle θ while leaving the

length of the vector unchanged (see Example 2 in Section

4.2). Similarly, Q−1
 can be thought of as a rotation by

the angle −θ (see Figure 5.5.1).

Figure 5.5.1.

Figure 5.5.1. Full Alternative Text

In general, inner products are preserved under

multiplication by an orthogonal matrix [i.e., 

⟨x, y⟩ = ⟨Qx,Qy⟩ ]. Indeed,

⟨Qx,Qy⟩ = (Qy)TQx = yTQTx = yTx = ⟨x, y⟩

In particular, if x = y, then ‖Qx‖2 = ∥x∥2
 and

hence ‖Qx‖ = ∥x∥. Multiplication by an orthogonal

cos θ sin θ

− sin θ cos θ

2

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-05-001.xhtml#la_fig05-05-001


matrix preserves the lengths of vectors.

Properties of Orthogonal

Matrices
If Q is an n × n orthogonal matrix, then

1. the column vectors of Q form an orthonormal basis for R
n

2. QTQ = I

3. QT = Q−1

4. ⟨Qx,Qy⟩ = ⟨x, y⟩

5. ‖Qx‖2 = ∥x∥2

Permutation Matrices
A permutation matrix is a matrix formed from the

identity matrix by reordering its columns. Clearly, then,

permutation matrices are orthogonal matrices. If P is the

permutation matrix formed by reordering the columns of

I in the order (k1, …, kn), then P = (ek1, …, ekn). If

A is an m × n matrix, then

AP = (Aek1, …,Aekn) = (ak1, …, akn)

Postmultiplication of A by P reorders the columns of A in

the order (k1, …, kn). For example, if

then

AP = [ ]

Since P = (ek1, ……, ekn) is orthogonal, it follows

that

A = [ ]
1 2 3
1 2 3

and P =
⎡⎢⎣0 1 0

0 0 1
1 0 0

⎤⎥⎦3 1 2
3 1 2



P−1 = P T

The k1 column of P T
 will be e1, the k2 column will be 

e2, and so on. Thus, P T
 is a permutation matrix. The

matrix P T
 can be formed directly from I by reordering

its rows in the order (k1, k2, …, kn). In general, a

permutation matrix can be formed from I by reordering

either its rows or its columns.

If Q is the permutation matrix formed by reordering the

rows of I in the order (k1, k2, …, kn) and B is an n × r

matrix, then

QB = B = =

Thus, QB is the matrix formed by reordering the rows of

B in the order (k1,k2, …, kn). For example, if

then

Q

In general, if P is an n × n permutation matrix,

premultiplication of an n × r matrix B by P reorders the

rows of B and postmultiplication of an m × n matrix A

by P reorders the columns of A.

Orthonormal Sets and Least

Squares

⎡⎢⎣eT
k1

⋮
eT
kn

⎤⎥⎦⎡⎢⎣eT
k1

⋮
eT
kn

⎤⎥⎦ ⎡⎢⎣eT
k1
B

⋮
eT
kn
B

⎤⎥⎦ ⎡⎢⎣→bk1

⋮
→bkn

⎤⎥⎦Q =
⎡⎢⎣0 0 1

1 0 0
0 1 0

⎤⎥⎦ and B =
⎡⎢⎣1 1

2 2
3 3

⎤⎥⎦B =
⎡⎢⎣3 3

1 1
2 2

⎤⎥⎦



Orthogonality plays an important role in solving least

squares problems. Recall that if A is an m × n matrix of

rank n, then the least squares problem Ax = b has a

unique solution x̂ that is determined by solving the

normal equations ATAx = ATb. The projection 

p = Ax̂ is the vector in R(A) that is closest to b. The

least squares problem is especially easy to solve in the

case where the column vectors of A form an orthonormal

set in Rm
.

Theorem 5.5.6
If the column vectors of A form an orthonormal set of

vectors in R
m

, then ATA = I  and the solution to the

least squares problem is

x̂ = ATb

Proof

The (i, j) entry of ATA is formed from the ith row of AT

and the jth column of A. Thus, the (i, j) entry is actually

the scalar product of the ith and jth columns of A. Since

the column vectors of A are orthonormal, it follows that

ATA = (δij) = I

Consequently, the normal equations simplify to

x = ATb

∎

What if the columns of A are not orthonormal? In the

next section, we will learn a method for finding an

orthonormal basis for R(A). From this method, we will

obtain a factorization of A into a product QR, where Q

has an orthonormal set of column vectors and R is upper

triangular. With this factorization, the least squares

problem is easily solved.



If we have an orthonormal basis for R(A), the projection

p = Ax̂ can be determined in terms of the basis elements.

Indeed, this is a special case of the more general least

squares problem of finding the element p in a subspace S

of an inner product space V that is closest to a given

element x in V. This problem is easily solved if S has an

orthonormal basis. We first prove the following theorem.

Theorem 5.5.7
Let S be a subspace of an inner product space V and let 

x ∈ V . Let {u1, u2, , …, un} be an orthonormal basis

for S. If

p =
n

∑
i=1

ciui

(3)

where

(4)

then p − x ∈ S⊥
 (see Figure 5.5.2).

Figure 5.5.2.

Figure 5.5.2. Full Alternative Text

ci = ⟨x, ui⟩ for each i
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Proof

We will show first that (p − x) ⊥ ui for each i.

So p − x is orthogonal to all the ui′s. If y ∈ S, then

y =
n

∑
i=1

αiui

and hence

⟨p − x, y⟩ = ⟨p − x,
n

∑
i=1

αiui⟩ =
n

∑
i=1

αi⟨p − x, ui⟩ = 0

∎

If x ∈ S, the preceding result is trivial, since by

Theorem 5.5.2, p − x = 0. If x ∉ S, then p is the

element in S closest to x.

Theorem 5.5.8
Under the hypothesis of Theorem 5.5.7, p is the element

of S that is closest to x; that is,

‖y − x‖ > ‖p − x‖

for any y ≠ p in S.

Proof

If y ∈ S and y ≠ p, then

‖y − x‖2 = ‖(y − p) + (p − x)‖2

⟨ui, p − x⟩ = ⟨ui, p⟩ − ⟨ui, x⟩

= ⟨ui,
n

∑
j=1

cjuj⟩ − ci

=
n

∑
j=1

cj⟨ui, uj⟩ − ci

= 0



Since y − p ∈ S, it follows from Theorem 5.5.7 and the

Pythagorean law that

‖y − x‖2 = ‖y − p‖2 + ‖p − x‖2 > ‖p − x‖2

Therefore, ‖y − x‖ > ‖p − x‖.

∎

The vector p defined by (3) and (4) is said to be the

projection of x onto S.

Corollary 5.5.9
Let S be a nonzero subspace of R

m
 and let b ∈ R

m
. If 

{u1, u2, …, uk} is an orthonormal basis for S and 

U = (u1, u2, …, uk), then the projection p of b onto S

is given by

p = UU Tb

Proof

It follows from Theorem 5.5.7 that the projection p of b

onto S is given by

p = c1u1 + c2u2 + ⋯ + ckuk = Uc

where

c = = = U Tb

Therefore,

p = UU Tb

∎

⎡⎢⎣c1

c2

⋮
ck

⎤⎥⎦ ⎡⎢⎣uT
1 b

uT
2 b

⋮
uT
k b

⎤⎥⎦



The matrix UU T
 in Corollary 5.5.9 is the projection

matrix corresponding to the subspace S of Rm
. To

project any vector b ∈ Rm
 onto S, we need only find an

orthonormal basis {u1, u2, …, uk} for S, form the

matrix UU T
, and then multiply UU T

 times b.

If P is a projection matrix corresponding to a subspace S

of Rm
, then, for any b ∈ Rm

, the projection p of b onto

S is unique. If Q is also a projection matrix

corresponding to S, then

Qb = p = Pb

It then follows that

and hence Q = P . Thus, the projection matrix for a

subspace S of R
m

 is unique.

Example 7

Let S be the set of all vectors in R3
 of the form (x, y, 0)T

. Find the vector p in S that is closest to w = (5, 3, 4)T

(see Figure 5.5.3).

Figure 5.5.3.

qj = Qej = Pej = Pej = pj for j = 1, …,m



Figure 5.5.3. Full Alternative Text

SOLUTION

Let u1 = (1, 0, 0)T  and u2 = (0, 1, 0)T . Clearly, u1

and u2 form an orthonormal basis for S. Now

c1 = wTu1 = 5
c2 = wTu2 = 3
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The vector p turns out to be exactly what we would

expect:

p = 5u1 + 3u2 = (5, 3, 0)T

Alternatively, p could have been calculated using the

projection matrix UU T
.

p = UU Tw =   =

Approximation of Functions
In many applications, it is necessary to approximate a

continuous function in terms of functions from some

special type of approximating set. Most commonly, we

approximate by a polynomial of degree n or less. We can

use Theorem 5.5.8 to obtain the best least squares

approximation.

Example 8
Find the best least squares approximation to ex on the

interval [0, 1] by a linear function.

SOLUTION

Let S be the subspace of all linear functions in C[0, 1].

Although the functions 1 and x span S, they are not

orthogonal. We seek a function of the form x − a that is

orthogonal to 1.

⟨1,x − a⟩ = ∫
1

0
(x − a)dx =

1
2

− a

Thus, a = 1
2 . Since x − 1

2 = 1/√12, it follows that

⎡⎢⎣1 0 0
0 1 0
0 0 0

⎤⎥⎦ ⎡⎢⎣5
3
4

⎤⎥⎦ ⎡⎢⎣5
3
0

⎤⎥⎦∥ ∥u1(x) = 1 u2(x) = √12(x − 1
2 )and



form an orthonormal basis for S.

Let

The projection

is the best linear least squares approximation to ex on

[0, 1] (see Figure 5.5.4).

Figure 5.5.4.

c1 = ∫ 1
0 u1(x)exdx = e − 1

c2 = ∫ 1
0 u2(x)exdx = √3(3 − e)

P(x) = c1u1(x) + c2u1(x)

= (e − 1) ⋅ 1 + √3(3 − e)[√12(x − 1
2 )]

= (4e − 10) + 6(3 − e)x



Figure 5.5.4. Full Alternative Text

Approximation by

Trigonometric Polynomials
Trigonometric polynomials are used to approximate

periodic functions. By a trigonometric polynomial of

degree n, we mean a function of the form

tn(x) =
a0

2
+

n

∑
k=1

(ak  cos kx + bk  sin kx)

We have already seen that the collection of functions

1

√2
, cosx, cos  2x, …, cosnx

forms an orthonormal set with respect to the inner

product (2). We leave it to the reader to verify that if the

functions
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sinx, sin 2x, …, sinnx

are added to the collection, it will still be an orthonormal

set. Thus, we can use Theorem 5.5.8 to find the best least

squares approximation to a continuous 2π periodic

function f (x) by a trigonometric polynomial of degree n

or less. Note that

⟨f,
1

√2
⟩

1

√2
= ⟨f, 1⟩

1
2

so that if

a0 = ⟨f, 1⟩ =
1
π
∫

π

−π

f(x)dx

and

for k = 1, 2, …,n, then these coefficients determine

the best least squares approximation to f. The ak’s and

the bk’s turn out to be the well-known Fourier

coefficients that occur in many applications involving

trigonometric series approximations of functions.

Let us think of f (x) as representing the position at time x

of an object moving along a line, and let tn be the Fourier

approximation of degree n to f. If we set

then

Thus, the motion f (x) is being represented as a sum of

simple harmonic motions.

ak = ⟨f, cos kx⟩ =
1
π
∫ π

−π
f(x) cos  kx dx

bk = ⟨f, sin kx⟩ =
1
π
∫ π

−π
f(x) sin kx dx

rk = √a2
k

+ b2
k and θk = Tan−1 (

bk

ak
)

ak cos kx + bk  sin kx = rk(
ak

rk
cos kx +

bk

rk
sin kx)

= rk cos(kx − θk)



For signal-processing applications, it is useful to express

the trigonometric approximation in complex form. To

this end, we define complex Fourier coefficients ck in

terms of the real Fourier coefficients ak and bk:

The latter equality follows from the identity

eiθ = cos θ + i  sin θ

We also define the coefficient C−k to be the complex

conjugate of Ck. Thus,

Alternatively, if we solve for ak and bk, then

From these identities, it follows that

and hence the trigonometric polynomial

tn(x) =
a0

2
+

n

∑
k=1

(ak  cos kx + bk  sin kx)

can be rewritten in complex form as

tn(x) =
n

∑
k=−n

cke
ikx

Application 1
Signal Processing

ck =
1
2

(ak − ibk) =
1

2π
∫ π

−π
f(x)(cos kx − i  sin kx)dx

=
1

2π
∫ π

−π
f(x)e−kxdx    (k ≥ 0)

C−k = Ck =
1
2

(ak + ibk) (k ≥ 0)̄

ak = ck + c−k and bk = i(ck − c−k)

cke
−kx + c−ke

−ikx = (ck + c−k) cos kx + i(ck − c−k) sin kx

= ak cos kx + bk sin kx



The Discrete Fourier

Transform
The function f (x) pictured in Figure 5.5.5(a) corresponds

to a noisy signal. Here, the independent variable x

represents time and the signal values are plotted as a

function of time. In this context, it is convenient to start

with time 0. Thus, we will choose [0, 2π], rather than 

[−π,π], as the interval for our inner product.

Figure 5.5.5.



Figure 5.5.5. Full Alternative Text

Let us approximate f (x) by a trigonometric polynomial

tn(x) =
n

∑
k=−n

cke
ikx

As noted in the previous discussion, the trigonometric

approximation allows us to represent the function as a

sum of simple harmonics. The kth harmonic can be

written as rk cos(kx−θk). It is said to have angular

frequency k. A signal is smooth if the coefficients ck
approach 0 rapidly as k increases. If some of the

coefficients corresponding to larger frequencies are not

small, the graph will appear to be noisy as in Figure

5.5.5(a). We can filter the signal by setting these

coefficients equal to 0. Figure 5.5.5(b) shows the smooth

function obtained by suppressing some of the higher

frequencies from the original signal.

In actual signal-processing applications, we do not have

a mathematical formula for the signal function f (x);

rather, the signal is sampled over a sequence of times 

x0,x1, …,xN , where xj = 2jπ
N

. The function f is

represented by the N sample values

( ) ( ) ( )

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-05-005.xhtml#la_fig05-05-005


y0 = f(x0), y1 = f(x1), …, yN−1 = f(xN−1)

[Note: yN = f(2π) = f(0) = y0.] In this case, it is not

possible to compute the Fourier coefficients as integrals.

Instead of using

ck =
1

2π
∫

2π

0
f(x)e− ikxdx

we use a numerical integration method, the trapezoid

rule, to approximate the integral. The approximation is

given by

dk =
1
N

N−1

∑
j=0

f(xj)e−ikxj

(5)

The dk coefficients are approximations to the Fourier

coefficients. The larger the sample size N, the closer dk
will be to ck.

If we set

ωN = e− 2πi
N = cos

2π
N

− i  sin
2π
N

then equation (5) can be rewritten in the form

dk =
1
N

N−1

∑
j=0

yjω
jk
N

The finite sequence {d0, d1, …, dN−1} is said to be the

discrete Fourier transform of {y0, y1, …, yN−1}. The

discrete Fourier transform can be determined by a single

matrix vector multiplication. For example, if N = 4, the

coefficients are given by

d0

d1

d2

d3

1
4

(y0 + y1 + y2 + y3)=

1
4

(y0 + ω4y1 + ω2
4y2 + ω3

4y3)=

1
4

(y0 + w2
4y1 + ω4

4y2 + ω6
4y3)=

1
4

(y0 + ω3
4y1 + ω6

4y2 + ω9
4y4)=



If we set

z =
1
4

y =
1
4

(y0, y1, y3)T

then the vector d = (d0, d1, d2, d3)T  is determined by

multiplying z by the matrix

F4 = =

The matrix F4 is called a Fourier matrix.

In the case of N sample values, y0, y1, …, yN−1, the

coefficients are computed by setting

where y = (y0, y1, …, yN−1)T  and FN  is the N × N

matrix whose (j, k) entry is given by fj,k = ω
(j−1)(k−1)
N

.

The method of computing the discrete Fourier transform

d by multiplying FN  times z will be referred to as the

DFT algorithm. The DFT computation requires a

multiple of N 2
 arithmetic operations (roughly 8N 2

,

since complex arithmetic is used).

In signal-processing applications, N is generally very

large and consequently the DFT computation of the

discrete Fourier transform can be prohibitively slow and

costly even on modern high-powered computers. A

revolution in signal processing occurred in 1965 with the

introduction by James W. Cooley and John W. Tukey of a

dramatically more efficient method for computing the

discrete Fourier transform. Actually, it turns out that the

1965 Cooley–Tukey paper is a rediscovery of a method

that was known to Gauss in 1805.

⎡⎢⎣1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω4
6

1 ω4
3 ω6

4 ω9
4

⎤⎥⎦ ⎡⎢⎣1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎤⎥⎦z =
1
N

y and d = FNz



The Fast Fourier Transform
The method of Cooley and Tukey, known as the fast

Fourier transform or simply the FFT, is an efficient

algorithm for computing the discrete Fourier transform.

It takes advantage of the special structure of the Fourier

matrices. We illustrate this method in the case N = 4.

To see the special structure, we rearrange the columns of 

F4 so that its odd-numbered columns all come before the

even-numbered columns. This rearrangement is

equivalent to postmultiplying F4 by the permutation

matrix

P4 =

If we set w = P T
4 z, then

F4z = F4P4P
T
4 z = F4P4w

Partitioning F4P4 into 2 × 2 blocks, we get

5.9-6 Full Alternative Text

The (1,1) and (2,1) blocks are both equal to the Fourier

matrix F2, and if we set

D2 = [ ]

then the (1,2) and (2,2) blocks are D2F2 and −D2F2,

respectively. The computation of the Fourier transform

⎡⎢⎣1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎦1 0
0 −i
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can now be carried out as a block multiplication.

d4 = [ ] [ ] = [ ]

The computation reduces to computing two Fourier

transforms of length 2. If we set q1 = F2w1 and 

q2 = D2(F2w2), then

d4 = [ ]

The procedure we have just described will work in

general whenever the number of sample points is even.

If, say, N = 2m, and we permute the columns of F2m

so that the odd columns are first, then the reordered

Fourier matrix F2mP2m can be partitioned into m × m

blocks

F2mP2m = [ ]

where Dm is a diagonal matrix whose (j, j) entry is ω
j−i
2m .

The discrete Fourier transform can then be computed in

terms of two transforms of length m. Furthermore, if m

is even, then each length m transform can be computed

in terms of two transforms of length 
m
2 , and so on.

If, initially, N is a power of 2, say, N = 2k, then we can

apply this procedure recursively through k levels of

recursion. The amount of arithmetic required to compute

the FFT is proportional to Nk = N   log2 N . In fact, the

actual amount of arithmetic operations required for the

FFT is approximately 5N   log2 N . How dramatic of a

speedup is this? If we consider, for example, the case

where N = 220 = 1, 048.576, then the DFT algorithm

requires 8N 2 = 8 ⋅ 240
 operations, that is,

approximately 8.8 trillion operations. On the other hand,

the FFT algorithm requires only 100N = 100 ⋅ 220
, or

approximately 100 million, operations. The ratio of these

two operations counts is

2

F2 D2F2

F2 −D2F2

w1

w2

F2w1 + D2F2w2

F2w1 − D2F2w2

q1 + q2

q1 + q2

Fm DmFm

Fm −DmFm



r =
8N 2

5N  log2N
= 0.08 ⋅ 1,048,576 = 83, 886

In this case, the FFT algorithm is approximately 84,000

times faster than the DFT algorithm.



Section 5.5 Exercises

1. Which of the following sets of vectors form an orthonormal basis

for R
2

?

1. {(1, 0)T , (0, 1)T}

2. {(
3

5
,

4

5
)

T

,(
5

13
,

12

13
)

T

}

3. {(1, −1)T , (1, 1)T}

4. (
√3

2
,

1

2
)

T

,(−
1

2
,

√3

2
)

T

2. Let

u1 = ,    u2 = ,    u3 =

1. Show that {u1, u2, u3} is an orthonormal basis for R
2

.

2. Let x = (1, 1, )T . Write x as a linear combination of 

u1, u2, and u3 using Theorem 5.5.2 and use Parseval’s

formula to compute ∥x∥.

3. Let S be the subspace of R
3

 spanned by the vectors u2 and u3 of

Exercise 2. Let x = (1, 2, 2)T . Find the projection p of x onto S.

Show that (p − x) ⊥ u2 and (p − x) ⊥ u3.

4. Let θ be a fixed real number and let

1. Show that {x1, x2} is an orthonormal basis for R
2

.

2. Given a vector y in R
2

, write it as a linear combination 

c1x1 + c2x2.

3. Verify that

c2
1 + c2

2 = ||y||2 = y2
1 + y2

2

⎧
⎨
⎩

⎫
⎬
⎭

⎡⎢⎣ 1

3√2
1

3√2

− 4

3√2

⎤⎥⎦ ⎡⎢⎣ 2
3
2
3
1
3

⎤⎥⎦ ⎡⎢⎣ 1
2

− 1
√2

0

⎤⎥⎦x1 = [ ]
cos θ
sin θ

and x2 = [ ]
− sin θ

cos θ



5. Let u1 and u2 form an orthonormal basis for R
2

 and let u be a

unit vector in R
2

. If uTu1 = 1
2 , determine the value of uTu2 .

6. Let {u1, u2, u3} be an orthonormal basis for an inner product

space V and let

Determine the value of each of the following:

1. ⟨u, v⟩

2. ∥u∥ and ∥v∥

3. The angle θ between u and v

7. Let {u1, u2, u3} be an orthonormal basis for an inner product

space V. If x = c1u1 + c2u2 + c3u3 is a vector with the

properties ∥x∥ = 5, ⟨u1, x⟩ = 4, and x ⊥ u2, then what are the

possible values of c1, c2, c3?

8. The functions cos x and sin x form an orthonormal set in 

C[−π,π]. If

f(x) = 3  cosx + 2  sinx  and  g(x) = cosx − sinx

use Corollary 5.5.3 to determine the value of

⟨f, g⟩ =
1

π
∫

π

−π

f(x)g(x)dx

9. The set

S = {
1

√2
, cosx, cos 2x, cos 3x, cos 4x}

is an orthonormal set of vectors in C[−π,π] with the inner

product defined by (2).

1. Use trigonometric identities to write the function sin4 x

as a linear combination of elements of S.

2. Use part (a) and Theorem 5.5.2 to find the values of the

following integrals:

1. ∫ π

−π
sin4 x cosx dx

2. ∫ π

−π
sin4 x cos 2x dx

3. ∫ π

−π
sin4 x cos 3x dx

4. ∫
π

−π sin4 x cos 4x dx

10. Write out the Fourier matrix F8. Show that F8P8 can be

partitioned into block form:

∣ ∣u = u1 + 2u1 + 2u3 v = u1 + 7u3and



[ ]

11. Prove that the transpose of an orthogonal matrix is an orthogonal

matrix.

12. If Q is an n × n orthogonal matrix and x and y are nonzero

vectors in R
n

, then how does the angle between Qx and Qy

compare with the angle between x and y? Prove your answer.

13. Let Q be an n × n orthogonal matrix. Use mathematical induction

to prove each of the following:

1. (Qm)−1 = (QT )
m

= (Qm)T  for any positive integer

m

2. ‖Qmx‖ = ∥x∥ for any x ∈ R
n

14. Let u be a unit vector in R
n

 and let H = I − 2uuT
. Show that H

is both orthogonal and symmetric and hence is its own inverse.

15. Let Q be an orthogonal matrix and let d = det(Q). Show that 

|d| = 1.

16. Show that the product of two orthogonal matrices is also an

orthogonal matrix. Is the product of two permutation matrices a

permutation matrix? Explain.

17. How many n × n permutation matrices are there?

18. Show that if P is a symmetric permutation matrix, then P 2k = I

and P 2k+1 = P .

19. Show that if U is an n × n orthogonal matrix, then

u1uT
1 + u2uT

2 + ⋯ + unuT
n = I

20. Use mathematical induction to show that if Q ∈ R
n×n

 is both

upper triangular and orthogonal, then qj = ±ej, j = 1, …,n.

21. Let

A =    

1. Show that the column vectors of A form an orthonormal

set in R
4

.

2. Solve the least squares problem Ax = b for each of the

following choices of b:

1. b = (4, 0, 0, 0)T

2. b = (1, 2, 3, 4)T

F4 D4F4

F4 −D4F4

⎡⎢⎣ 1
2
1
2
1
2
1
2

− 1
2

− 1
2

2
1
2

1

⎤⎥⎦



3. b = (1, 1, 2, 2)T

22. Let A be the matrix given in Exercise 21.

1. Find the projection matrix P that projects vectors in R
4

onto R(A).

2. For each of your solutions x to Exercise 21(b), compute

Ax and compare it with Pb.

23. Let A be the matrix given in Exercise 21.

1. Find an orthonormal basis for N(AT ).

2. Determine the projection matrix Q that projects vectors

in R
4

 onto N(AT ).

24. Let A be an m × n matrix, let P be the projection matrix that

projects vectors in Rm
 onto R(A), and let Q be the projection

matrix that projects vectors in R
n

 onto R(AT ). Show that

1. I − P  is the projection matrix from R
m

 onto N(AT ).

2. I − Q is the projection matrix from R
n

 onto N(A).

25. Let P be the projection matrix corresponding to a subspace S of 

R
m

. Show that

1. P 2 = P

2. P T = P

26. Let A be an m × n matrix whose column vectors are mutually

orthogonal and let b ∈ R
m

. Show that if y is the least squares

solution of the system Ax = b, then

27. Let v be a vector in an inner product space V and let p be the

projection of v onto an n-dimensional subspace S of V. Show that 

∥p∥ ≤ ∥v∥. Under what conditions does equality occur?

28. Let v be a vector in an inner product space V and let p be the

projection of v onto an n-dimensional subspace S of V. Show that 

∥p∥2 ≤ ⟨p, v⟩.

29. Given the vector space C[−1, 1] with inner product

⟨f, g⟩ = ∫
1

−1
f(x)g(x) dx

and norm

/

yi =
bTai

aT
i ai

i = 1, …,n



‖f‖ = (⟨f, f⟩)1/2

1. show that the vectors 1 and x are orthogonal.

2. compute ∥1∥ and ∥x∥.

3. find the best least squares approximation to x1/3
 on 

[−1, 1] by a linear function l(x) = c11 + c2x.

30. Consider the inner product space C[0, 1] with the inner product

defined by

⟨f, g⟩ = ∫
1

0
f(x)g(x)dx

Let S be the subspace spanned by the vectors 1 and 2x − 1.

1. Show that 1 and 2x − 1 are orthogonal.

2. Determine ∥1∥ and ∥2x − 1∥.

3. Find the best least squares approximation to √x by a

function from the subspace S.

31. Let

Show that S is an orthonormal set in C[−π,π] with the inner

product defined by (2).

32. Find the best least squares approximation to f(x) = |x| on 

[−π,π] by a trigonometric polynomial of degree less than or equal

to 2.

33. Let {x1, x2, …, xk, xk+1, …, xn} be an orthonormal basis for

an inner product space V. Let S1 be the subspace of V spanned by 

x1, …, xk, and let S2 be the subspace spanned by 

xk+1, xk+2, …, xn. Show that S1 ⊥ S2.

34. Let x be an element of the inner product space V in Exercise 33,

and let p1 and p2 be the projections of x onto S1 and S2,

respectively. Show that

1. x = p1 + p2

2. if x ∈ S⊥
1 , then p1 = 0 and hence S⊥

1 = S2.

35. Let S be a subspace of an inner product space V. Let {x1, …, xn}
be an orthogonal basis for S and let x ∈ V . Show that the best

least squares approximation to x by elements of S is given by

p =
n

∑
i=1

⟨x, xi⟩

⟨xi, xi⟩
xi

S = {1/√2, cos  x, cos 2x, …, cosnx,
sinx, sin 2x, …, sinnx}



36. A (real or complex) scalar u is said to be an nth root of unity if 

un = 1.

1. Show that if u is an nth root of unity and u ≠ 1, then

1 + u + u2 + ⋯ + un−1 = 0

[Hint: 1 − un = (1 − u)(1 + u + u2 + ⋯ + un−1).

]

2. Let ωn = e
2πi
n . Use Euler’s formula 

(eiθ) = cos θ + i  sin θ to show that ωn is an nth root

of unity.

3. Show that if j and k are positive integers and if 

uj = ω
j−1
n  and zk = ω

−(k−1)
n , then uj, zk, and uj, zk

are all nth roots of unity.

37. Let ωn,uj, and zk be defined as in Exercise 36. If Fn is the n × n

Fourier matrix, then its (j, s) entry is

fjs = ω
(j−1)(s−1)
n = us−1

Let Gn be the matrix defined by

Show that the the (j, k) entry of FnGn is

1 + ujzk + (ujzk)2 + ⋯ + (ujzk)n−1

38. Use the results from Exercises 36 and 37 to show that Fn is

nonsingular and

F−1
n =

1

n
Gn =

1

n
Fn

where Fn  is the matrix whose (i, j) entry is the complex conjugate

of fij.

gsk =
1

fsk
= ω−(s−1)(k−1) = zs−1

k , 1 ≤ s ≤ n,

1 ≤ k ≤ n

¯

¯



5.6 The Gram–Schmidt

Orthogonalization Process
In this section, we learn a process for constructing an

orthonormal basis for an n-dimensional inner product

space V. The method involves using projections to

transform an ordinary basis {x1, x2, …, xn} into an

orthonormal basis {u1, u2, …, un}.

We will construct the ui’s so that

Span = (u1, …, uk) = Span(x1, …, xk)

for k = 1, …, n. To begin the process, let

u1 = (
1

∥x1∥
)x1

(1)

Span(u1) = Span(x1), since u1 is a unit vector in the

direction of x1. Let p1 denote the projection of x2 onto 

Span(x1) = Span(u1); that is,

p1 = ⟨x2, u1⟩u1

By Theorem 5.5.7,

(x2 − p1) ⊥ u1

Note that x2 − p1 ≠ 0, since

x2 − p1 =
−⟨x2, u1⟩

∥x1∥
x1 + x2

(2)

and x1 and x2 are linearly independent. If we set

u2 =
1

‖x2 − p1‖
(x2 − p1)

(3)



then u2 is a unit vector orthogonal to u1. It follows from

(1), (2), and (3) that Span(u1, u2) ⊂ Span(x1, x2).

Since u1 and u2 are linearly independent, it also follows

that {u1, u2} is an orthonormal basis for Span(x1, x2),

and hence

Span(x1, x2) = Span(u1, u2)

To construct u3, continue in the same manner: Let p2 be

the projection of x3 onto 

Span(x1, x2) = Span(u1, u2); that is,

p2 = ⟨x3, u1⟩u1 + ⟨x3, u2⟩u2

and set

u3 =
1

‖x3 − p2‖
(x3 − p2)

and so on (see Figure 5.6.1).

Figure 5.6.1.

Figure 5.6.1. Full Alternative Text
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Theorem 5.6.1 The Gram–

Schmidt Process
Let {x1, x2, …, xn} be a basis for the inner product

space V. Let

u1 = (
1

∥x1∥
)x1

and define u2, …, un recursively by

uk+1 =
1

‖xk+1 − pk‖
(xk+1 − pk)    for  k = 1, …, n − 1

where

pk = ⟨xk+1, u1⟩u1 + ⟨xk+1, u2⟩u2 + ⋯ + ⟨xk+1, uk⟩uk

is the projection of xk+1 onto Span(u1, u2, …, uk).

Then the set

{u1, u2, …, un}

is an orthonormal basis for V.

Proof

We will argue inductively. Clearly, 

Span = (u1) = Span(x1). Suppose that 

u1, u2, …, uk have been constructed so that 

{u1, u2, …, uk} is an orthonormal set and

Span(u1, u2, …, uk) = Span(x1, x2, …, xk)

Since pk is a linear combination of u1, …, uk, it follows

that pk ∈ Span(x1, …, xk) and 

xk+1 − pk ∈ Span(x1, …, xk+1).

xk+1 − pk = xk+1 −
k

∑
i=1

cixi

Since x1, …, xk+1 are linearly independent, it follows

that xk+1 − pk is nonzero and, by Theorem 5.5.7, it is

orthogonal to each ui, 1 ≤ i ≤ k. Thus, 



{u1, u2, …, uk+1} is an orthonormal set of vectors in

Span(x1, …, xk+1). Since u1, …, uk+1 are linearly

independent, they form a basis for Span(x1, …, xk+1)
and, consequently,

Span(u1, …, uk+1) = Span(x1, …, xk+1)

It follows by mathematical induction that 

(u1, u2, …, un) is an orthonormal basis for V.

∎

Example 1
Find an orthonormal basis for P3 if the inner product on 

P3 is defined by

⟨p, q⟩ =
3

∑
i=1

p(xi)q(xi)

where x1 = −1, x2 = 0, and x3 = 1.

SOLUTION

Starting with the basis {1, x, x2}, we can use the Gram–

Schmidt process to generate an orthonormal basis:

∥1∥2 = ⟨1, 1⟩ = 3

so

u1 = (
1

∥1∥
)1 =

1

√3

Set

p1 = ⟨x,
1

√3
⟩

1

√3
= (−1 ⋅

1

√3
+ 0 ⋅

1

√3
+ 1 ⋅

1

√3
)

1

√3
= 0

Therefore,

x − p1 = x and ‖x − p1‖2 = ⟨x, x⟩ = 2



Hence,

u2 =
1

√2
x

Finally,

and hence

u3 =
√6
3
(x2 −

2
3
)

Orthogonal polynomials will be studied in more detail in

Section 5.7.

Example 2
Let

A =

Find an orthonormal basis for the column space of A.

SOLUTION

The column vectors of A are linearly independent and

hence form a basis for a three-dimensional subspace of 

R4
. The Gram–Schmidt process can be used to construct

an orthonormal basis as follows: Set

p2 = ⟨x2,
1

√3
⟩

1

√3
+⟨x2,

1

√2
x⟩

1

√2
x =

2
3

‖x2 − p2‖
2

= ⟨x2 −
2
3

, x2 −
2
3
⟩ =

2
3

⎡⎢⎣ 1 −1 4
1 4 −2

1
1 4

−1
2
0

⎤⎥⎦∥ ∥



The vectors q1, q2, q3 form an orthonormal basis for

R(A).

We can obtain a useful factorization of the matrix A if we

keep track of all the inner products and norms computed

in the Gram–Schmidt process. For the matrix in

Example 2, if the rij’s are used to form a matrix

R = =

and we set

Q = (q1, q2, q3) =

then it is easily verified that QR = A. This result is

proved in the following theorem.

Theorem 5.6.2 Gram–Schmidt

QR Factorization

r11 = ∥a1∥ = 2

q1 =
1

r11
a1 = (

1
2

,
1
2

,
1
2

,
1
2
)

T

r12 = ⟨a2, q1⟩ = qT
1 a2 = 3

p1 = r12q1 = 3q1

a2 − p1 = (−
5
2

,
5
2

,
5
2

, −
5
2
)

T

r22 = ‖a2 − p1‖ = 5

q2 =
1

r22
(a2 − p1) = (−

1
2

,
1
2

,
1
2

, −
1
2
)

T

r13 = ⟨a3, q1⟩ = qT
1 a3 = 2,     r23 = ⟨a3, q2⟩ = qT

2 a3 = −2

p2 = r13q1 + r23q2 = (2, 0, 0, 2)T

a3 − p2 = (2, −2, 2, −2)T

= ‖a3 − p2‖ = 4

q3 =
1

r33
(a3 − p2) = (

1
2

, −
1
2

,
1
2

, −
1
2
)

T

r33

⎡⎢⎣ r11 r12 r13

0 r22 r23

0 0 r33

⎤⎥⎦ ⎡⎢⎣ 2 3 2
0 5 −2
0 0 4

⎤⎥⎦⎡⎢⎣ 1
2 − 1

2
1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2 − 1
2

⎤⎥⎦



If A is an m × n matrix of rank n, then A can be

factored into a product QR, where Q is an m × n

matrix with orthonormal column vectors and R is an

upper triangular n × n matrix whose diagonal entries

are all positive. [Note: R must be nonsingular since

det(R) > 0.]

Proof

Let p1, …, pn−1 be the projection vectors defined in

Theorem 5.6.1, and let {q1, q2, …, qn} be the

orthonormal basis of R(A) derived from the Gram–

Schmidt process. Define

and

By the Gram–Schmidt process,

(6)

System (4) may be rewritten in the form

If we set

Q = (q1, q2, …, qn)

and define R to be the upper triangular matrix

R =

r11 = ∥a1∥
rkk = ‖ak − pk−1‖   for   k = 2, …, n

rik = qT
i ak for    i = 1, …, k − 1 k = 2, …, nand

r11q1 = a1

rkkqk = ak − r1kq1 − r2kq2 − ⋯ − rk−1,kqk−1    for  k = 2, …, n

a1 = r1q1

a2 = r12q1 + r22q2

⋮
an = rlnq1 + ⋯ + rnnqn

⎡⎢⎣ r11 r12 ⋯ r1n

0 r22 ⋯ r2n

⋮
0 0 … rnm

⎤⎥⎦



then the jth column of the product QR will be

Qrj = r1jq1 + r2jq2 + ⋯ + rjjqj = aj

for j = 1, …, n. Therefore,

QR = (a1, a2, …, an) = A

∎

Example 3
Compute the Gram–Schmidt QR factorization of the

matrix

A =

SOLUTION

1. Step 1. Set

2. Step 2. Set

3. Step 3. Set

⎡⎢⎣ 1 −2 −1
2 0 1
2 −4 2
4 0 0

⎤⎥⎦r11 = ||a1|| = 5

q1 =
1

r11
a1 = (

1
5

,
2
5

,
2
5

,
4
5
)

T

r12 = qT
1 a2 = −2

p1 = r12q1 = −2q1

a2 − p1 = (−
8
5

,
4
5

, −
16
5

,
8
5
)

T

r22 = ||a2 − p1|| = 4

q2 =
1

r22
(a2 − p1) = (−

2
5

,
1
5

, −
4
5

,
2
5
)

T

T T



At each step, we have determined a column of Q and a

column of R. The factorization is given by

We saw in Section 5.5 that if the columns of an m × n

matrix A form an orthonormal set, then the least squares

solution of Ax = b is simply x̂ = AT b. If A has rank

n, but its column vectors do not form an orthonormal set

in R
m

, then the QR factorization can be used to solve the

least squares problem.

Theorem 5.6.3
If A is an m × n matrix of rank n, then the least squares

solution of Ax = b is given by x̂ = R−1QT b, where

Q and R are the matrices obtained from the

factorization given in Theorem 5.6.2. The solution x̂

may be obtained by using back substitution to solve 

Rx = QT b.

Proof

Let x̂ be the least squares solution of Ax = b

guaranteed by Theorem 5.3.2. Thus, x̂ is the solution of

the normal equations

AT Ax = AT b

r13 = qT
1 a3 = 1, r23 = qT

2 a3 = −1

p2 = r13q1 + r23q2 = q1 − q2 = (
3
5

,
1
5

,
6
5

,
2
5
)

T

a3 − p2 = (−
8
5

,
4
5

,
4
5

, −
2
5
)

T

r33 = ||a3 − p2|| = 2

q3 =
1

r33
(a3 − p2) = (−

4
5

,
2
5

,
2
5

, −
1
5
)

T

A = QR =

⎡⎢⎣ 1
5 − 2

5 − 4
5

2
5

1
5

2
5

2
5 − 4

5
2
5

4
5

2
5 − 1

5

⎤⎥⎦ ⎡⎢⎣ 5 −2 1
0 4 −1
0 0 2

⎤⎥⎦



If A is factored into a product QR, these equations

become

(QR)T
QRx = (QR)T b

or

RT (QT Q)Rx = RT QT b

Since Q has orthonormal columns, it follows that 

QT Q = I  and hence

RT Rx = RT QT b

Since RT
 is invertible, this equation simplifies to

Example 4
Find the least squares solution of

  =

SOLUTION

The coefficient matrix of this system was factored in

Example 3. Using that factorization, we have

QT b =   =

The system Rx = QT b is easily solved by back

substitution:

Rx = QT b or x = R−1QT b

⎡⎢⎣ 1 −2 −1
2 0 1
2 −4 2
4 0 0

⎤⎥⎦ ⎡⎢⎣ x1

x2

x3

⎤⎥⎦ ⎡⎢⎣ −1
1
1

−2

⎤⎥⎦⎡⎢⎣ 1
5

2
5

2
5

4
5

− 2
5

1
5 − 4

5
2
5

− 4
5

2
5

2
5 − 1

5

⎤⎥⎦ ⎡⎢⎣ −1
1
1

−2

⎤⎥⎦ ⎡⎢⎣ −1
−1

2

⎤⎥⎦⎡⎢⎣ 5 −2 1
0 4 −1
0 0 2∣−1

−1
2

⎤⎥⎦



The solution is x = (− 2
5 , 0, 1)

T

.

The Modified Gram–Schmidt

Process
In Chapter 7, we will consider computer methods for

solving least squares problems. The QR factorization

method of Example 4 does not, in general, produce

accurate results when carried out with finite-precision

arithmetic. In practice, there may be a loss of

orthogonality due to roundoff error in computing 

q1, q2, …, qn. We can achieve better numerical

accuracy using a modified version of the Gram–Schmidt

method. In the modified version, the vector q1 is

constructed as before:

q1 =
1

∥a1∥
a1

However, the remaining vectors a2, …, an are then

modified so as to be orthogonal to q1. This can be done

by subtracting from each vector ak the projection of ak

onto q1:

At the second step, we take

q2 =
1

a
(1)
2

a
(1)
2

The vector q2 is already orthogonal to q1. We then

modify the remaining vectors to make them orthogonal

to q2:

In a similar manner, q3, q4, …, qn are successively

determined. At the last step, we need only set

a
(1)
k = ak − (qT

1 ak)q1 k = 2, …, n∥ ∥a
(2)
k = a

(1)
k − (qT

2 a
(1)
k )q2 k = 3, …, n



qn =
1

a
(n−1)
n

a
(n−1)
n

to achieve an orthonormal set {q1, …, qn}. The

following algorithm summarizes the process:

Algorithm 5.6.1 Modified

Gram–Schmidt Process

5.11-7 Full Alternative Text

If the modified Gram–Schmidt process is applied to the

column vectors of an m × n matrix A having rank n,

then, as before, we can obtain a QR factorization of A.

∥ ∥

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_f0279-01.xhtml#la_f0279-01


This factorization may then be used computationally to

determine the least squares solution to Ax = b;

however, in this case one should not compute c = QT b

directly. Instead, as each column vector qk is

determined, one modifies the right-hand side vector

obtaining a modified vector bk and then sets 

ck = qT
k

bk. An algorithm for solving least squares

problems using the modified Gram–Schmidt QR

factorization is given in Section 7.7.



Section 5.6 Exercises

1. For each of the following, use the Gram–Schmidt process to find

an orthonormal basis for R(A):

1. A = [ ]

2. A = [ ]

2. Factor each of the matrices in Exercise 1 into a product QR, where

Q is an orthogonal matrix and R is upper triangular.

3. Given the basis {(1, 2, −2)
T

, (4, 3, 2)
T

, (1, 2, 1)
T

} for R
3

, use

the Gram–Schmidt process to obtain an orthonormal basis.

4. Consider the vector space C[−1, 1] with the inner product

defined by

⟨f, g⟩ = ∫
1

−1
f(x)g(x)dx

Find an orthonormal basis for the subspace spanned by 1, x, and 

x2
.

5. Let

1. Use the Gram–Schmidt process to find an orthonormal

basis for the column space of A.

2. Factor A into a product QR, where Q has an orthonormal

set of column vectors and R is upper triangular.

3. Solve the least squares problem Ax = b.

6. Repeat Exercise 5 using

7. Given x1 = 1
2

(1, 1, 1, −1)T  and x2 = 1
6

(1, 1, 3, 5)T , verify

that these vectors form an orthonormal set in R
4

. Extend this set

−1 3

1 5

2 5

1 10

A = and b =
⎡⎢⎣ 2 1

1 1

2 1

⎤⎥⎦ ⎡⎢⎣ 12

6

18

⎤⎥⎦A = and b =
⎡⎢⎣ 3 −1

4 2

0 2

⎤⎥⎦ ⎡⎢⎣ 0

20

10

⎤⎥⎦



to an orthonormal basis for R
4

 by finding an orthonormal basis

for the null space of

[ ]

[Hint: First find a basis for the null space and then use the Gram–

Schmidt process.]

8. Use the Gram–Schmidt process to find an orthonormal basis for

the subspace of R
4

 spanned by 

x1 = (4, 2, 2, 1)
T

, x2 = (2, 0, 0, 2)
T

, and x3 = (1, 1, −1, 1)
T

.

9. Repeat Exercise 8 using the modified Gram–Schmidt process and

compare answers.

10. Let A be an m × 2 matrix. Show that if both the classical Gram–

Schmidt process and the modified Gram–Schmidt process are

applied to the column vectors of A, then both algorithms will

produce the exact same QR factorization, even when the

computations are carried out in finite-precision arithmetic (i.e.,

show that both algorithms will perform the exact same arithmetic

computations).

11. Let A be an m × 3 matrix. Let QR be the QR factorization

obtained when the classical Gram–Schmidt process is applied to

the column vectors of A, and let Q̃R̃ be the factorization obtained

when the modified Gram–Schmidt process is used. Show that if all

computations were carried out using exact arithmetic, then we

would have

and show that when the computations are done in finite-precision

arithmetic, r̃23 will not necessarily be equal to r23 and,

consequently, r̃33 and q̃3 will not necessarily be thesameas r23

and q3.

12. What will happen if the Gram–Schmidt process is applied to a set

of vectors {v1, v2, v3}, where v1 and v2 are linearly

independent, but v3 ∈ Span(v1, v2)? Will the process fail? If so,

how? Explain.

13. Let A be an m × n matrix of rank n and let b ∈ R
m

. Show that if

Q and R are the matrices derived from applying the Gram–

Schmidt process to the column vectors of A and

p = c1q1 + c2q2 + ⋯ + cnqn

is the projection of b onto R(A), then

1. c = QTb

2. p = QQTb

3. QQT = A(ATA)−1AT

1 1 1 −1

1 1 3 5

˜ = Q and ˜ = RQ R



14. Let U be an m-dimensional subspace of R
n

 and let V be a k-

dimensional subspace of U, where 0 < k < m.

1. Show that any orthonormal basis

{v1, v2, …, vk}

for V can be expanded to form an orthonormal basis 

{v1, v2, …, vk, vk+1, …, vm} for U.

2. Show that if W = Span(vk+1, vk+2, …, vm), then 

U = V ⊕ W

15. (Dimension Theorem) Let U and V be subspaces of R
n

. In the case

that U ∩ V = {0}, we have the following dimension relation:

dim(U + V ) = dimU + dimV

(See Exercise 18 in Section 3.4.) Make use of the result from

Exercise 14 to prove the more general theorem

dim(U + V ) = dimU + dimV − dim(U ∩ V )



5.7 Orthogonal Polynomials
We have already seen how polynomials can be used for

data fitting and for approximating continuous functions.

Since both of these problems are least squares problems,

they can be simplified by selecting an orthogonal basis

for the class of approximating polynomials. This leads us

to the concept of orthogonal polynomials.

In this section, we study families of orthogonal

polynomials associated with various inner products on

C[a, b]. We will see that the polynomials in each of these

classes satisfy a three-term recursion relation. This

recursion relation is particularly useful in computer

applications. Certain families of orthogonal polynomials

have important applications in many areas of

mathematics. We will refer to these polynomials as

classical polynomials and examine them in more detail.

In particular, the classical polynomials are solutions of

certain classes of second-order linear differential

equations that arise in the solution of many partial

differential equations from mathematical physics.

Orthogonal Sequences
Since the proof of Theorem 5.6.1 was by induction, the

Gram–Schmidt process is valid for a denumerable set.

Thus, if x1, x2, … is a sequence of vectors in an inner

product space V and x1, x2, …, xn are linearly

independent for each n, then the Gram–Schmidt process

may be used to form a sequence u1, u2, …,, where 

{u1, u2, …, } is an orthonormal set and

Span(x1, x2, …, xn) = Span(u1,u2, …, un)

for each n. In particular, from the sequence x,x,x2, …,
, it is possible to construct an orthonormal sequence 

P0(x), p1(x), ….



Let P be the vector space of all polynomials and define

the inner product ⟨, ⟩ on P by

⟨p, q⟩ = ∫
b

a

p(x)q(x)w(x)dx

(1)

where w(x) is a positive continuous function. The

interval can be taken as either open or closed and may be

finite or infinite. If, however,

∫
b

a

  p(x)w(x)dx

is improper, we require that it converge for every p ∈ P .

Definition
Let p0(x), p1(x), … be a sequence of polynomials with

deg pi(x) = i for each i. If ⟨pi(x), pj(x)⟩ = 0
whenever i ≠ j, then {pn(x)} is said to be a sequence

of orthogonal polynomials. If ⟨pi, pj⟩ = δij, then 

{pn(x)} is said to be a sequence of orthonormal

polynomials.

Theorem 5.7.1
If p0, p1, … is a sequence of orthogonal polynomials,

then

1. p0, …, pn−1 form a basis for Pn.

2. Pn ∈ P⊥
n  (i.e., Pn is orthogonal to every polynomial of degree

less than n).

Proof

It follows from Theorem 5.5.1 that p0, p1, …, pn−1 are

linearly independent in Pn. Since dim dim  Pn = n,

these n vectors must form a basis for Pn. Let p(x) be any

polynomial of degree less than n. Then

p(x) =
n−1

∑
i=0

cipi(x)



and hence

⟨pn, p⟩ = ⟨pn,
n−1

∑
i=0

 cipi⟩ =
n−1

∑
i=0

 ci⟨pn, pi⟩ = 0

Therefore, pn ∈ P⊥
n .

∎

If {p0, p1, …, pn−1} is an orthogonal set in Pn and

then {u0, …,un−1} is an orthonormal basis for Pn.

Hence, if p ∈ Pn, then

Similarly, if f ∈ C[a, b], then the best least squares

approximation to f by the elements of Pn is given by

p =
n−1

∑
i=0

⟨f, pi⟩

⟨pi, pi⟩
pi

where p0, p1, …, pn−1 are orthogonal polynomials.

Another nice feature of sequences of orthogonal

polynomials is that they satisfy a three-term recursion

relation.

Theorem 5.7.2
Let p0, p1, … be a sequence of orthogonal polynomials.

Let ai denote the lead coefficient of pi for each i, and

define p−1(x) to be the zero polynomial. Then

where α0 = γ0 = 1 and

ui = (
1

∥pi∥
) pi for i = 0, …,n − 1

p =
n−1

∑
i=0

⟨p,ui⟩ui

=
n−1

∑
i=0

⟨p,(
1

∥pi∥
)pi⟩(

1

∥pi∥
)pi

=
n−1

∑
i=0

⟨p, pi⟩

⟨pi, pi⟩
pi

αn+1pn+1(x) = (x − βn+1)pn(x) − αnγnpn−1(x) (n ≥ 0)

⟨ ⟩ ⟨ ⟩



Proof

Since p0, p1, … , pn+1 form a basis for Pn+2, we can

write

xpn(x) =
n+1

∑
k=0

cnkpk(x)

(2)

where

cnk =
⟨xpn, pk⟩

⟨pk, pk⟩

(3)

For any inner product defined by (1),

⟨xf, g⟩ = ⟨f,xg⟩

In particular,

⟨xpn, pk⟩ = ⟨pn,xpk⟩

It follows from Theorem 5.7.1 that if k < n − 1, then

cnk =
⟨xpn, pk⟩

⟨pk, pk⟩
=

⟨pn,xpk⟩

⟨pk, pk⟩
= 0

Therefore, (2) simplifies to

xpn(x) = cn,n−1pn−1(x) + cn,npn(x) + cn,n+1pn+1(x)

This equation can be rewritten in the form

cn,n+1pn+1(x) = (x − cn,n)pn(x) − cn,n−1pn−1(x)

(4)

Comparing the lead coefficients of the polynomials on

each side of (4), we see that

cn,n+1an+1 = an

or

cn,n+1 =
an

an+1
= an+1

(5)

It follows from (4) that

αn =
αn−1
αn

, βn =
⟨pn−1,xpn−1⟩

⟨pn−1, pn−1⟩
, γn =

⟨pn, pn⟩
⟨pn−1, pn−1⟩

(n ≥ 1)

⟨ ⟩ ⟨ ( ) ⟩ ⟨ ⟩



Thus,

cnn =
⟨pn,xpn⟩

⟨pn,pn⟩
= βn+1

It follows from (3) that

and hence, by (5), we have

cn,n−1 =
⟨pn, pn⟩

⟨pn−1, pn−1⟩
αn = γnαn

∎

In generating a sequence of orthogonal polynomials by

the recursion relation in Theorem 5.7.2, we are free to

choose any nonzero lead coefficient an+1 that we want at

each step. This is reasonable, since any nonzero multiple

of a particular pn+1 will also be orthogonal to p0, … , pn
. If we were to choose our ai’s to be 1, for example, then

the recursion relation would simplify to

pn+1(x) = (x − βn+1)pn(x) − γnpn−1(x)

Classical Orthogonal

Polynomials
Let us now look at some examples. Because of their

importance, we will consider the classical polynomials

beginning with the simplest, the Legendre polynomials.

Legendre Polynomials
The Legendre polynomials are orthogonal with respect to

the inner product

⟨p, q⟩ = ∫
1

−1
p(x)q(x)dx

cn,n+1⟨pn, pn+1⟩ = ⟨pn, (x − cn,n)pn⟩ − cn,n−1⟨pn,pn−1⟩

0 = ⟨pn,xpn⟩ − cnn⟨pn,pn⟩

⟨pn+1, pn−1⟩cn,n−1 = ⟨xpn, pn−1⟩

= ⟨pn,xpn − 1⟩

= ⟨pn, pn⟩cn−1,n



Let Pn(x) denote the Legendre polynomial of degree n.

If we choose the lead coefficients so that Pn(1) = 1 for

each n, then the recursion formula for the Legendre

polynomials is

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x)

By the use of this formula, the sequence of Legendre

polynomials is easily generated. The first five

polynomials of the sequence are

Chebyshev Polynomials
The Chebyshev polynomials are orthogonal with respect

to the inner product

⟨p, q⟩ = ∫
1

−1
p(x)q(x)(1 − x2)−1/2dx

It is customary to normalize the lead coefficients so that 

a0 = 1 and ak = 2k−1
 for k = 1, 2, …. The

Chebyshev polynomials are denoted by Tn(x) and have

the interesting property that

Tn(cosθ) = cos nθ

This property, together with the trigonometric identity

cos(n + 1)θ = 2 cosθ cos nθ − cos(n − 1)θ

can be used to derive the recursion relations

Jacobi Polynomials
The Legendre and Chebyshev polynomials are both

special cases of the Jacobi polynomials. The Jacobi

P0(x) = 1

P1(x) = x

P2(x) = 1
2 (3x2 − 1)

P3(x) = 1
2 (5x3 − 3x)

P4(x) = 1
8 (35x4 − 30x2 + 3)

T1(x) = xT0(x)

Tn+1(x) = 2xTn(x) − Tn−1(x)   for n ≥ 1



polynomials P
(λ,μ)
n  are orthogonal with respect to the

inner

product

⟨p, q⟩ = ∫
1

−1
p(x)q(x)(1 − x)λ(1 + x)μ dx

where λ,μ > −1.

Hermite Polynomials
The Hermite polynomials are defined on the interval 

(−∞, ∞). They are orthogonal with respect to the inner

product

⟨p, q⟩ = ∫
∞

−∞
p(x)q(x)e−x2

dx

The recursion relation for Hermite polynomials is given

by

Hn+1(x) = 2xHn(x) − 2nHn−1(x)

Laguerre Polynomials
The Laguerre polynomials are defined on the interval (0,

∞) and are orthogonal with respect to the inner product

⟨p, q⟩ = ∫
∞

0
p(x)q(x)xλe−xdx

where λ > −1. The recursion relation for the Laguerre

polynomials is given by

(n + 1)L(λ)
n+1(x) = (2n + λ + 1 − x)L(λ)

n (x) − (n + λ)L(λ)
n−1(x)

The Chebyshev, Hermite, and Laguerre polynomials are

compared in Table 5.7.1.

Table 5.7.1 Chebyshev,

Hermite, and Laguerre



Polynomials

ChebyshevHermiteLaguerre (λ = 0)

Application 1
Numerical Integration

One important application of orthogonal polynomials

occurs in numerical integration. To approximate

∫
b

a

f(x)w(x)dx

(6)

we first approximate f(x) by an interpolating

polynomial. Using Lagrange’s interpolation formula,

P(x) =
n

∑
i=1

f(xi)Li(x)

where the Lagrange functions Li are defined by

Li(x) =

we can determine a polynomial P(x) that agrees with 

f(x) at n points x1, … ,xn in [a, b]. The integral (6) is

then approximated by

∫
b

a

P(x)w(x)dx =
n

∑
i=1

Aif(xi)

(7)

Tn+1 = 2xTn − Tn−1,n ≥ 1

T0 = 1

T1 = x

T2 = 2x2 − 1

T3 = 4x3 − 3x

Hn+1 = 2xHn − 2nHn−1

H0 = 1

H1 = 2x

H2 = 4x2 − 2

H3 = 8x3 − 12x

(n + 1)L(0)
n+1 = (2n + 1 − x)L(0)

n − nL
(0)
n−1

L
(0)
0 = 1

L
(0)
1 = 1 − x

L
(0)
2 = 1

2 x
2 − x + 2

L
(0)
3 = 1

6 x
3 + 9x2 − 18x + 6

n
Π
j=1
j≠i

(x − xj)

n
Π
j=1
j≠i

(xi − xj)



where

It can be shown that (7) will give the exact value of the

integral whenever f(x) is a polynomial of degree less

than n. If the points x1, … ,xn are chosen properly,

formula (7) will be exact for higher degree polynomials.

Indeed, it can be shown that if p0, p1, p2, … is a

sequence of orthogonal polynomials with respect to the

inner product (1) and x1, … ,xn are the zeros of pn(x),

then formula (7) will be exact for all polynomials of

degree less than 2n. The following theorem guarantees

that the roots of pn are all real and lie in the open

interval (a, b).

Theorem 5.7.3
If p0, p1, p2, . . . is a sequence of orthogonal

polynomials with respect to the inner product (1), then

the zeros of pn(x) are all real and distinct and lie in the

interval (a, b).

Proof

Let x1, . . . ,xm be the zeros of pn(x) that lie in (a, b)
and for which pn(x) changes sign. Thus, pn(x) must

have a factor of (x − x1)ki , where ki is odd, for 

i = 1, . . . , m. We may write

pn(x) = (x − x1)k1(x − x2)k2 ⋅ ⋅ ⋅ (x − xm)kmq(x)

where q(x) does not change sign on (a, b) and 

q(xi) ≠ 0 for i = 1, . . . ,m. Clearly, m ≤ n. We will

show that m = n. Let

r(x) = (x − x1)(x − x2) ⋅ ⋅ ⋅ (x − xm)

The product

pn(x)r(x) = (x − x1)k1+1 + (x − x2)k2+1 ⋅ ⋅ ⋅ (x − xm)km+1q(x)

will involve only even powers of (x − xi) for each i and

hence will not change sign on (a, b). Therefore,

Ai = ∫
b

aLi(x)w(x) dx i = 1, … ,n



⟨pn, r⟩ = ∫
b

a

pn(x)r(x)w(x) dx ≠ 0

Since pn is orthogonal to all polynomials of degree less

than n, it follows that deg(r(x)) = m ≥ n.

∎

Numerical integration formulas of the form (7), where

the xi’s are roots of orthogonal polynomials, are called

Gaussian quadrature formulas. The proof of exactness

for polynomials of degree less than 2n can be found in

most undergraduate numerical analysis textbooks.

Actually, it is not necessary to perform n integrations to

calculate the quadrature coefficients A1, . . . ,An. They

can be determined by solving an n × n linear system.

Exercise 16 illustrates how this is done when the roots of

the Legendre polynomial Pn are used in a quadrature

rule for approximating ∫
1

−1 f(x)dx



Section 5.7 Exercises

1. Use the recursion formulas to calculate (a) T4,T5 and (b) H4,H5.

2. Let p0(x), p1(x), and p2(x) be orthogonal with respect to the

inner product

⟨p(x), q(x)⟩ = ∫
1

−1

p(x)q(x)

1 + x2
dx

Use Theorem 5.7.2 to calculate p1(x) and p2(x) if all polynomials

have lead coefficient 1.

3. Show that the Chebyshev polynomials have the following

properties:

1. 2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), for m > n

2. Tm(Tn(x)) = Tmn(x)

4. Find the best quadratic least squares approximation to ex on 

[−1, 1] with respect to the inner product

⟨f, g⟩ = ∫
1

−1
f(x)g(x)dx

5. Let p0, p1, . . . be a sequence of orthogonal polynomials and let an
denote the lead coefficient of pn. Prove that

pn ∥2= an⟨x
n, pn⟩

6. Let Tn(x) denote the Chebyshev polynomial of degree n and

define

Un−1(x) =
1
n
T ′
n(x)

for n = 1, 2, . . . .

1. Compute U0(x),U1(x) and U2(x),

2. Show that if x = cos θ, then

Un−1 =
sinnθ

sin θ

7. Let Un−1(x) be defined as in Exercise 6 for n ≥ 1 and define 

U−1(x) = 0. Show that

1. Tn(x) = Un(x) − xUn−1(x), for n ≥ 1∥



2. Un(x) = 2xUn−1(x) − Un−2(x),  for n ≥ 1

8. Show that the Ui’s defined in Exercise 6 are orthogonal with

respect to the inner product

⟨p, q⟩ = ∫
1

−1
p(x)q(x)(1 − x2)

1/2
dx

The Ui’s are called Chebyshev polynomials of the second kind.

9. Verify that the Legendre polynomial Pn(x) satisfies the second-

order equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

for n = 0, 1, 2.

10. Prove each of the following:

1. 

2. 

11. Given a function f(x) that passes through the points 

(1, 2), (2, −1), and (3, 4), use the Lagrange interpolating

formula to construct a second-degree polynomial that interpolates

f at the given points.

12. Show that if f(x) is a polynomial of degree less than n, then f(x)
must equal the interpolating polynomial P(x) in (7) and hence

the sum in (7) gives the exact value for ∫ b
a f(x)w(x)dx

13. Use the zeros of the Legendre polynomial P2(x) to obtain a two-

point quadrature formula:

∫
1

−1
f(x)dx ≈ A1f(x1) + A2f(x2)

14.  

1. For what degree polynomials will the quadrature

formula in Exercise 13 be exact?

2. Use the formula from Exercise 13 to approximate

dx

How do the approximations compare with the actual

values?

15. Let x1,x2, …,xn be distinct points in the interval [−1, 1] and

let

H ′′
n (x) = 2nHn−1(x), n = 0, 1, . . .

H ′′
n (x) − 2xH ′

n(x) + 2nHn(x) = 0, n = 0, 1, . . .

∫ 1
−1(x3 + 3x2 + 1) dx   and   ∫

1
−1

1
1 + x2

Ai = ∫ 1
−1 Li(x)dx, i = 1, …,n



where the Li’s are the Lagrange functions for the points 

x1,x2, …,xn.

1. Explain why the quadrature formula

∫
1

−1
f(x)dx = A1 f(x1) + A2 f(x2) + ⋯ + An f(xn)

will yield the exact value of the integral whenever f(x) is a

polynomial of degree less than n.

2. Apply the quadrature formula to a polynomial of degree

0 and show that

A1 + A2 + ⋯ + An = 2

16. Let x1,x2, …,xn be the roots of the Legendre polynomial Pn. If

the Ai’s are defined as in Exercise 15, then the quadrature

formula

∫
1

−1
f(x)dx = A1 f(x1) + A2 f(x2) + ⋯ + An f(xn)

will be exact for all polynomials of degree less than 2n.

1. Show that if 1 ≤ j < 2n, then

Pj(x1)A1 + Pj(x2)A2 + ⋯ + Pj(xn)An = ⟨1,Pj⟩ = 0

2. Use the results from part (a) and from Exercise 15 to set

up a nonhomogeneous n × n linear system for

determining the coefficients A1,A2, …,An.

17. Let Q0(x),Q1(x), … be an orthonormal sequence of

polynomials, that is, it is an orthogonal sequence of polynomials

and ‖Qk‖ = 1 for each k.

1. How can the recursion relation in Theorem 5.7.2 be

simplified in the case of an orthonormal sequence of

polynomials?

2. Let λ be a root of Qn. Show that λ must satisfy the matrix

equation

  = λ 

where the αi’s and αj’s are the coefficients from the

recursion equations.

⎡⎢⎣ β1 α1

α1 β2 α2

⋱ ⋱ ⋱
αn−2 βn−1 αn−1

αn−1 βn

⎤⎥⎦ ⎡⎢⎣ Q0(λ)
Q1(λ)

⋮
Qn−2(λ)
Qn−1(λ)

⎤⎥⎦ ⎡⎢⎣ Q0(λ)
Q1(λ)

⋮
Qn−2(λ)
Qn−1(λ)

⎤⎥⎦





Chapter 5 Exercises

MATLAB Exercises

1. Set

1. Use the MATLAB function norm to compute the values

of ∥x∥, ∥y∥, ∥x + y∥ and to verify that the triangle

inequality holds. Use MATLAB also to verify that the

parallelogram law

x+y 2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2)

is satisfied.

2. If

t =
xTy

∥x∥∥y∥

then why do we know that |t| must be less than or equal

to 1? Use MATLAB to compute the value of t and use the

MATLAB function acos to compute the angle between x

and y. Convert the angle to degrees by multiplying by 

180/π. (Note that the number π is given by pi in

MATLAB.)

3. Use MATLAB to compute the vector projection p of x

onto y. Set z = x − p and verify that z is orthogonal to

p by computing the scalar product of the two vectors.

Compute ∥x∥2
 and ∥z∥2 + ∥p∥2

 and verify that the

Pythagorean law is satisfied.

2. (Least Squares Fit to a Data Set by a Linear Function) The

following table of x and y values was given in Section 5.3 of this

chapter (see Figure 5.3.3):

x −1.0 0.0

2

.

1

2

.

3

2

.

4

5

.

3

6

.

0

6

.

5

8

.

0

y −1.02 −0.52 0 0 0 2 2 2 3

x = [0 : 4, 4, −4, 1, 1]′ and y = ones(9, 1)∥ ∥



.

5

5

.

7

0

.

7

0

.

1

3

.

5

2

.

8

2

.

5

4

The nine data points are nearly linear and hence the data can be

approximated by a linear function z = c1x + c2. Enter the x and

y coordinates of the data points as column vectors x and y,

respectively. Set V = [x, ones(size(x))] and use the MATLAB

“\” operation to compute the coefficients c1 and c2 as the least

squares solution to the 9 × 2 linear system V c = y. To see the

results graphically, set

w = −1 : 0.1 : 8

and

z = c(1) * w + c(2) * ones(size(w))

and plot the original data points and the least squares linear fit,

using the MATLAB command

plot(x, y, ′x′, w, z)

3. (Construction of Temperature Profiles by Least Squares

Polynomials) Among the important inputs in weather forecasting

models are data sets consisting of temperature values at various

parts of the atmosphere. These values are either measured directly

using weather balloons or inferred from remote soundings taken

by weather satellites. A typical set of RAOB (weather balloon) data

is given next. The temperature T in kelvins may be considered as a

function of p, the atmospheric pressure measured in decibars.

Pressures in the range from 1 to 3 decibars correspond to the top

of the atmosphere, and those in the range from 9 to 10 decibars

correspond to the lower part of the atmosphere.

p 1 2 3 4 5 6 7 8 9
1

0

T

2

2

2

2

2

7

2

2

3

2

3

3

2

4

4

2

5

3

2

6

0

2

6

6

2

7

0

2

6

6

1. Enter the pressure values as a column vector p by setting

p = [1 : 10]′, and enter the temperature values as a

column vector T. To find the best least squares fit to the

data by a linear function c1x + c2, set up an

overdetermined system V c = T. The coefficient matrix

V can be generated in MATLAB by setting

( )



V = [p, ones(10, 1)]

or, alternatively, by setting

Note: For any vector x = (x1,x2, … ,xn+1)T , the

MATLAB command vander(x) generates a full

Vandermonde matrix of the form

For a linear fit, only the last two columns of the full

Vandermonde matrix are used. More information on the

vander function can be obtained by typing help
vander. Once V has been constructed, the least squares

solution c of the system can be calculated using the

MATLAB “\” operation.

2. To see how well the linear function fits the data, define a

range of pressure values by setting

q = 1 : 0.1 : 10;

The corresponding function values can be determined by

setting

z = polyval(c, q);

We can plot the function and the data points with the

command

plot(q, z, p, T, ′x′)

3. Let us now try to obtain a better fit by using a cubic

polynomial approximation. Again, we can calculate the

coefficients of the cubic polynomial

c1x
3 + c2x

2 + c3x + c4

that gives the best least squares fit to the data by finding

the least squares solution of an overdetermined system 

V c = T. The coefficient matrix V is determined by

taking the last four columns of the matrix 

A = vander(p). To see the results graphically, again

set

z = polyval(c, q)

and plot the cubic function and data points, using the

same plot command as before. Where do you get the

better fit, at the top or bottom of the atmosphere?

A = vander(p); V = A(:, 9 : 10)

⎡⎢⎣ xn1 xn−1
1 ⋅ ⋅ ⋅ x1 1

xn1 xn−1
2 ⋅ ⋅ ⋅ x2 1

⋮

xnn+1 xn−1
n+1 ⋅ ⋅ ⋅ xn+1 1

⎤⎥⎦



4. To obtain a good fit at both the top and bottom of the

atmosphere, try using a sixth-degree polynomial.

Determine the coefficients as before using the last seven

columns of A. Set z = polyval(c, q) and plot the

results.

4. (Least Squares Circles) The parametric equations for a circle with

center (3, 1) and radius 2 are

Set t = 0 : 5 : 6 and use MATLAB to generate vectors of x and y

coordinates for the corresponding points on the circle. Next, add

some noise to your points by setting

x = x + 0.1 * rand(1, 13)

and

y = y + 0.1 * rand(1, 13)

Use MATLAB to determine the center c and radius r of the circle

that gives the best least squares fit to the points. Set

and use the command

plot(x1, y1, x, y, ‘x’)

to plot the circle and the data points.

5. (Fundamental Subspaces: Orthonormal Bases) The vector spaces 

N(A), R(A), N(AT ), and R(AT ) are the four fundamental

subspaces associated with a matrix A. We can use MATLAB to

construct orthonormal bases for each of the fundamental

subspaces associated with a given matrix. We can then construct

projection matrices corresponding to each subspace.

1. Set

A = rand(5, 2)*rand(2, 5)

What would you expect the rank and nullity of A to be?

Explain. Use MATLAB to check your answer by

computing rank(A) and Z = null(A). The columns of

Z form an orthonormal basis for N(A).

2. Next, set

The matrix S should be orthogonal. Why? Explain.

Compute S * S′ and compare your result to eye(5). In

x = 3 + 2 cos t y = 1 + 2 sin t

t1 = 0 : 0.1 : 6.3
x1 = c(1) + r * cos(t1)
y1 = c(2) + r * sin(t1)

Q = orth(A), W = null(A′),
S = [ ]Q W



theory, ATW  and W TA should both consist entirely of

zeros. Why? Explain. Use MATLAB to compute ATW

and W TA.

3. Prove that if Q and W had been computed in exact

arithmetic, then we would have

[Hint: Write SST
 in terms of Q and W.] Use MATLAB to

verify these identities.

4. Prove that if Q had been calculated in exact arithmetic,

then we would have QQTb = b for all b ∈ R(A). Use

MATLAB to verify this property by setting 

b=A*rand(5, 1) and then computing Q * Q′ * b

and comparing it with b.

5. Since the column vectors of Q form an orthonormal basis

for R(A), it follows that QQT
 is the projection matrix

corresponding to R(A). Thus, for any c ∈ R
5

, the vector 

q = QQTc is the projection of c onto R(A). Set 

c = rand(5, 1) and compute the projection vector q.

The vector r = c − q should be in N(AT
). Why?

Explain. Use MATLAB to compute A′ * r.

6. The matrix WWT
 is the projection matrix

corresponding to N(AT
). Use MATLAB to compute the

projection w = WWTc of c onto N(AT
) and compare

the result to r.

7. Set Y = orth(A′) and use it to compute the projection

matrix U corresponding to R(AT
). Let b = rand(5, 1)

and compute the projection vector y = U * b of b onto

R(AT
). Compute also U * y and compare it with y. The

vector s = b − y should be in N(A). Why? Explain. Use

MATLAB to compute A * s.

8. Use the matrix Z = null(A) to compute the projection

matrix V corresponding to N(A). Compute V * b and

compare it with s.

I − WWT = QQT and QQTA = A



Chapter Test A True or False
For each statement that follows, answer true if the

statement is always true and false otherwise. In the case

of a true statement, explain or prove your answer. In

the case of a false statement, give an example to show

that the statement is not always true.

1. If x and y are nonzero vectors in R
n

, then the vector projection of

x onto y is equal to the vector projection of y onto x.

2. If x and y are unit vectors in R
n

 and |xTy| = 1, then x and y are

linearly independent.

3. If U, V, and W are subspaces of R
3

 and if U ⊥ V  and V ⊥ W ,

then U ⊥ W .

4. It is possible to find a nonzero vector y in the column space of A

such that ATy = 0.

5. If A is an m × n matrix, then AAT
 and ATA have the same

rank.

6. If an m × n matrix A has linearly dependent columns and b is a

vector in R
m

, then b does not have a unique projection onto the

column space of A.

7. If N(A) = {0}, then the system Ax = b will have a unique

least squares solution.

8. If Q1 and Q2 are orthogonal matrices, then Q1Q2 also is an

orthogonal matrix.

9. If {u1, u2, … , uk} is an orthonormal set of vectors in R
n

 and

U = (u1, u2, … , uk)

then U TU = Ik (the k × k identity matrix).

10. If {u1, u2, … , uk} is an orthonormal set of vectors in R
n

 and

U = (u1, u2, … , uk)

then UUT = In (the n × n identity matrix).



Chapter Test B

1. Let

1. Find the vector projection p of x onto y.

2. Verify that x − p is orthogonal to p.

3. Verify that the Pythagorean law holds for x, p, and 

x − p.

2. Let v1 and v2 be vectors in an inner product space V.

1. Is it possible for |⟨v1, v2⟩| to be greater than ∥v1∥∥v2∥
? Explain.

2. If

|⟨v1, v2⟩| = ∥v1∥∥v2∥

what can you conclude about the vectors v1 and v2?

Explain.

3. Let v1 and v2 be vectors in an inner product space V.

∥v1 + v2∥2 ≤ (∥v1∥ + ∥v2∥)2

4. Let A be a 7 × 5 matrix with rank equal to 4 and let b be a vector

in R
8

. The four fundamental subspaces associated with A are

R(A), N(AT
), R(AT

), and N(A).

1. What is the dimension of N(AT
), and which of the other

fundamental subspaces is the orthogonal complement of

N(AT
)?

2. If x is a vector in R(A) and ATx = 0, then what can you

conclude about the value of ∥x∥ ? Explain.

3. What is the dimension of N(ATA)? How many

solutions will the least squares system Ax = b have?

Explain.

5. Let x and y be vectors in R
n

 and let Q be an n × n orthogonal

matrix. Show that if

then the angle between z and w is equal to the angle between x

and y.

x =   and   y =

⎡⎢⎣ 1
1
2
2

⎤⎥⎦ ⎡⎢⎣ −2
1
2
0

⎤⎥⎦
z = Qx   and   w = Qy



6. Let S be the two-dimensional subspace of R
3

 spanned by

1. Find a basis for S⊥
.

2. Give a geometric description of S and S⊥
.

3. Determine the projection matrix P that projects vectors

in R
3

 onto S⊥
.

7. Given the table of data points

x −1 1 2

y 1 3 3

find the best least squares fit by a linear function

f(x) = c1 + c2x.

8. Let {u1, u2, u3} be an orthonormal basis for a three-dimensional

subspace S of an inner product space V, and let

= +u1 + u2 − 4u3

1. Determine the value of ⟨x,y⟩.

2. Determine the value of ∥x∥.

9. Let A be a 7 × 5 matrix of rank4. Let P and Q be the projection

matrices that project vectors in R
7

 onto R(A) and N(AT
),

respectively.

1. Show that PQ = O.

2. Show that P + Q = I .

10. Given

If the Gram–Schmidt process is applied to determine an

orthonormal basis for R(A) and a QR factorization of A, then after

the first two orthonormal vectors q1 and q2 are computed, we

have

x1 =   and   x2 =
⎡⎢⎣ 1

0
2

⎤⎥⎦ ⎡⎢⎣ 0
1

−2

⎤⎥⎦x = 2u1 − u2 + u3 and y

A = and b =

⎡⎢⎣ 1 −3 −5
1 1 −2
1 −3 1
1 1 4

⎤⎥⎦ ⎡⎢⎣ −6
1
1
6

⎤⎥⎦



1. Finish the process. Determine q3 and fill in the third

columns of Q and R.

2. Use the QR factorization to find the least squares

solution of Ax = b

11. The functions cos x and sin x are both unit vectors in C[−π,π]
with the inner product defined by

⟨f, g⟩ =
1
π

∫
π

−π

f(x)g(x)dx

1. Show that cos x ⊥ sin x.

2. Determine the value of ∥cos x + sin x| |2.

12. Consider the vector space C[−1, 1] with the inner product

defined by

⟨f, g⟩ =
1
π

∫
1

−1
f(x)g(x)dx

1. Show that

x

form an orthonormal set of vectors.

2. Use the result from part (a) to find the best least squares

approximation to h(x) = x1/3 + x2/3
 by a linear

function.

Q = R =

⎡⎢⎣ 1
2 − 1

2
——

1
2

1
2

——

1
2 − 1

2
——

1
2

1
2

——

⎤⎥⎦ ⎡⎢⎣ 2 −2 ——
0 4 ——
0 0 ——

⎤⎥⎦u1(x) = 1
√2

and u2(x) =
√6
2



Chapter 6 Eigenvalues

In Section 6.1, we will be concerned with the equation 

Ax = λx. This equation occurs in many applications of

linear algebra. If the equation has a nonzero solution x,

then λ is said to be an eigenvalue of A and x is said to be

an eigenvector belonging to λ.

Eigenvalues are a common part of our life whether we

realize it or not. Wherever there are vibrations, there are

eigenvalues, the natural frequencies of the vibrations. If

you have ever tuned a guitar, you have solved an

eigenvalue problem. When engineers design structures,

they are concerned with the frequencies of vibration of

the structure. This concern is particularly important in

earthquake-prone regions such as California. The

eigenvalues of a boundary value problem can be used to

determine the energy states of an atom or critical loads

that cause buckling in a beam. This latter application is

presented in Section 6.1.

In Section 6.2, we will learn more about how to use

eigenvalues and eigenvectors to solve systems of linear



differential equations. We will consider a number of

applications, including mixture problems, the harmonic

motion of a system of springs, and the vibrations of a

building. The motion of a building can be modeled by a

second-order system of differential equations of the form

MY
′′(t) = KY(t)

where Y(t) is a vector whose entries are all functions of

t and Y
′′(t) is the vector of functions formed by taking

the second derivatives of each of the entries of Y(t). The

solution of the equation is determined by the eigenvalues

and eigenvectors of the matrix A = M
−1

K.

In general, we can view eigenvalues as natural

frequencies associated with linear operators. If A is an 

n × n matrix, we can think of A as representing a linear

operator on Rn
. Eigenvalues and eigenvectors provide

the key to understanding how the operator works. For

example, if λ > 0, the effect of the operator on any

eigenvector belonging to λ is simply a stretching or

shrinking by a constant factor. Indeed, the effect of the

operator is easily determined on any linear combination

of eigenvectors. In particular, if it is possible to find a

basis of eigenvectors for Rn
, the operator can be

represented by a diagonal matrix D with respect to that

basis and the matrix A can be factored into a product 

XDX
−1

. In Section 6.3, we see how this is done and

look at a number of applications.

In Section 6.4, we consider matrices with complex

entries. In this setting, we will be concerned with

matrices whose eigenvectors can be used to form an

orthonormal basis for Cn
 (the vector space of all n-

tuples of complex numbers). In Section 6.5, we introduce

the singular value decomposition of a matrix and show

four applications. Another important application of this

factorization will be presented in Chapter 7.



Section 6.6 deals with the application of eigenvalues to

quadratic equations in several variables and also with

applications involving maxima and minima of functions

of several variables. In Section 6.7, we consider

symmetric positive definite matrices. The eigenvalues of

such matrices are real and positive. These matrices occur

in a wide variety of applications. Finally, in Section 6.8,

we study matrices with nonnegative entries and some

applications to economics.



6.1 Eigenvalues and

Eigenvectors
Many application problems involve applying a linear

transformation repeatedly to a given vector. The key to

solving these problems is to choose a coordinate system

or basis that is in some sense natural for the operator

and for which it will be simpler to do calculations

involving the operator. With respect to these new basis

vectors (eigenvectors), we associate scaling factors

(eigenvalues) that represent the natural frequencies of

the operator. We illustrate with a simple example.

Example 1
Let us recall Application 1 from Section 1.4. In a certain

town, 30 percent of the married women get divorced

each year and 20 percent of the single women get

married each year. There are 8000 married women and

2000 single women, and the total population remains

constant. Let us investigate the long-range prospects if

these percentages of marriages and divorces continue

indefinitely into the future.

To find the number of married and single women after

one year, we multiply the vector w0 = (8000, 2000)T

by

A = [ ]

The number of married and single women after one year

is given by

w1 = Aw0 = [ ][ ] = [ ]

0.7 0.2
0.3 0.8

0.7 0.2
0.3 0.8

8000
2000

6000
4000



To determine the number of married and single women

after two years, we compute

w2 = Aw1 = A2
w0

and in general for n years we must compute 

wn = Anw0.

Let us compute w10, w20, w30 in this way and round

the entries of each to the nearest integer.

= [ ]

After a certain point, we seem to always get the same

answer. In fact, w12 = (4000, 6000)T  and since

Aw12 = [ ][ ] = [ ]

it follows that all the succeeding vectors in the sequence

remain unchanged. The vector (4000, 6000)T  is said to

be a steady-state vector for the process.

Suppose that initially we had different proportions of

married and single women. If, for example, we had

started with 10,000 married women and 0 single

women, then w0 = (10, 000, 0)T  and we can compute 

wn as before by multiplying w0 by A . In this case, it

turns out that w14 = (4000, 6000)T , and hence we still

end up with the same steady-state vector.

Why does this process converge, and why do we seem to

get the same steady-state vector even when we change

the initial vector? These questions are not difficult to

answer if we choose a basis for R
2

 consisting of vectors

for which the effect of the linear operator A is easily

determined. In particular, if we choose a multiple of the

steady-state vector, say, x1 = (2, 3)T , as our first basis

vector, then

Ax1 = [ ][ ] = [ ] = x1

w10 = [ ], w20 = [ ], w30
4004
5996

4000
6000

4000
6000

0.7 0.2
0.3 0.8

4000
6000

4000
6000

0.7 0.2
0.3 0.8

2
3

2
3

n



Thus, x1 is also a steady-state vector. It is a natural basis

vector to use since the effect of A on x1 could not be

simpler. Although it would be nice to use another steady-

state vector as the second basis vector, this is not

possible, because all the steady-state vectors turn out to

be multiples of x1. However, if we choose 

x2 = (−1, 1)T , then the effect of A on x2 is also very

simple:

Ax2 = [ ][ ] = [ ] =
1
2

x2

Let us now analyze the process using x1 and x2 as our

basis vectors. If we express the initial vector 

w0 = (8000, 2000)T  as a linear combination of x1 and

x2, then

w0 = 2000[ ] − 4000[ ] = 2000x1 − 4000x2

and it follows that

In general,

The first component of this sum is the steady-state vector

and the second component converges to the zero vector.

Will we always end up with the same steady-state vector

for any choice of w0? Suppose that initially there are p

married women. Since there are 10,000 women

altogether, the number of single women must be 10,000

− p. Our initial vector is then

w0 = [ ]

0.7 0.2
0.3 0.8

−1
1

− 1
2
1
2

2
3

−1
1

w1 = Aw0 = 2000Ax1 − 4000Ax2 = 2000x1 − 4000( 1
2 )x2

w2 = Aw1 = 2000x1 − 4000( 1
2 )2x2

wn = Anw0 = 2000x1 − 4000( 1
2 )nx2

p

10, 000 − p



If we express w0 as a linear combination c1x1 + c2x2,

then, as before,

wn = Anw0 = c1x1 + (
1
2
)n c2x2

The steady-state vector will be c1x1. To determine c1, we

write the equation

c1x1 + c2x2 = w0

as a linear system:

Adding the two equations, we see that c1 = 2000. Thus,

for any integer p in the range 0 ≤ p ≤ 10,000, the steady-

state vector turns out to be

2000x1 = [ ]

∎

The vectors x1 and x2 were natural vectors to use in

analyzing the process in Example 1, since the effect of the

matrix A on each of these vectors was so simple:

For each of the two vectors, the effect of A was just to

multiply the vector by a scalar. The two scalars 1 and 
1
2

can be thought of as the natural frequencies of the linear

transformation.

In general, if a linear transformation is represented by an

n × n matrix A and we can find a nonzero vector x so

that Ax = λx, for some scalar λ, then, for this

transformation, x is a natural choice to use as a basis

vector for R
n

 and the scalar λ defines a natural

frequency corresponding to that basis vector. More

precisely, we use the following terminology to refer to x

and λ.

2c1 − c2 = p

3c1 + c2 = 10, 000 − p

4000
6000

Ax1 = x1 = 1x1 and Ax2 = 1
2 x2



Definition
Let A be an n × n matrix. A scalar λ is said to be an

eigenvalue or a characteristic value of A if there

exists a nonzero vector x such that Ax = λx. The vector

x is said to be an eigenvector or a characteristic

vector belonging to λ.

Example 2
Let

Since

[ ] = [ ] = 3[ ] = 3x

it follows that λ = 3 is an eigenvalue of A and x = (2, 1)

is an eigenvector belonging to λ. Actually, any nonzero

multiple of x will be an eigenvector, because

A = (αx) = αAx = αλx = λ(αx)

For example, (4, 2)  is also an eigenvector belonging to λ

= 3.

[ ][ ] = [ ] = 3[ ]

∎

Geometric Visualization of

Eigenvalues and Eigenvectors
If a positive real number λ1 is an eigenvalue of a 2 × 2
matrix A, then to find the corresponding eigenvectors,

we need to find vectors x such that Ax = λ1x. The

A = [ ] and x = [ ]
4 −2
1 1

2
1

Ax = [ ]
4 −2
1 1

2
1

6
3

2
1

4 −2
1 1

4
2

12
6

4
2

T

T



direction of an eigenvector x is specified by the unit

vector

Note that the direction vector x1 is itself an eigenvector

belonging to λ1 since it is a nonzero scalar multiple of an

eigenvector x. Since λ1 > 0, the vector Ax1 is in the

same direction as x1 and ||Ax1|| = λ1. In the case that 

λ1 is a negative real eigenvalue of A with unit

eigenvector x1, the vectors x1 and Ax1 will be in

opposite directions and the length of Ax1 will be |λ1|. In

general, for a real eigenvalue λ1, we can view the

problem of finding a corresponding eigenvector as one of

finding a direction vector x1 for which Ax1 and x1 lie

along the same line through the origin in 2-space.

Unit vectors in R2
 are vectors of the form

Geometrically, the vectors start at the origin and have

terminal points on the circle of radius 1 that is centered

about the origin. One way to search for an eigenvector

belonging to a real eigenvalue of a 2 × 2 matrix A is to

move around the circumference of that circle (let t vary

from 0 to 2π) and try to find points (cos t, sin t) where

the corresponding vectors x and Ax both lie along the

same line through the origin. Consider the following

example.

Example 3
Let

A = [ ]

x1 = αx where α = 1
||x||

x = [ ] 0 ≤ t ≤ 2π
cos t
sin  t

1
2

3
2

3
2

1
2



The unit vector x = (1, 0)T  is not an eigenvector since

x and Ax do not lie on the same line through the origin.

See Figure 6.1.1.

Figure 6.1.1.

Figure 6.1.1. Full Alternative Text

To search for an eigenvector, we can rotate this initial

unit vector counterclockwise. As we rotate, we can

compare the directions of x and Ax. If for some direction

vector x, the vector Ax is in the same or opposite

direction of x, then we have found an eigenvector. For

this example, the two vectors do not align until we have

rotated the initial vector 45°. The unit vector x1 in this

direction will be an eigenvector of A. Indeed,

= 2x1

Thus, x1 is a unit eigenvector belonging to the

eigenvalue λ1 = 2. See Figure 6.1.2(a).

x1 = [ ] = and Ax1 =
cos π

4
sin π

4

⎡

⎣

1
√2
1

√2

⎤

⎦

⎡

⎣

2
√2
2

√2

⎤

⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-01-001.xhtml#la_fig06-01-001


Figure 6.1.2.

Figure 6.1.2. Full Alternative Text

If we continue rotating an additional 90°, we discover a

second unit eigenvector.

= −1x2

The vector x2 is a unit eigenvector of A belonging to the

eigenvalue λ2 = −1. See Figure 6.1.2(b).

∎

Once a unit eigenvector x has been found, it is easy to

determine the value of the corresponding eigenvalue.

Since ||x|| = 1, it follows that

xTAx = xT (λx) = λ||x||2 = λ

Thus, one can compute the eigenvalue by setting 

λ = xTAx.

x2 = [ ] = and Ax2 =
cos 3π

4

sin 3π
4

⎡

⎣

−1
√2
1

√2

⎤

⎦

⎡

⎣

1
√2
−1
√2

⎤

⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-01-002.xhtml#la_fig06-01-002


Next, we present a method of finding the eigenvalues

directly. Once the eigenvalues are known, there is a

straightforward method to find the corresponding

eigenvectors.

Finding Eigenvalues and

Eigenvectors
The equation Ax = λx can be written in the form

(A − λI)x = 0

(1)

Thus, λ is an eigenvalue of A if and only if (1) has a

nontrivial solution. The set of solutions to (1) is 

N(A − λI), which is a subspace of Rn
. Hence, if λ is

an eigenvalue of A, then N(A − λI) ≠ {0}, and any

nonzero vector in N(A − λI) is an eigenvector

belonging to λ. The subspace N(A − λI) is called the

eigenspace corresponding to the eigenvalue λ.

Equation (1) will have a nontrivial solution if and only if 

A − λI  is singular, or, equivalently,

det(A − λI) = 0

(2)

If the determinant in (2) is expanded, we obtain an nth-

degree polynomial in the variable λx:

p(λ) = det(A − λI)

This polynomial is called the characteristic polynomial,

and equation (2) is called the characteristic equation, for

the matrix A. The roots of the characteristic polynomial

are the eigenvalues of A. If roots are counted according

to multiplicity, then the characteristic polynomial will

have exactly n roots. Thus, A will have n eigenvalues,

some of which may be repeated and some of which may

be complex numbers. To take care of the latter case, it



will be necessary to expand our field of scalars to the

complex numbers and to allow complex entries for our

vectors and matrices.

We have now established a number of equivalent

conditions for λ to be an eigenvalue of A.

Let A be an n × n matrix and λ be a scalar. The

following statements are equivalent:

1. λx is an eigenvalue of A.

2. (A − λI)x = 0 has a nontrivial solution.

3. N(A − λI) ≠ {0}

4. A − λI  is singular.

5. det(A − λI) = 0

We will now use statement (e) to determine the

eigenvalues in a number of examples.

Example 4
Find the eigenvalues and the corresponding eigenvectors

of the matrix

A = [ ]

SOLUTION

The characteristic equation is

Thus, the eigenvalues of A are λ1 = 4 and λ2 = −3. To

find the eigenvectors belonging to λ1 = 4, we must

determine the null space of A − 4I.

A − 4I = [ ]

3 2
3 −2

= 0 or λ2 − λ − 12 = 0∣3 − λ 2
3 −2 − λ∣ −1 2

3 −6



Solving (A − 4I)x = 0, we get

x = (2x2,x2)T

Hence, any nonzero multiple of (2, 1)T  is an eigenvector

belonging to λ1, and {(2, 1)T} is a basis for the

eigenspace corresponding to λ1. Similarly, to find the

eigenvectors for λ2, we must solve

(A + 3I)x = 0

In this case, {(−1, 3)T} is a basis for N(A + 3I) and

any nonzero multiple of (−1, 3)T  is an eigenvector

belonging to λ2.

∎

Example 5
Let

A =

Find the eigenvalues and the corresponding eigenspaces.

SOLUTION

= −λ(λ − 1)2

Thus, the characteristic polynomial has roots 

λ1 = 0,λ2 = λ3 = 1. The eigenspace corresponding to

λ1 = 0 is N(A), which we determine in the usual

manner:

⎡⎢⎣2 −3 1
1 −2 1
1 −3 2

⎤⎥⎦∣2 − λ −3 1
1 −2 − λ 1
1 −3 2 − λ∣→

⎡⎢⎣2 −3 1
1 −2 1
1 −3 2∣000⎤⎥⎦ ⎡⎢⎣1 0 −1

0 1 −1
0 0 0∣000⎤⎥⎦



Setting x3 = α, we find that x1 = x2 = x3 = α.

Consequently, the eigenspace corresponding to λ1 = 0
consists of all vectors of the form α(1, 1, 1)T . To find

the eigenspace corresponding to λ = 1, we solve the

system (A − I)x = 0:

Setting x2 = α and x3 = β, we get x1 = 3α − β.

Thus, the eigenspace corresponding to λ = 1 consists of

all vectors of the form

= α + β

∎

Example 6
Let

A = [ ]

Compute the eigenvalues of A and find bases for the

corresponding eigenspaces.

SOLUTION

= (1 − λ)2 + 4

The roots of the characteristic polynomial are 

λ1 = 1 + 2i,λ2 = 1 − 2i.

A − λ1I = [ ] = −2[ ]

It follows that {(1, i)T} is a basis for the eigenspace

corresponding to λ1 = 1 + 2i. Similarly,

→
⎡⎢⎣1 −3 1

1 −3 1
1 −3 1∣000⎤⎥⎦ ⎡⎢⎣1 −3 1

0 0 0
0 0 0∣000⎤⎥⎦⎡⎢⎣3α − β

α

β

⎤⎥⎦ ⎡⎢⎣3
1
0

⎤⎥⎦ ⎡⎢⎣−1
0
1

⎤⎥⎦1 2
−2 1∣1 − λ 2

−2 1 − λ∣−2i 2
−2 −2i

i −1
1 i



A − λ2I = [ ] = 2[ ]

and {(1, −i)T} is a basis for N(A − λ2I).

∎

Application 1 Structures—

Buckling of a Beam
For an example of a physical eigenvalue problem,

consider the case of a beam. If a force or load is applied

to one end of the beam, the beam will buckle when the

load reaches a critical value. If we continue increasing

the load beyond the critical value, we can expect the

beam to buckle again when the load reaches a second

critical value, and so on. Assume that the beam has

length L and that it is positioned along the x-axis in the

plane with the left support of the beam at x = 0. Let 

y(x) represent the vertical displacement of the beam for

any point x, and assume that the beam is simply

supported; that is, y(0) = y(L) = 0. (See Figure 6.1.3.)

Figure 6.1.3.

Figure 6.1.3. Full Alternative Text

The physical system for the beam is modeled by the

boundary value problem

2i 2
−2 2i

i 1
−1 i

2

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-01-003.xhtml#la_fig06-01-003


(3)

where R is the flexural rigidity of the beam and P is the

load placed on the beam. A standard procedure to

compute the solution y(x) is to use a finite difference

method to approximate the differential equation.

Specifically, we partition the interval [0,L] into n equal

subintervals

and, for each j, we approximate y′′(xj) by a difference

quotient. If we set h = L
n

 and use the shorthand

notation yk for y(xk), then the standard difference

approximation is given by

Substituting these approximations into equation (3), we

end up with a system of n linear equations. If we multiply

each equation through by − h2

R
 and set λ = Ph

2

R
, then

the system can be written as a matrix equation of the

form Ay = λy, where

A =

The eigenvalues of this matrix will all be real and

positive. (See MATLAB Exercise 14 at the end of the

chapter.) For n sufficiently large, each eigenvalue λ of A

can be used to approximate a critical load P = Rλ
h2

under which buckling may occur. The most important of

these critical loads is the one corresponding to the

smallest eigenvalue since the beam may actually break

after this load is exceeded.

R
d2y

dx2 = −Py y(0) = y(L) = 0

0 = x0 < x1 < … < xn = L (xj =
jL
n , j = 0, … ,n)

y′′(xj) ≈
yj+1 − 2yj + yj−1

h2 j = 1, … ,n

⎡⎢⎣ 2 −1 0 … 0 0 0
−1 2 −1 … 0 0 0

0 −1 2 … 0 0 0

⋮ ⋮
0 0 0 … −1 2 −1
0 0 0 … 0 −1 2

⎤⎥⎦



Application 2 Aerospace: The

Orientation of a Space Shuttle
In Section 4.2, we saw how to determine the matrix

representation corresponding to a yaw, pitch, or roll of

an airplane in terms of 3 × 3 rotation matrices Y, P, and

R. Recall that a yaw is a rotation of an aircraft about the

z-axis, a pitch is a rotation about the y-axis, and a roll is

a rotation about the x-axis. We also saw in the airplane

application that a combination of a yaw followed by a

pitch and then a roll could be represented by a product 

Q = YPR. The same terms—yaw, pitch, and roll—are

used to describe the rotations of a space shuttle from its

initial position to a new orientation. The only difference

is that, for a space shuttle, it is customary to have the

positive x and z axes pointing in the opposite directions.

Figure 6.1.4 shows the axis system for the shuttle,

compared with the axis system used for an airplane. The

shuttle axes for the yaw, pitch, and roll are denoted 

ZS,YS , and XS , respectively. The origin for the axis

system is at the center of mass of the space shuttle. We

could use the yaw, pitch, and roll transformations, to

reorient the shuttle from its initial position; however,

rather than performing three separate rotations, it is

more efficient to use only one rotation. Given the angles

for the yaw, pitch, and roll, it is desirable to have the

shuttle computer determine a new single axis of rotation

R and an angle of rotation β about that axis.

Figure 6.1.4.



Figure 6.1.4. Full Alternative Text

In 2-space, a rotation in the plane of 45°, followed by a 

30° rotation, is equivalent to a single 75° rotation from

the initial position. Likewise, in 3-space, a combination

of two or more rotations is equivalent to a single

rotation. In the case of the space shuttle, we would like to

accomplish the combined rotations of yaw, pitch, and

roll by performing a single rotation about a new axis R.

The new axis can be determined by computing the

eigenvectors of the transformation matrix Q.

The matrix Q representing the combined yaw, pitch, and

roll transformations is a product of three orthogonal

matrices, each having a determinant equal to 1. So Q is

also orthogonal and det(Q) = 1. It follows that Q must

have λ = 1 as an eigenvalue. (See Exercise 23.) If z is a

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-01-004.xhtml#la_fig06-01-004


unit vector in the direction of the axis of rotation R, then

z should remain unchanged by the transformation and

hence we should have Qz = z. Thus, z is an unit

eigenvector of Q belonging to the eigenvalue λ = 1. The

eigenvector z determines the axis of rotation.

To determine the angle of rotation about the new axis R,

note that e1 represents the initial direction of the XS

axis and q1 = Qe1 represents the direction after the

transformation. If we project e1 and q1 onto the R-axis,

they both will project onto the same vector

p = (z
T

e1)z = z1z

The vectors

have the same length and both are in the plane that is

normal to the R-axis and passes through the origin. As 

e1 rotates to q1, the vector v gets rotated to w. (See

Figure 6.1.5.) The angle of rotation β can be computed by

finding the angle between v and w:

β = arccos(
vTw

∥v∥2
)

Figure 6.1.5.

v = e1 − p and w = q1 − p



Figure 6.1.5. Full Alternative Text

Complex Eigenvalues
If A is an n × n matrix with real entries, then the

characteristic polynomial of A will have real coefficients,

and hence all its complex roots must occur in conjugate

pairs. Thus, if λ = a + bi(b ≠ 0) is an eigenvalue of A,

then λ̄ = a − bi must also be an eigenvalue of A. Here,

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-01-005.xhtml#la_fig06-01-005


the symbol λ̄ (read lambda bar) is used to denote the

complex conjugate of λ. A similar notation can be used

for matrices. If A = (aij) is a matrix with complex

entries, then A = (aij) is the matrix formed from A by

conjugating each of its entries. We define a real matrix

to be a matrix with the property that A = A. In general,

if A and B are matrices with complex entries and the

multiplication AB is possible, then AB = AB (see

Exercise 20).

Not only do the complex eigenvalues of a real matrix

occur in conjugate pairs, but so do the eigenvectors.

Indeed, if λ is a complex eigenvalue of a real n × n

matrix A and z is an eigenvector belonging to λ, then

Az̄ = Az̄ = Az = λz = λ̄z̄

Thus, z̄ is an eigenvector of A belonging to λ̄. In Example

6, the eigenvector computed for the eigenvalue 

λ = 1 + 2i was z = (1, i)T , and the eigenvector

computed for λ̄ = 1 − 2i  was z̄ = (1, −i)T .

The Product and Sum of the

Eigenvalues
It is easy to determine the product and sum of the

eigenvalues of an n × n matrix A. If p(λ) is the

characteristic polynomial of A, then

p(λ) = det(A − λI) =

(4)

Expanding along the first column, we get

det(A − λI) = (a11 − λ)det(M11) +
n

∑
i=2

ai1(−1)i+1 det(Mi1)

¯̄

¯

¯̄̄

¯̄̄∣a11 − λ a12 … a1n

a21 a22 − λ a2n

⋮
an1 an2 amn − λ∣



where the minors Mi1, i = 2, … ,n, do not contain the

two diagonal elements (a11 − λ) and (aii − λ).

Expanding det(M11) in the same manner, we conclude

that

(a11 − λ)(a22 − λ) … (ann − λ)

(5)

is the only term in the expansion of det(A − λI)
involving a product of more than n − 2 of the diagonal

elements. When (5) is expanded, the coefficient of λn

will be (−1)n. Thus, the lead coefficient of p(λ) is 

(−1)n, and hence if λ1, … ,λn are the eigenvalues of

A, then

(6)

It follows from (4) and (6) that

λ1 ⋅ λ2 …λn = p(0) = det(A)

From (5), we also see that the coefficient of (−λ)n−1
 is 

n

∑
i=1

aii. If we use (6) to determine this same coefficient,

we obtain 

n

∑
i=1

λi. It follows that

n

∑
i=1

λi =
n

∑
i=1

aii

The sum of the diagonal elements of A is called the trace

of A and is denoted by tr(A).

Example 7
If

A = [ ]

p(λ) = (−1)n(λ − λ1)(λ − λ2) … (λ − λn)
= (λ1 − λ)(λ2 − λ) … (λn − λ)

5 −18
1 − 1



then

The characteristic polynomial of A is given by

= λ2 − 4λ + 13

and hence the eigenvalues of A are λ1 = 2 + 3i and 

λ2 = 2 − 3i. Note that

λ1 + λ2 = 4 = tr(A)

and

λ1λ2 = 13 = det(A)

∎

In the examples we have looked at so far, n has always

been less than 4. For larger n, it is more difficult to find

the roots of the characteristic polynomial. In Chapter 7,

we will learn numerical methods for computing

eigenvalues. (These methods will not involve the

characteristic polynomial at all.) If the eigenvalues of A

have been computed by some numerical method, one

way to check their accuracy is to compare their sum with

the trace of A.

Similar Matrices
We close this section with an important result about the

eigenvalues of similar matrices. Recall that a matrix B is

said to be similar to a matrix A if there exists a

nonsingular matrix S such that B = S−1AS.

Theorem 6.1.1

det(A) = −5 + 18 = 13 and tr(A) = 5 − 1 = 4∣5 − λ −18
1 −1 − λ∣



Let A and B be n × n matrices. If B is similar to A, then

the two matrices have the same characteristic

polynomial and, consequently, the same eigenvalues.

Proof

Let pA(x) and pB(x) denote the characteristic

polynomials of A and B, respectively. If B is similar to A,

then there exists a nonsingular matrix S such that 

B = S−1AS. Thus,

The eigenvalues of a matrix are the roots of the

characteristic polynomial. Since the two matrices have

the same characteristic polynomial, they must have the

same eigenvalues.

∎

Example 8
Given

It is easily seen that the eigenvalues of T are λ1 = 2 and 

λ2 = 3. If we set A = S−1TS, then the eigenvalues of

A should be the same as those of T.

A = [ ][ ][ ] = [ ]

We leave it to the reader to verify that the eigenvalues of

this matrix are λ1 = 2 and λ2 = 3.

∎

PB(λ) = det(B − λI)

= det(S−1AS − λI)

= det(S−1(A − λI)S)

= det(S−1)det(A − λI)det(S)
= pA(λ)

T = [ ] and S = [ ]
2 1
0 3

5 3
3 2

2 −3
−3 5

2 1
0 3

5 3
3 2

−1 −2
6 6





Section 6.1 Exercises

1. Find the eigenvalues and the corresponding eigenspaces for each

of the following matrices:

1. [ ]

2. [ ]

3. [ ]

4. [ ]

5. [ ]

6. 

7. 

8. 

9. 

10. 

11. 

12. 

3 2
4 1

6 −4
3 −1

3 −1
1 1

3 −8
2 3

1 1
−2 3

⎡⎢⎣ 0 1 0
0 0 1
0 0 0

⎤⎥⎦⎡⎢⎣ 1 1 1
0 2 1
0 0 1

⎤⎥⎦⎡⎢⎣ 1 2 1
0 3 1
0 5 −1

⎤⎥⎦⎡⎢⎣ 4 −5 1
1 0 −1
0 1 −1

⎤⎥⎦⎡⎢⎣ −2 0 1
1 0 −1
0 1 −1

⎤⎥⎦⎡⎢⎣ 2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤⎥⎦⎡⎢⎣ 3 0 0 0
4 1 0 0
0 0 2 1
0 0 0 2

⎤⎥⎦



2. Show that the eigenvalues of a triangular matrix are the diagonal

elements of the matrix.

3. Let A be an n × n matrix. Prove that A is singular if and only if 

λ = 0 is an eigenvalue of A.

4. Let A be a nonsingular matrix and let λ be an eigenvalue of A.

Show that 1/λ is an eigenvalue of A−1
.

5. Let A and B be n × n matrices. Show that if none of the

eigenvalues of A are equal to 1, then the matrix equation

XA + B = X

will have a unique solution.

6. Let λ be an eigenvalue of A and let x be an eigenvector belonging

to λ. Use mathematical induction to show that, for m ≥ 1,λm is

an eigenvalue of Am
 and x is an eigenvector of Am

 belonging to 

λm.

7. Let A be an n × n matrix and let B = I − 2A + A2
.

1. Show that if x is an eigenvector of A belonging to an

eigenvalue λ, then x is also an eigenvector of B

belonging to an eigenvalue μ of B. How are λ and μ

related?

2. Show that if λ = 1 is an eigenvalue of A, then the matrix

B will be singular.

8. An n × n matrix A is said to be idempotent if A2 = A. Show that

if λ is an eigenvalue of an idempotent matrix, then λ must be

either 0 or 1.

9. An n × n matrix is said to be nilpotent if Ak = O for some

positive integer k. Show that all eigenvalues of a nilpotent matrix

are 0.

10. Let A be an n × n matrix and let B = A − αI  for some scalar α.

How do the eigenvalues of A and B compare? Explain.

11. Let A be an n × n matrix and let B = A + I . Is it possible for A

and B to be similar? Explain.

12. Show that A and AT
 have the same eigenvalues. Do they

necessarily have the same eigenvectors? Explain.

13. Show that the matrix

A = [ ]

will have complex eigenvalues if θ is not a multiple of π. Give a

geometric interpretation of this result.

14. Let A be a 2 × 2 matrix. If tr(A) = 8 and det(A) = 12, what

are the eigenvalues of A?

cos θ − sin  θ
sin  θ cos θ



15. Let A = (aij) be an n × n matrix with eigenvalues λ1, … ,λn.

Show that

16. Let A be a 2 × 2 matrix and let p(λ) = λ2 + bλ + c be the

characteristic polynomial of A. Show that b = −tr(A) and 

c = det(A).

17. Let λ be a nonzero eigenvalue of A and let x be an eigenvector

belonging to λ. Show that Am
x is also an eigenvector belonging to

λ for m = 1, 2, ….

18. Let A be an n × n matrix and let λ be an eigenvalue of A. If 

A − λI  has rank k, what is the dimension of the eigenspace

corresponding to λ? Explain.

19. Let A be an n × n matrix. Show that a vector x in either R
n

 or C
n

is an eigenvector belonging to A if and only if the subspace S

spanned by x and Ax has dimension 1.

20. Let α = a + bi and β = c + di be complex scalars and let A and

B be matrices with complex entries.

1. Show that

2. Show that the (i, j) entries of AB and A  B  are equal

and hence that

AB = A  B

21. Let Q be an orthogonal matrix.

1. Show that if λ is an eigenvalue of Q, then |λ| = 1.

2. Show that |det(Q)| = 1.

22. Let Q be an orthogonal matrix with an eigenvalue λ1 = 1 and let

x be an eigenvector belonging to λ1. Show that x is also an

eigenvector of QT
.

23. Let Q be a 3 × 3 orthogonal matrix whose determinant is equal to

1.

1. If the eigenvalues of Q are all real and if they are ordered

so that λ1 ≥ λ2 ≥ λ3, determine the values of all

possible triples of eigenvalues (λ1,λ2,λ3).

2. In the case that the eigenvalues λ2 and λ3 are complex,

what are the possible values for λ1? Explain.

3. Explain why λ = 1 must be an eigenvalue of Q.

λj = ajj + ∑
i≠j

(aii − λi) fot j = 1, … ,n

α + β = ᾱ + β̄ and = ᾱβ̄αβ



24. Let x1, … , xr be eigenvectors of an n × n matrix A and let S be

the subspace of R
n

 spanned by x1, x2, … , xr. Show that S is

invariant under A (i.e., show that Ax ∈ S whenever x ∈ S).

25. Let A be an n × n matrix and let λ be an eigenvalue of A. Show

that if B is any matrix that commutes with A, then the eigenspace 

N(A − λI) is invariant under B.

26. Let B = S−1AS and let x be an eigenvector of B belonging to an

eigenvalue λ. Show that Sx is an eigenvector of A belonging to λ.

27. Let A be an n × n matrix with an eigenvalue λ and let x be an

eigenvector belonging to λ. Let S be a nonsingular n × n matrix

and let α be a scalar. Show that if

= Sx

then y is an eigenvector of B. Determine the eigenvalue of B

corresponding to y?

28. Show that if two n × n matrices A and B have a common

eigenvector x (but not necessarily a common eigenvalue), then x

will also be an eigenvector of any matrix of the form 

C = αA + βB.

29. Let A be an n × n matrix and let λ be a nonzero eigenvalue of A.

Show that if x is an eigenvector belonging to λ, then x is in the

column space of A. Hence, the eigenspace corresponding to λ is a

subspace of the column space of A.

30. Let {u1, u2, … , un} be an orthonormal basis for Rn
 and let A

be a linear combination of the rank 1 matrices 

u1u
T
1 , u2u

T
2 , … , unu

T
n . If

A = c1u1u
T
1 + c2u2u

T
2 + … + cnunu

T
n

show that A is a symmetric matrix with eigenvalues c1, c2, … , cn
and that ui is an eigenvector belonging to ci for each i.

31. Let A be a matrix whose columns all add up to a fixed constant δ.

Show that δ is an eigenvalue of A.

32. Let λ1 and λ2 be distinct eigenvalues of A. Let x be an eigenvector

of A belonging to λ1 and let y be an eigenvector of AT
 belonging

to λ2. Show that x and y are orthogonal.

33. Let A and B be n × n matrices. Show that

1. if λ is a nonzero eigenvalue of AB, then it is also an

eigenvalue of BA.

2. if λ = 0 is an eigenvalue of AB, then λ = 0 is also an

eigenvalue of BA.

34. Prove that there do not exist n × n matrices A and B such that

AB − BA = I

Hint: See Exercises 10 and 33.

B = αI − SAS−1, y



35. Let p(λ) = (−1)n(λn − an−1λ
n−1 − … − a1λ − a0) be a

polynomial of degree n ≥ 1, and let

C =

1. Show that if λi is a root of p(λ) = 0, then λi is an

eigenvalue of C with eigenvector 

x = (λn−1
i ,λn−2

i , … ,λi, 1)T .

2. Use part (a) to show that if p(λ) has n distinct roots,

then p(λ) is the characteristic polynomial of C.

The matrix C is called the companion matrix of p(λ).

36. The result given in Exercise 35(b) holds even if all the eigenvalues

of p(λ) are not distinct. Prove this as follows:

1. Let

Dm(λ) =

and use mathematical induction to prove that

det(Dm(λ)) = (−1)m(amλm + am−1λ
m−1 + … + a1λ + a0)

2. Show that

⎡⎢⎣ an−1 an−2 … a1 a0

1 0 … 0 0
0 1 … 0 0

⋮
0 0 … 1 0

⎤⎥⎦⎡⎢⎣ am am−1 … a1 a0

1 −λ … 0 0

⋮
0 0 … 1 −λ

⎤⎥⎦det(C − λI)
= (an−1 − λ)(−λ)n−1 − det(Dn−2)
= p(λ)



6.2 Systems of Linear

Differential Equations
Eigenvalues play an important role in the solution of

systems of linear differential equations. In this section,

we see how they are used in the solution of systems of

linear differential equations with constant coefficients.

We begin by considering systems of first-order equations

of the form

where yi = fi(t) is a function in C1[a, b] for each i. If

we let

then the system can be written in the form

Y′ = AY

Y and Y′
 are both vector functions of t. Let us consider

the simplest case first. When n = 1, the system is simply

y′ = ay

(1)

Clearly, any function of the form

satisfies equation (1). A natural generalization of this

solution for the case n > 1 is to take

y′
1 = a11y1 + a12y2 + … + a1nyn

y′
2 = a21y1 + a22y2 + … + a2nyn

⋮
y′

n = an1y1 + an2y2 + … + annyn

Y = and Y′ =

⎡⎢⎣y1

y2

⋮
yn

⎤⎥⎦ ⎡⎢⎣y′
1

y′
2

⋮
y′

n

⎤⎥⎦y(t) = ceat (c an arbitrary constant)



Y = = eλtx

where x = (x1, x2, … , xn)T
. To verify that a vector

function of this form does work, we compute the

derivative

Y′ = λeλtx = λY

Now, if we choose λ to be an eigenvalue of A and x to be

an eigenvector belonging to λ, then

AY = eλtAx = λeλt
x = λY = Y

′

Hence, Y is a solution of the system. Thus, if λ is an

eigenvalue of A and x is an eigenvector belonging to λ,

then eλtx is a solution of the system Y′ = AY. This

will be true whether λ is real or complex. Note that if Y1

and Y2 are both solutions of Y′ = AY, then 

αY1 + βY2 is also a solution, since

It follows by induction that if Y1, … , Yn are solutions

of Y′ = AY, then any linear combination 

c1Y1 + … + cnYn will also be a solution.

In general, the solutions of an n × n first-order system

of the form

Y
′ = AY

will form an n-dimensional subspace of the vector space

of all continuous vector-valued functions. If, in addition,

we require that Y(t) take on a prescribed value Y0

when t = 0, then a standard theorem from differential

equations guarantees that the problem will have a unique

solution. A problem of the form

⎡⎢⎣x1eλt

x2eλt

⋮
xneλt

⎤⎥⎦(αY1 + βY2)′ = αY
′
1 + βY

′
2

= αAY1 + βAY2

= A(αY1 + βY2)

Y′ = AY, Y(0) = Y0



is called an initial value problem.

Example 1
Solve the system

SOLUTION

A = [ ]

The eigenvalues of A are λ1 = 6 and λ2 = −1. Solving 

(A − λI)x = 0 with λ = λ1 and λ = λ2, we see that 

x1 = (4, 3)T
 is an eigenvector belonging to λ1 and 

x2 = (1, −1)T
 is an eigenvector belonging to λ2. Thus,

any vector function of the form

Y = c1eλ1tx1 + c2eλ2tx2 = [ ]

is a solution of the system.

∎

In Example 1, suppose we require that y1 = 6 and 

y2 = 1 when t = 0. Then

Y(0) = [ ] = [ ]

and it follows that c1 = 1 and c2 = 2. Hence, the

solution to the initial value problem is given by

Y = e6t
x1 + 2e−t

x2 = [ ]

Application 1 Mixtures

y′
1 = 3y1 + 4y2

y′
2 = 3y1 + 2y2

3 4
3 2

4c1e6t + c2e−t

3c1e6t − c2e−t

4c1 + c2

3c1 − c2

6
1

4e6t + 2e−t

3e6t − 2e−t



Two tanks are connected as shown in Figure 6.2.1.

Initially, tank A contains 200 liters of water in which 60

grams of salt have been dissolved and tank B contains

200 liters of pure water. Liquid is pumped in and out of

the two tanks at rates shown in the diagram. Determine

the amount of salt in each tank at time t.

Figure 6.2.1.

Figure 6.2.1. Full Alternative Text

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-02-001.xhtml#la_fig06-02-001


SOLUTION

Let y1(t) and y2(t) be the number of grams of salt in

tanks A and B, respectively, at time t. Initially,

Y(0) = [ ] = [ ]

The total amount of liquid in each tank will remain at

200 liters since the amount being pumped in equals the

amount being pumped out. The rate of change in the

amount of salt for each tank is equal to the rate at which

it is being added minus the rate at which it is being

pumped out. For tank A, the rate at which the salt is

added is given by

(5 L/min.) ⋅ (
y2(t)
200

g/L) =
y2(t)
40

g/min.

and the rate at which the salt is being pumped out is

(20 L/min.) ⋅ (
y1(t)
200

g/L) =
y1(t)
10

g/min.

Thus, the rate of change for tank A is given by

y′
1(t) =

y2(t)
40

−
y1(t)
10

Similarly, for tank B, the rate of change is given by

y
′
2(t) =

20y1(t)
200

−
20y2(t)

200
=

y1(t)
10

−
y2(t)
10

To determine y1(t) and y2(t), we must solve the initial

value problem

where

= [ ]

The eigenvalues of A are λ1 = − 3
20  and λ2 = − 1

20
with corresponding eigenvectors

y1(0)
y2(0)

60
0

Y′ = AY, Y(0) = Y0

A = [ ], Y0
− 1

10
1
40

1
10 − 1

10

60
0



The solution must then be of the form

Y = c1e−3t/20x1 + c2e−t/20x2

When t = 0, Y = Y0. Thus,

c1x1 + c2x2 = Y0

and we can find c1 and c2 by solving

[ ][ ] = [ ]

The solution of this system is = c2 = 30. Therefore,

the solution of the initial value problem is

Y(t) = [ ] = [ ]

∎

Complex Eigenvalues
Let A be a real n × n matrix with a complex eigenvalue 

λ = a + bi, and let x be an eigenvector belonging to λ.

The vector x can be split up into its real and imaginary

parts.

x = = + i = Re x + iIm x

Since the entries of A are all real, it follows that 

λ̄ = a − bi is also an eigenvalue of A with eigenvector

x̄ = = Re x − i Im x

x1 = [ ] and x2 = [ ]
1

−2
1
2

1 1
−2 2

c1

c2

60
0

c1

y1(t)
y2(t)

30e−3t/20 + 30e−t/20

−60e−3t/20 + 60e−t/20

⎡⎢⎣Re x1 + i Im x1

Re x2 + i Im x2

⋮
Re xn + i Im xn 

⎤⎥⎦ ⎡⎢⎣Re x1

Re x2

⋮
Re xn

⎤⎥⎦ ⎡⎢⎣Im x1

Im x2

⋮
Im xn

⎤⎥⎦⎡⎢⎣Re x1 − i Im x1

Re x2 − i Im x2

⋮
Re xn − i Im xn 

⎤⎥⎦



and hence eλtx and eλ̄tx̄ are both solutions of the first-

order system Y′ = AY. Any linear combination of

these two solutions will also be a solution. Thus, if we set

Y1 =
1
2
(eλtx + eλ̄tx̄) = Re(eλtx)

and

Y2 =
1
2i

(eλtx − eλ̄tx̄) = Im(eλtx)

then the vector functions Y1 and Y2 are real-valued

solutions of Y
′ = AY. Taking the real and imaginary

parts of

we see that

Example 2
Solve the system

SOLUTION

Let

A = [ ]

The eigenvalues of A are λ = 2 + i and λ̄ = 2 − i, with

eigenvectors x = (1, 1 + i)T
 and x̄ = (1, 1 − i)T

,

respectively.

e𝛌tx = e(a+ib)tx

= eat(cos bt + i sin bt)(Re x + i Im x)

Y1 = eat[(cos bt) Re x − (sin bt) Im x]
Y2 = eat[(cos bt) Im x + (sin bt) Re x]

y′
1 = y1 + y2

y′
2 = −2y1 + 3y2

1 1
−2 3

2t



Let

Y1 = Re(eλt
x) =

and

Y2 = Im(eλt
x) =

Any linear combination

Y = c1Y1 + c2Y2

will be a solution of the system.

∎

If the n × n coefficient matrix A of the system 

Y′ = AY has n linearly independent eigenvectors, the

general solution can be obtained by the methods that

have been presented. The case when A has fewer than n

linearly independent eigenvectors is more complicated;

consequently, we will defer discussion of this case to

Section 6.3.

Higher-Order Systems
Given a second-order system of the form

Y′′ = A1 Y+A2 Y′

we may translate it into a first-order system by setting

eλtx = [ ]

= [ ]

e2t(cos t + i sin t)
e2t(cos t + i sin t)(1 + i)

e2t cos t + ie2t sin t
e2t(cos t − sin t) + ie2t(cos t + sin t)

[ ]
e2t cos t

e2t(cos t − sin t)

[ ]
e2t sin t

e2t(cos t + sin t)

yn+1(t) = y′
1(t)

yn+2(t) = y′
2(t)

⋮
y2n(t) = y′

n(t)



If we let

Y1 = Y = (y1, y2, … , yn)T

and

Y2 = Y
′ = (yn+1, … , y2n)T

then

Y
′
1 = OY1 + IY2

and

Y
′
2 = A1 Y1 + A2 Y2

The equations can be combined to give the 2n × 2n

first-order system

[ ] = [ ][ ]

If the values of = Y and = Y′ are specified

when t = 0, then the initial value problem will have a

unique solution.

Example 3
Solve the initial value problem

SOLUTION

Set y3 = y′
1 and y4 = y′

2. This gives the first-order

system

The coefficient matrix for the system

Y
′
1

Y
′
2

O I

A1 A2

Y1

Y2

Y1 Y2

y′′
1 = 2y1 + y2 + y′

1 + y′
2

y′′
2 = −5y1 + 2y2 + 5y′

1 − y′
2

y1(0) = y2(0) = y′
1(0) = 4, y′

2(0) = −4

y′1 = y3

y′2 = y4

y′3 = 2y1 + y2 + y3 + y4

y′4 = −5y1 + 2y2 + 5y3 − y4



A =

has eigenvalues

Corresponding to these eigenvalues are the eigenvectors

Thus, the solution will be of the form

c1x1et + c2x2e−t + c3xe3t + c4x4e−3t

We can use the initial conditions to find c1, c2, c3, and 

c4. For t = 0, we have

c1x1 + c2x2 + c3x3 + c4x4 = (4, 4, 4, −4)T

or, equivalently,

=

The solution of this system is c = (2, 1, 1, 0)T
, and

hence the solution to the initial value problem is

Y = 2x1et + x2e−t + x3e3t

Therefore,

=

∎

In general, if we have an mth-order system of the form

Y(m) = A1Y + A2Y′ + … + AmY(m−1)

⎡⎢⎣ 0 0 1 0
0 0 0 1
2 1 1 1

−5 2 5 −1

⎤⎥⎦λ1 = 1, λ2 = −1, λ3 = 3, λ4 = −3

x1 = (1, −1, 1, −1)T , x2 = (1, 5, −1, −5)T

x3 = (1, 1, 3, 3)T , x4 = (1, −5, −3, 15)T

⎡⎢⎣ 1 1 1 1
−1 5 1 −5

1 −1 3 −3
−1 −5 3 15

⎤⎥⎦⎡⎢⎣c1

c2

c3

c4

⎤⎥⎦ ⎡⎢⎣ 4
4
4

−4

⎤⎥⎦⎡⎢⎣y1

y2

y′
1

y′
2

⎤⎥⎦ ⎡⎢⎣ 2et + e−t + e3t

−2et + 5e−t + e3t

2et − e−t + 3e3t

−2et − 5e−t + 3e3t

⎤⎥⎦



where each Ai is an n × n matrix, we can transform it

into a first-order system by setting

Y1 = Y, Y2 = Y
′
1, … , Ym = Y

′
m−1

We will end up with a system of the form

=

If, in addition, we require that Y, Y′, … , Y(m−1)
 take

on specific values when t = 0, there will be exactly one

solution to the problem.

If the system is simply of the form Y
(m) = AY, it is

usually not necessary to introduce new variables. In this

case, we need only calculate the mth roots of the

eigenvalues of A. If λ is an eigenvalue of A, x is an

eigenvector belonging to λ, σ is an mth root of λ, and 

Y = eσtx, then

Y(m) = σmeσtx = λY

and

AY = eσtAx = λeσtx = λY

Therefore, Y = eσtx is a solution to the system.

Application 2 Harmonic

Motion
In Figure 6.2.2, two masses are joined by springs and the

ends A and B are fixed. The masses are free to move

horizontally. We will assume that the three springs are

uniform and that initially the system is in the

equilibrium position. A force is exerted on the system to

⎡⎢⎣ Y
′
1

Y
′
2

⋮
Y

′
m−1

Y
′
m

⎤⎥⎦ ⎡⎢⎣O I O … O

O O I … O

⋮
O O O … I

A1 A2 A3 … Am

⎤⎥⎦⎡⎢⎣ Y1

Y2

⋮
Ym−1

Ym

⎤⎥⎦



set the masses in motion. The horizontal displacements

of the masses at time t will be denoted by x1(t) and 

x2(t), respectively. We will assume that there are no

retarding forces such as friction. Then the only forces

acting on mass m1 at time t will be from the springs 1

and 2. The force from spring 1 will be −kx1 and the

force from spring 2 will be k(x2 − x1). By Newton’s

second law,

Figure 6.2.2.

Figure 6.2.2. Full Alternative Text

m1x′′
1(t) = −kx1 + k(x2 − x1)

Similarly, the only forces acting on the second mass will

be from springs 2 and 3. Using Newton’s second law

again, we get

m2x′′
2(t) = −k(x2 − x1) − kx2

Thus, we end up with the second-order system

Suppose now that m1 = m2 = 1, k = 1, and the initial

velocity of both masses is +2 units per second. To

determine the displacements x1 and x2 as functions of t,

we write the system in the form

′′

x′′
1 = − k

m1
(2x1 − x2)

x′′
2 = − k

m2
(−x1 + 2x2)

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-02-002.xhtml#la_fig06-02-002


X
′′ = AX

(2)

The coefficient matrix

A = [ ]

has eigenvalues λ1 = −1 and λ2 = −3. Corresponding

to λ1, we have the eigenvector v1 = (1, 1)T
 and 

σ1 = ±i. Thus, eitv1 and e−itv1 are both solutions of

(2). It follows that

1
2
(eit + e−it)v1 = (Re  eit)v1 = (cos t)v1

and

1
2i

(eit − e−it)v1 = (Im eit)v1 = (sin t)v1

are also both solutions of (2). Similarly, for λ2 = −3, we

have the eigenvector v2 = (1, −1)T
 and σ2 = ±√3i.

It follows that

(Re e√3it)v2 = (cos√3t)v2

and

(Im e√3it)v2 = (sin√3t)v2

are also solutions of (2). Thus, the general solution will

be of the form

At time t = 0, we have

x′
2(0) = 2

It follows that

−2 1
1 −2

X(t) = c1(cos t)v1 + c2(sin t)v1 + c3(cos√3t)v2 + c4(sin√3t)v2

= [ ]
c1 cos t + c2 sin t + c3 cos√3t + c4 sin√3t

c1 cos t + c2 sin t − c3 cos√3t − c4 sin√3t

x1(0) = x2(0) = 0 and x′
1(0) =



and hence

Therefore, the solution to the initial value problem is

X(t) = [ ]

The masses will oscillate with frequency 1 and amplitude

2.

Application 3 Vibrations of a

Building
For another example of a physical system, we consider

the vibrations of a building. If the building has k stories,

we can represent the horizontal deflections of the stories

at time t by the vector function 

Y(t) = (y1(t), y2(t), … , yk(t))T
. The motion of a

building can be modeled by a second-order system of

differential equations of the form

MY
′′(t) = KY(t)

The mass matrix M is a diagonal matrix whose entries

correspond to the concentrated weights at each story.

The entries of the stiffness matrix K are determined by

the spring constants of the supporting structures.

Solutions of the equation are of the form Y(t) = eiσtx,

where x is an eigenvector of A = M −1K belonging to

an eigenvalue λ and σ is a square root of λ.

and
c1 + c3 = 0
c1 − c3 = 0

c2 + √3c4 = 2

c2 − √3c4 = 2

c1 = c3 = c4 = 0 and c2 = 2

2 sint

2 sint



Section 6.2 Exercises

1. Find the general solution of each of the following systems:

1. 

2. 

3. 

4. 

5. 

6. 

2. Solve each of the following initial value problems:

1. 

2. 

3. 

4. 

3. Given

Y = c1eλ1t
x1 + c2eλ2t

x2 + … + cneλnt
xn

is the solution to the initial value problem:

y′
1 = y1 + y2

y′
2 = −2y1 + 4y2

y′
1 = 2y1 + 4y2

y′
2 = −y1 − 3y2

y′
1 = y1 − 2y2

y′
2 = −2y1 + 4y2

y′
1 = y1 − y2

y′
2 = y1 + y2

y′
1 = 3y1 − 2y2

y′
2 = 2y1 + 3y2

y′
1 = y1 + y3

y′
2 = 2y2 + 6y3

y′
3 = y2 + 3y3

y′
1 = − y1 + 2y2

y′
2 = 2y1 − y2

y1(0) = 3, y2(0) = 1

y′
1 = y1 − 2y2

y′
2 = 2y1 + y2

y1(0) = 1, y2(0) = −2

y′
1 = 2y1 − 6y3

y′
2 = y1 − 3y3

y′
3 = y2 − 2y3

y1(0) = y2(0) = y3(0) = 2

y′
1 = y1 + 2y3

y′
2 = y2 − y3

y′
3 = y1 + y2 + y3

y1(0) = y2(0) = 1, y3(0) = 4

Y
′ = AY, Y(0) = Y0



1. show that

Y0 = c1x1 + c2x2 + … + cnxn

2. let X = (x1, … , xn) and c = (c1, … , cn)T
.

Assuming that the vectors x1, … , xn are linearly

independent, show that c = X−1
Y0.

4. Two tanks each contain 100 liters of a mixture. Initially, the

mixture in tank A contains 40 grams of salt, while tank B contains

20 grams of salt. Liquid is pumped in and out of the tanks as

shown in the accompanying figure. Determine the amount of salt

in each tank at time t.

6.4-1 Full Alternative Text

5. Find the general solution of each of the following systems:

1. 
y′′

1 = −2y2

y′′
2 = y1 + 3y2

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig06-02-001.xhtml#la_unfig06-02-001


2. 

6. Solve the initial value problem

y1(0) = 1, y2(0) = 0, y′
1(0) = −3, y′

2(0) = 2

7. In Application 2, assume that the solutions are of the form 

x1 = a1 sin σt, x2 = a2 sin σt. Substitute these expressions

into the system and solve for the frequency σ and the amplitudes 

a1 and a2.

8. Solve the the problem in Application 2, using the initial conditions

9. Two masses are connected by springs as shown in the

accompanying diagram. Both springs have the same spring

constant, and the end of the first spring is fixed. If x1 and x2

represent the displacements from the equilibrium position, derive

a system of second-order differential equations that describes the

motion of the system.

y′′
1 = 2y1 + y′

2

y′′
2 = 2y2 + y′

1

y′′
1 = −2y2 + y′

1 + 2y′
2

y′′
2 = 2y1 + 2y′

1 − y′
2

x1(0) = x2(0) = 1, x′
1(0) = 4, and x′

2(0) = 2



10. Three masses are connected by a series of springs between two

fixed points as shown in the accompanying figure. Assume that the

springs all have the same spring constant, and let x1(t), x2(t),

and x3(t) represent the displacements of the respective masses at

time t.



1. Derive a system of second-order differential equations

that describes the motion of this system.

2. Solve the system if m1 = m3 = 1
3

, m2 = 1
4

, k = 1,

and

11. Transform the nth-order equation

y(n) = a0y + a1y ′ + … + an−1y(n−1)

into a system of first-order equations by setting y1 = y and 

yj = y′
j−1 for j = 2, … , n. Determine the characteristic

polynomial of the coefficient matrix of this system.

x1(0) = x2(0) = x3(0) = 1

x′
1(0) = x′

2(0) = x′
3(0) = 0



6.3 Diagonalization
In this section, we consider the problem of factoring an 

n × n matrix A into a product of the form XDX−1
,

where D is diagonal. We will give a necessary and

sufficient condition for the existence of such a

factorization and look at a number of examples. We

begin by showing that eigenvectors belonging to distinct

eigenvalues are linearly independent.

Theorem 6.3.1
If λ1,λ2, … ,λk are distinct eigenvalues of an n × n

matrix A with corresponding eigenvectors 

x1, x2, … , xk, then x1, … , xk are linearly

independent.

Proof

Let r be the dimension of the subspace of R
n

 spanned by

x1, … , xk and suppose that r < k. We may assume

(reordering the xi’s and λi’s if necessary) that 

x1, … , xr are linearly independent. Since 

x1, x2, … , xr, xr+1 are linearly dependent, there exist

scalars c1, … , cr, cr+1, not all zero, such that

c1x1 + … + crxr + cr+1xr+1 = 0

(1)

Note that cr+1 must be nonzero; otherwise, x1, … , xr

would be dependent. So cr+1xr+1 ≠ 0 and hence 

c1, … , cr cannot all be zero. Multiplying (1) by A, we get

c1Ax1 + … + crAxr + cr+1Axr+1 = 0

or

λ λ λ



c1λ1x1 + … + crλrxr + cr+1λr+1xr+1 = 0

(2)

Subtracting λr+1 times (1) from (2) gives

c1(λ1 − λr+1)x1 + … + cr(λ1 − λr+1)xr = 0

This contradicts the independence of x1, … , xr.

Therefore, r must equal k.

∎

Definition
An n × n matrix A is said to be diagonalizable if there

exists a nonsingular matrix X and a diagonal matrix D

such that

X−1AX = D

We say that X diagonalizes A.

Theorem 6.3.2
An n × n matrix A is diagonalizable if and only if A has

n linearly independent eigenvectors.

Proof

Suppose that the matrix A has n linearly independent

eigenvectors x1, x2. … , xn. Let λi be the eigenvalue of

A corresponding to xi for each i. (Some of the λi’s may

be equal.) Let X be the matrix whose jth column vector is

xi for j = 1, … ,n. It follows that Axj = λjxj is the

jth column vector of AX. Thus,

( )



Since X has n linearly independent column vectors, it

follows that X is nonsingular and hence

D = X−1XD = X−1AX

Conversely, suppose that A is diagonalizable. Then there

exists a nonsingular matrix X such that AX = XD. If 

x1, x2, … , xn are the column vectors of X, then

for each j. Thus, for each j,λj is an eigenvalue of A and 

xj is an eigenvector belonging to λj. Since the column

vectors of X are linearly independent, it follows that A

has n linearly independent eigenvectors.

∎

Remarks

1. If A is diagonalizable, then the column vectors of the diagonlizing

matrix X are eigenvectors of A and the diagonal elements of D are

the corresponding eigenvalues of A.

2. The diagonalizing matrix X is not unique. Reordering the columns

of a given diagonalizing matrix X or multiplying them by nonzero

scalars will produce a new diagonalizing matrix.

3. If A is n × n and A has n distinct eigenvalues, then A is

diagonalizable. If the eigenvalues are not distinct, then A may or

may not be diagonalizable depending on whether A has n linearly

independent eigenvectors.

4. If A is diagonalizable, then A can be factored into a product 

XDX−1
.

It follows from remark 4 that

2 1 1 2 1

AX = (Ax1,Ax2, … ,Axn)
= (λ1x1,λ2x2, … ,λnxn)

= (x1, x2, … , xn)

= XD

⎡⎢⎣λ1

λ2

⋱
λn

⎤⎥⎦Axj = λjxj (λj = djj)



A2 = (XDX−1)(XDX−1) = XD2X−1

and, in general,

Once we have a factorization A = XDX−1
, it is easy to

compute powers of A.

Example 1
Let

A = [ ]

The eigenvalues of A are λ1 = 1 and λ2 = −4.

Corresponding to λ1 and λ2, we have the eigenvectors 

x1 = (3, 1)T  and x2 = (1, 2)T . Let

It follows that

and

XDX−1 = [ ][ ][ ] = [ ] = A

∎

Ak = XDkX−1

= X X−1

⎡⎢⎣(λ1)k

(λ2)k

⋱
(λn)k

⎤⎥⎦2 −3
2 −5

X = [ ] and D = [ ]
3 1
1 2

1 0
0 −4

X−1AX = 1
5 [ ][ ][ ]

= [ ] = D

2 −1
−1 3

2 −3
2 −5

3 1
1 2

1 0
0 −4

3 1
1 2

1 0
0 −4

2
5 − 1

5

− 1
5

3
5

2 −3
2 −5



Example 2
Let

A =

It is easily seen that the eigenvalues of A are 

λ1 = 0,λ2 = 1, and λ3 = 1. Corresponding to λ1 = 0
, we have the eigenvector (1, 1, 1)T , and corresponding

to λ = 1, we have the eigenvectors (1, 2, 0)T  and 

(1, 0, 1)T . Let

X =

It follows that

Even though λ = 1 is a multiple eigenvalue, the matrix

can still be diagonalized since there are three linearly

independent eigenvectors. Note also that

Ak = XDkX−1 = XDX−1 = A

for any k ≥ 1.

∎

If an n × n matrix A has fewer than n linearly

independent eigenvectors, we say that A is defective. It

follows from Theorem 6.3.2 that a defective matrix is not

diagonalizable.

⎡⎢⎣3 −1 −2
2 0 −2
2 −1 −1

⎤⎥⎦⎡⎢⎣1 1 1
1 2 0
1 0 1

⎤⎥⎦XDX−1 =

=

= A

⎡⎢⎣1 1 1
1 2 0
1 0 1

⎤⎥⎦⎡⎢⎣0 0 0
0 1 0
0 0 1

⎤⎥⎦⎡⎢⎣−2 1 2
1 0 −1
2 −1 −1

⎤⎥⎦⎡⎢⎣3 −1 −2
2 0 −2
2 −1 −1

⎤⎥⎦



Example 3
Let

A = [ ]

The eigenvalues of A are both equal to 1. Any eigenvector

corresponding to λ = 1 must be a multiple of 

x1 = (1, 0)T . Thus, A is defective and cannot be

diagonalized.

∎

Example 4
Let

A and B both have the same eigenvalues

The eigenspace of A corresponding to λ1 = 4 is spanned

by e2, and the eigenspace corresponding to λ = 2 is

spanned by e3. Since A has only two linearly

independent eigenvectors, it is defective. On the other

hand, the matrix B has eigenvector x1 = (0, 1, 3)T

corresponding to λ1 = 4 and eigenvectors 

x2 = (2, 1, 0)T  and e3 corresponding to λ = 2. Thus,

B has three linearly independent eigenvectors and

consequently is not defective. Even though λ = 2 is an

eigenvalue of multiplicity 2, the matrix B is nondefective,

since the corresponding eigenspace has dimension 2.

Geometrically, the matrix B has the effect of stretching

two linearly independent vectors by a factor of 2. We can

think of the eigenvalue λ = 2 as having geometric

1 1
0 1

A = and B =
⎡⎢⎣2 0 0

0 4 0
1 0 2

⎤⎥⎦ ⎡⎢⎣ 2 0 0
−1 4 0
−3 6 2

⎤⎥⎦λ1 = 4, λ2 = λ3 = 2



multiplicity 2, since the dimension of the eigenspace 

N(B − 2I) is 2. On the other hand, the matrix A

stretches only vectors along the z-axis, by a factor of 2. In

this case, the eigenvalue λ = 2 has algebraic multiplicity

2, but dim N(A − 2I) = 1, so its geometric

multiplicity is only 1 (see Figure 6.3.1).

∎

Figure 6.3.1.

Figure 6.3.1. Full Alternative Text

Application 1 Markov Chains
In Section 6.1, we studied a simple matrix model for

predicting the number of married and single women in a

certain town each year. Given an initial vector x0 whose

coordinates represent the current number of married

and single women, we were able to predict the number of

married and single women in future years by computing

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-03-001.xhtml#la_fig06-03-001


x1 = Ax0, x2 = Ax1, x3 = Ax2, …

If we scale the initial vector so that its entries indicate

the proportions of the population that are married and

single, then the coordinates of xn will indicate the

proportions of married and single women after n years.

The sequence of vectors that we generate in this manner

is an example of a Markov chain. Markov chain models

occur in a wide variety of applied fields.

Definition
A stochastic process is any sequence of experiments

for which the outcome at any stage depends on chance. A

Markov process is a stochastic process with the

following properties:

1. The set of possible outcomes or states is finite.

2. The probability of the next outcome depends only on the previous

outcome.

3. The probabilities are constant over time.

The following is an example of a Markov process.

Example 5
Automobile Leasing An automobile dealer leases four

types of vehicles: four-door sedans, sports cars,

minivans, and sport utility vehicles. The term of the lease

is 2 years. At the end of the term, customers must

renegotiate the lease and choose a new vehicle.

The automobile leasing can be viewed as a process with

four possible outcomes. The probability of each outcome

can be estimated by reviewing records of previous leases.

The records indicate that 80 percent of the customers

currently leasing sedans will continue doing so in the

next lease. Furthermore, 10 percent of the customers



currently leasing sports cars will switch to sedans. In

addition, 5 percent of the customers driving minivans or

sport utility vehicles will also switch to sedans. These

results are summarized in the first row of Table 6.3.1.

The second row indicates the percentages of customers

that will lease sports cars the next time, and the final two

rows give the percentages that will lease minivans and

sport utility vehicles, respectively.

Table 6.3.1 Transition

Probabilities for Vehicle

Leasing

Current Lease
SedanSports CarMinivanSUVNext Lease

0.80 0.10 0.05 0.05 Sedan

0.10 0.80 0.05 0.05 Sports Car

0.05 0.05 0.80 0.10 Minivan

0.05 0.05 0.10 0.80 SUV

Suppose that initially there are 200 sedans leased and

100 of each of the other three types of vehicles. If we set

then we can determine how many people will lease each

type of vehicle two years later by setting

x1 = Ax0 = =

A = x0 =

⎡⎢⎣0.80 0.10 0.05 0.05
0.10 0.80 0.05 0.05
0.05 0.05 0.80 0.10
0.05 0.05 0.10 0.80

⎤⎥⎦ ⎡⎢⎣200
100
100
100

⎤⎥⎦⎡⎢⎣0.80 0.10 0.05 0.05
0.10 0.80 0.05 0.05
0.05 0.05 0.80 0.10
0.05 0.05 0.10 0.80

⎤⎥⎦⎡⎢⎣200
100
100
100

⎤⎥⎦ ⎡⎢⎣180
110
105
105

⎤⎥⎦



We can predict the numbers for future leases by setting

xn+1 = Ax,  for n = 1, 2, …

The vectors xi produced in this manner are referred to

as state vectors, and the sequence of state vectors is

called a Markov chain. The matrix A is referred to as a

transition matrix. The entries of each column of A are

nonnegative numbers that add up to 1. Such vectors are

referred to as probability vectors. Thus, each column

vector of A is a probability vector. For example, the first

column of A corresponds to individuals currently leasing

sedans. The entries in this column are the probabilities

of choosing each type of vehicle when the lease is

renewed.

In general, a matrix is said to be stochastic if its entries

are nonnegative and the entries in each column add up to

1. Thus, a matrix is stochastic if its column vectors are all

probability vectors.

If we divide the entries of the initial vector by 500 (the

total number of customers), then the entries of the new

initial state vector

x0 = (0.40, 0.20, 0.20, 0.20)T

represent the proportions of the population that rent

each type of vehicle. The entries of x1 will represent the

proportions for the next lease. Thus, x0 and x1 are

probability vectors, and it is easily seen that the

succeeding state vectors in the chain will all be

probability vectors.

The long-range behavior of the process is determined by

the eigenvalues and eigenvectors of the transition matrix

A. The eigenvalues of A are λ1 = 1,λ2 = 0.8, and 

λ3 = λ4 = 0.7. Even though A has a multiple

eigenvalue, it does have four linearly independent

eigenvectors and hence it can be diagonalized. If the



eigenvectors are used to form a diagonalizing matrix Y,

then

The state vectors are computed by setting

As n increases,  approaches the steady-state vector

x = (0.25, 0.25, 0.25, 0.25)T

Thus, the Markov chain model predicts that, in the long

run, the leases will be divided equally among the four

types of vehicles.

∎

In general, we will assume that the initial vector x0 in a

Markov chain is a probability vector, and this in turn

implies that all of the state vectors are probability

vectors. One would expect, then, that if the chain

converges to a steady-state vector x, then the steady-

state vector must also be a probability vector. This is

indeed the case, as we see in the next theorem.

Theorem 6.3.3
If a Markov chain with an n × n transition matrix A

converges to a steady-state vector x, then

A = YDY −1

=

⎡⎢⎣1 −1 0 1
1 −1 0 −1
1 1 1 0
1 1 −1 0

⎤⎥⎦⎡⎢⎣1 0 0 0

0 8
10 0 0

0 0 7
10 0

0 0 0 7
10

⎤⎥⎦⎡⎢⎣ 1
4

1
4

1
4

1
4

− 1
4 − 1

4
1
4

1
4

0 0 1
2 − 1

2
1
2 − 1

2 0 0

⎤⎥⎦xn = YDnY −1x0

= YDn(0.25, −0.05, 0, 0.10)T

= Y (0.2, −0.05(0.8)n, 0, 0.10(0.7)n)T

= 0.25 − 0.05(0.8)n + 0.10(0.7)n
⎡⎢⎣1

1
1
1

⎤⎥⎦ ⎡⎢⎣−1
−1

1
1

⎤⎥⎦ ⎡⎢⎣ 1
−1

0
0

⎤⎥⎦xn



1. x is a probability vector.

2. λ1 = 1 is an eigenvalue of A and x is an eigenvector belonging to

λ1.

Proof of (i)

Let us denote the kth state vector in the chain by 

xk = (x(k)
1 ,x(k)

2 , … ,x(k)
n )

T

. The entries of each xk

are nonnegative and sum to 1. For each j, the jth entry of

the limit vector x satisfies

xj = lim
k→∞

x
(k)
j ≥ 0

and

x1 + x2 + … + xn = lim
k→∞

(x
(k)
1 + x

(k)
2 + … + x

(k)
n ) = 1

Therefore, the steady-state vector x is a probability

vector.

∎

Proof of (ii)

We leave it for the reader to prove that λ1 = 1 is an

eigenvalue of A. (See Exercise 27.) It follows that x is an

eigenvector belonging to λ1 = 1 since

Ax = A(lim
k→∞

 xk) = lim
k→∞

(Axk) = lim
k→∞

 xk+1 = x

∎

In general, if A is a n × n stochastic matrix, then 

λ1 = 1 is an eigenvalue of A and the remaining

eigenvalues satisfy

|λj| ≤ 1 j = 2, 3, … ,n

The existence of a steady state for a Markov chain is

guaranteed whenever λ1 = 1 is a dominant eigenvalue

of the transition matrix A. An eigenvalue λ1 of a matrix



A is said to be a dominant eigenvalue if the remaining

eigenvalues of A satisfy

Theorem 6.3.4
If λ1 = 1 is a dominant eigenvalue of a stochastic

matrix A, then the Markov chain with transition A will

converge to a steady-state vector.

Proof

In the case that A is diagonalizable, let y1 be an

eigenvector belonging to λ1 = 1 and let 

Y = (y1, y2, … , yn) be a matrix that diagonalizes A.

If E is the n × n matrix whose (1, 1) entry is 1 and whose

remaining entries are all 0, then as k → ∞,

Dk = → = E

If x0 is any initial probability vector and c = Y −1x0,

then

xk = Akx0 = YDkY −1x0 = YDkc → YEc = Y (c1e1) = c1y1

Thus, the vector c1y1 is the steady-state vector for the

Markov chain.

In the case that the transition matrix A is defective with

dominant eigenvalue λ1 = 1, one can still prove the

result by using a special matrix J that is referred to as the

Jordan canonical form of A. This topic is covered in

detail in Chapter 8. In that chapter, it is shown that any 

n × n matrix A can be factored into a product 

A = Y  JY −1
, where J is an upper bidiagonal matrix

with the eigenvalues of A on its main diagonal and 0’s

|λj| < |λ1| for j = 2, 3, … ,n

⎡⎢⎣λk1 λk2

⋱
λkn

⎤⎥⎦ ⎡⎢⎣1
0

⋱
0

⎤⎥⎦



and 1’s on the diagonal directly above the main diagonal.

It turns out that if A is stochastic with dominant

eigenvalue λ1 = 1, then J k
 will converge to E as 

k → ∞. So the proof in the case where A is defective is

the same as before, but with the diagonal matrix D

replaced by the bidiagonal matrix J.

∎

Not all Markov chains converge to a steady-state vector.

However, it can be shown that if all the entries of the

transition matrix A are positive, then there is a unique

steady-state vector x and Anx0 will converge to x for

any initial probability vector x0. In fact, this result will

hold if Ak
 has strictly positive entries even though A may

have some 0 entries. A Markov process with transition

matrix A is said to be regular if all the entries of some

power of A are positive.

In Section 6.8, we will study positive matrices, that is,

matrices whose entries are all positive. One of the main

results in that section is a theorem due to Perron. The

Perron theorem can be used to show that if the transition

matrix A of a Markov process is positive, then λ1 = 1 is

a dominant eigenvalue of A.

Application 2 Web Searches

and Page Ranking
A common way to locate information on the Web is to do

a keyword search using one of the many search engines

available. Generally, the search engine will find all pages

that contain the key search words and rank the pages in

order of importance. Typically, there are more than 4

billion pages being searched and it is not uncommon to

find as many as 20,000 pages that match all of the

keywords. Often in such cases, the page ranked first or



second by the search engine is exactly the one with the

information you are seeking. How do the search engines

rank the pages? In this application, we will describe the

technique used by the search engine Google .

The Google PageRank  algorithm for ranking pages is

actually a gigantic Markov process based on the link

structure of the Web. The algorithm was initially

conceived by two graduate students at Stanford

University. The students, Larry Page and Sergey Brin,

used the algorithm to develop the most successful and

widely used search engine on the Internet.

The PageRank algorithm views Web surfing as a random

process. The transition matrix A for the Markov process

will be n × n, where n is the total number of sites that

are searched. The page rank computation has been

referred to as the “world’s largest matrix computation”

since current values of n are greater than 4 billion. (See

reference [1].) The (i, j) entry of A represents the

probability that a random Web surfer will link from

website j to website i. The page rank model assumes that

the surfer will always follow a link on the current page a

certain percentage of the time and otherwise will

randomly link to another page.

For example, assume that the current page is numbered j

and it has links to five other pages. Assume also that the

user will follow these five links 85 percent of the time

and will randomly link to another page 15 percent of the

time. If there is no link from page j to page i, then

aij = 0.15
1
n

If page j does contain a link to page i, then one could

follow that link, or one could get to page i doing a

random surf. In this case,

aij = 0.85
1
5

+ 0.15
1
n

TM

TM



In the case that the current page j has no hyperlinks to

any other pages, it is considered to be a dangling page.

In this case, we assume that the Web surfer will connect

to any page on the Web with equal probability and we set

(3)

More generally, let k(j) denote the number of links from

page j to other pages on the Web. If k(j) ≠ 0 and the

person surfing the Web follows only links on the current

webpage and always follows one of the links, then the

probability of linking from page j to i is given by

mij = {

In the case that page j is a dangling webpage, we assume

that the Web surfer will link to page i with probability

mij =
1
n

If we make the added assumption that the surfer will

follow a link on the current page with probability p and

randomly link to any other page with probability 1 − p,

then the probability of linking from page j to i is given by

aij = pmij + (1 − p)
1
n

(4)

Note that in the case where page j is a dangling webpage,

equation (4) simplifies to equation (3).

Because of the random surfing, each entry in the jth

column of A is strictly positive. Since A has strictly

positive entries, the Perron theory (Section 6.8) can be

used to show that the Markov process will converge to a

unique steady-state vector x. The kth entry of x

corresponds to the probability that, in the long run, a

random surfer will end up at website k. The entries of the

steady-state vector provide the page rankings. The value

aij = 1
n for 1 ≤ i ≤ n

1
k(j) if there is a link from page j to page i

0 otherwise



of xk determines the overall ranking of website k. For

example, if xk is the third largest entry of the vector x,

then website k will have the third highest overall page

rank. When a Web search is conducted, the search

engine first finds all sites that match all of the keywords.

It then lists them in decreasing order of their page ranks.

Let M = (mij) and let e be a vector in R
n

 whose

entries are all equal to 1. The matrix M is sparse; that is,

most of its entries are equal to 0. If we set E = eeT
,

then E is an n × n matrix of rank 1 and we can write

Equation (4) in matrix form:

A = pM +
1 − p

n
eeT = pM +

1 − p

n
E

(5)

Thus, A is a sum of two matrices with special structure.

To compute the steady-state vector, we must perform a

sequence of multiplications

These computations can be simplified dramatically if we

take advantage of the special structure of M and E. (See

Exercise 29.)
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Application 3 Sex-Linked

Genes

xj+1 = Axj, j = 0, 1, 2, …



Sex-linked genes are genes that are located on the X

chromosome. For example, the gene for blue-green color

blindness is a recessive sex-linked gene. To devise a

mathematical model to describe color blindness in a

given population, it is necessary to divide the population

into two classes: males and females. Let x
(0)
1  be the

proportion of genes for color blindness in the male

population, and let x
(0)
2  be the proportion in the female

population. [Since color blindness is recessive, the actual

proportion of color-blind females will be less than x
(0)
2 .]

Because the male receives one X chromosome from the

mother and none from the father, the proportion x
(1)
1  of

color-blind males in the next generation will be the same

as the proportion of recessive genes in the present

generation of females. Because the female receives an X

chromosome from each parent, the proportion x
(1)
2  of

recessive genes in the next generation of females will be

the average of x
(0)
1  and x

(0)
2 . Thus,

If x
(0)
1 = x

(0)
2 , the proportion will not change in future

generations. Let us assume that x
(0)
1 ≠ x

(0)
2  and write

the system as a matrix equation.

[ ][ ] = [ ]

Let A denote the coefficient matrix, and let 

x(n) = ( , )
T

 denote the proportion of color-

blind genes in the male and female populations of the 

(n + 1)st generation. Then

x(n) = Anx(0)

To compute An
, we note that A has eigenvalues 1 and 

− 1
2  and consequently can be factored into a product:

x
(0)
2 = x

(1)
1

1
2 x

(0)
1 + 1

2 x
(0)
2 = x

(1)
2

0 1
1
2

1
2

x
(0)
1

x
(0)
2

x
(1)
1

x
(1)
2

x
(n)
1 x

(n)
2



A = [ ][ ][ ]

Thus,

and hence

The proportions of genes for color blindness in the male

and female populations will tend to the same value as the

number of generations increases. If the proportion of

color-blind men is p and, over a number of generations,

no outsiders have entered the population, there is

justification for assuming that the proportion of genes

for color blindness in the female population is also p.

Since color blindness is recessive, we would expect the

proportion of color-blind women to be about p2
. Thus, if

1 percent of the male population is color blind, we would

expect about 0.01 percent of the female population to be

color blind.

The Exponential of a Matrix
Given a scalar a, the exponential ea can be expressed in

terms of a power series

ea = 1 + a +
1
2!
a2 +

1
3!
a3 + …

1 −2
1 1

1 0

0 − 1
2

1
3

2
3

− 1
3

1
3

x(n) = [ ][ ]n [ ][ ]

= 1
3 [ ][ ]

1 −2
1 1

1 0

0 − 1
2

1
3

2
3

− 1
3

1
3

x
(0)
1

x
(0)
2

1 − (− 1
2 )

n−1 2 + (− 1
2 )

n−1

1 − (− 1
2 )

n 2 + (− 1
2 )

n

x
(0)
1

x
(0)
2

lim
n→∞

 x(n) = 1
3 [ ][ ]

=

1 2
1 2

x
(0)
1

x
(0)
2

⎡⎢⎣ x
(0)
1 + 2x(0)

2
3

x
(0)
1 + 2x(0)

2
3

⎤⎥⎦



Similarly, for any n × n matrix A, we can define the

matrix exponential aA in terms of the convergent power

series

eA = I + A +
1
2!
A2 +

1
3!
A3 + …

(6)

The matrix exponential (6) occurs in a wide variety of

applications. In the case of a diagonal matrix

D =

the matrix exponential is easy to compute:

It is more difficult to compute the matrix exponential for

a general n × n matrix A. If, however, A is

diagonalizable, then

Example 6
Compute eA for

A = [ ]

SOLUTION

⎡⎢⎣λ1

λ2

⋱
λn

⎤⎥⎦eD = lim
m→∞

(I + D + 1
2!
D2 + … + 1

m!
Dm)

= lim
m→∞

=

⎡⎢⎣ m

∑
k=0

1
k!
λk1

⋱
m

∑
k=0

1
k!
λkn

⎤⎥⎦ ⎡⎢⎣eλ1

eλ2

⋱
eλn

⎤⎥⎦Ak

eA = X(I + D + 1
2! D

2 + 1
3! D

3 + …)X−1

= XeDX−1

k = 1, 2, …for= XDkX−1

−2 −6
1 3



The eigenvalues of A are λ1 = 1 and λ2 = 0 with

eigenvectors x1 = (−2, 1)T  and x2 = (−3, 1)T . Thus,

A = XDX−1 = [ ][ ][ ]

and

∎

The matrix exponential can be applied to the initial value

problem

(0) = Y0

(7)

studied in Section 6.2. In the case of one equation in one

unknown,

(0) = y0

the solution is

y = eaty0

(8)

We can generalize this and express the solution of (7) in

terms of the matrix exponential etA. In general, a power

series can be differentiated term by term within its

radius of convergence. Since the expansion of etA has

infinite radius of convergence, we have

If, as in (8), we set

−2 −3
1 1

1 0
0 0

1 3
−1 −2

eA = XeDX−1 = [ ][ ][ ]

= [ ]

−2 −3
1 1

e1 0
0 e0

1 3
−1 −2

3 − 2e 6 − 6e
e − 1 3e − 2

Y′ = AY, Y

y′ = ay, y

d
dt

etA = d
dt

(1 + tA + 1
2!
t2A2 + 1

3!
t3A3 + …)

= (A + tA2 + 1
2!
t2A3 + …)

= A(I + tA + 1
2!
t2A2 + …)

= AetA



Y(t) = etAY0

then

Y′ = AetAY0 = AY

and

Y(0) = Y0

Thus, the solution of

is simply

Y = etAY0

(9)

Although the form of this solution looks different from

the solutions in Section 6.2, there is really no difference.

In Section 6.2, the solution was expressed in the form

c1e
λ1tx1 + c2e

λ2tx2 + … + cne
λntxn

where xi was an eigenvector belonging to λi for 

i = 1, … ,n. The ci’s that satisfied the initial

conditions were determined by solving a system

Xc = Y0

with coefficient matrix X = (x1, … , xn).

If A is diagonalizable, we can write (9) in the form

Y = XetDX−1Y0

Thus,

Y′ = AY, Y(0) = Y0

Y = XetDc

= (x1, x2, … , xn)

= c1e
λ1tx1 + … + cne

λntxn

⎡⎢⎣c1e
λ1t

c2e
λ2t

⋮
cne

λnt

⎤⎥⎦



To summarize, the solution to the initial value problem

(7) is given by

= etA 0

If A is diagonalizable, this solution can be written in the

form

Example 7
Use the matrix exponential to solve the initial value

problem

(0) = 0

where

[ ]

(This problem was solved in Example 1 of Section 6.2.)

SOLUTION

The eigenvalues of A are λ1 = 6 and λ2 = −1, with

eigenvectors x1 = (4, 3)T  and x2 = (1, −1)T . Thus,

A = XDX−1 = [ ][ ][ ]

and the solution is given by

Compare this to Example 1 in Section 6.2.

Y Y

Y = XetDX−1Y0

= c1e
λ1tx1 + c2e

λ2tx2 + … + cne
λntxn (c = X−1Y0)

′ = A ,Y Y Y Y

A = [ ], Y0 =
3 4
3 2

6
1

4 1
3 −1

6 0
0 −1

1
7

1
7

3
7 − 4

7

Y = etAY0

= XetDX−1Y0

= [ ][ ][ ][ ]

= [ ]

4 1
3 −1

e6t 0
0 e−t

1
7

1
7

3
7 − 4

7

6
1

4e6t + 2e−t

3e6t − 2e−t



∎

Example 8
Use the matrix exponential to solve the initial value

problem

where

=

SOLUTION

Since the matrix A is defective, we will use the definition

of the matrix exponential to compute etA. Note that 

A3 = O, so

The solution to the initial value problem is given by

Y′ = AY, Y(0) = Y0

A = , Y0

⎡⎢⎣0 1 0
0 0 1
0 0 0

⎤⎥⎦ ⎡⎢⎣2
1
4

⎤⎥⎦etA = I + tA + 1
2!
t2A2

=
⎡⎢⎣1 t t2/2

0 1 t

0 0 1

⎤⎥⎦Y = etAY0

=

=

⎡⎢⎣1 t t2/2
0 1 t

0 0 1

⎤⎥⎦⎡⎢⎣2
1
4

⎤⎥⎦⎡⎢⎣2 + t + 2t2

1 + 4t
4

⎤⎥⎦



Section 6.3 Exercises

1. In each of the following, factor the matrix A into a product 

XDX−1
, where D is diagonal:

1. A = [ ]

2. A = [ ]

3. A = [ ]

4. A =

5. A =

6. A =

2. For each of the matrices in Exercise 1, use the XDX−1

factorization to compute A6
.

3. For each of the nonsingular matrices in Exercise 1, use the 

XDX−1
 factorization to compute A−1

.

4. For each of the following, find a matrix B such that B2 = A:

1. A = [ ]

2. A =

5. Let A be a nondefective n × n matrix with diagonalizing matrix X.

Show that the matrix Y = (X−1)T
 diagonalizes AT

.

6. Let A be a diagonalizable matrix whose eigenvalues are all either 1

or −1. Show that A−1 = A.

7. Show that any 3 × 3 matrix of the form

0 1

1 0

5 6

−2 −2

2 −8

1 −4

⎡⎢⎣ 2 2 1

0 1 2

0 0 −1

⎤⎥⎦⎡⎢⎣ 1 0 0

−2 1 3

1 1 −1

⎤⎥⎦⎡⎢⎣ 1 2 −1

2 4 −2

3 6 −3

⎤⎥⎦2 1

−2 −1

⎡⎢⎣ 9 −5 3

0 4 3

0 0 1

⎤⎥⎦



is defective.

8. For each of the following, find all possible values of the scalar α

that make the matrix defective or show that no such values exist:

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. Let A be a 4 × 4 matrix and let λ be an eigenvalue of multiplicity

3. If A − λI  has rank 1, is A defective? Explain.

10. Let A be an n × n matrix with positive real eigenvalues 

λ1 > λ2 > … > λn. Let xi be an eigenvector belonging to λi

for each i, and let x = α1x1 + … + αnxn.

1. Show that Amx =
n

∑
i=1

αiλ
m
i xi.

2. Show that if λ1 = 1, then lim
m→∞

 Amx = α1x1.

⎡⎢⎣ a 1 0

0 a 1

0 0 b

⎤⎥⎦⎡⎢⎣ 1 1 0

1 1 0

0 0 α

⎤⎥⎦⎡⎢⎣ 1 1 1

1 1 1

0 0 α

⎤⎥⎦⎡⎢⎣ 1 2 0

2 1 0

2 −1 α

⎤⎥⎦⎡⎢⎣ 4 6 −2

−1 −1 1

0 0 α

⎤⎥⎦⎡⎢⎣ 3α 1 0

0 α 0

0 0 α

⎤⎥⎦⎡⎢⎣ 3α 0 0

0 α 1

0 0 α

⎤⎥⎦⎡⎢⎣ α + 2 1 0

0 α + 2 0

0 0 2α

⎤⎥⎦⎡⎢⎣ α + 2 0 0

0 α + 2 1

0 0 2α

⎤⎥⎦



11. Let A be a n × n matrix with real entries and let λ1 = a + bi

(where a and b are real and b ≠ 0) be an eigenvalue of A. Let 

z1 = x + iy (where x and y both have real entries) be an

eigenvector belonging to λ1 and let z2 = x − iy.

1. Explain why z1 and z2 must be linearly independent.

2. Show that y ≠ 0 and that x and y are linearly

independent.

12. Let A be an n × n matrix with an eigenvalue λ of multiplicity n.

Show that A is diagonalizable if and only if A = λI.

13. Show that a nonzero nilpotent matrix is defective.

14. Let A be a diagonalizable matrix and let X be the diagonalizing

matrix. Show that the column vectors of X that correspond to

nonzero eigenvalues of A form a basis for R(A).

15. It follows from Exercise 14 that for a diagonalizable matrix the

number of nonzero eigenvalues (counted according to multiplicity)

equals the rank of the matrix. Give an example of a defective

matrix whose rank is not equal to the number of nonzero

eigenvalues.

16. Let A be an n × n matrix and let λ be an eigenvalue of A whose

eigenspace has dimension k, where 1 < k < n. Any basis 

{x1, … , xk} for the eigenspace can be extended to a basis 

{x1, … , xn} for R
n

. Let X = (x1, … , xn) and B = X−1AX

.

1. Show that B is of the form

[ ]

where I is the k × k identity matrix.

2. Use Theorem 6.1.1 to show that λ is an eigenvalue of A

with multiplicity at least k.

17. Let x, y be nonzero vectors in R
n, n ≥ 2, and let A = xyT

.

Show that

1. λ = 0 is an eigenvalue of A with n − 1 linearly

independent eigenvectors and consequently has

multiplicity at least n − 1 (see Exercise 16).

2. the remaining eigenvalue of A is

λn = tr A = xT y

and x is an eigenvector belonging to λn.

3. if λn = xT y ≠ 0, then A is diagonalizable.

λI B12

O B22



18. Let A be a diagonalizable n × n matrix. Prove that if B is any

matrix that is similar to A, then B is diagonalizable.

19. Show that if A and B are two n × n matrices with the same

diagonalizing matrix X, then AB = BA.

20. Let T be an upper triangular matrix with distinct diagonal entries

(i.e., tii ≠ tjj whenever i ≠ j). Show that there is an upper

triangular matrix R that diagonalizes T.

21. Each year, employees at a company are given the option of

donating to a local charity as part of a payroll deduction plan. In

general, 80 percent of the employees enrolled in the plan in any

one year will choose to sign up again the following year, and 30

percent of the unenrolled will choose to enroll the following year.

Determine the transition matrix for the Markov process and find

the steady-state vector. What percentage of employees would you

expect to find enrolled in the program in the long run?

22. The city of Mawtookit maintains a constant population of 300,000

people from year to year. A political science study estimated that

there were 150,000 Independents, 90,000 Democrats, and

60,000 Republicans in the town. It was also estimated that each

year 20 percent of the Independents become Democrats and 10

percent become Republicans. Similarly, 20 percent of the

Democrats become Independents and 10 percent become

Republicans, while 10 percent of the Republicans defect to the

Democrats and 10 percent become Independents each year. Let

x =

and let x(1)
 be a vector representing the number of people in each

group after one year.

1. Find a matrix A such that Ax = x(1)
.

2. Show that λ1 = 1.0, λ2 = 0.5, and λ3 = 0.7 are the

eigenvalues of A, and factor A into a product XDX−1
,

where D is diagonal.

3. Which group will dominate in the long run? Justify your

answer by computing lim
n→∞

Anx.

23. Let

A =

be a transition matrix for a Markov process.

1. Compute det(A) and trace(A) and make use of those

values to determine the eigenvalues of A.

⎡⎢⎣ 150, 000

90, 000

60, 000

⎤⎥⎦⎡⎢⎣ 1
2

1
3

1
5

1
4

1
3

2
5

4
1
3

2
5

1

⎤⎥⎦



2. Explain why the Markov process must converge to a

steady-state vector.

3. Show that y = (16, 15, 15)T
 is an eigenvector of A.

How is the steady-state vector related to y?

24. Let A be a 3 × 2 matrix whose column vectors a1 and a2 are both

probability vectors. Show that if p is a probability vector in R
2

 and

y = Ap, then y is a probability vector in R
3

.

25. Generalize the result from Exercise 24. Show that if A is an m × n

matrix whose column vectors are all probability vectors and p is a

probability vector in R
n

, then the vector y = Ax will be

probability vector in R
m

.

26. Consider a Web network consisting of only four sites that are

linked together as shown in the accompanying diagram. If the

Google PageRank algorithm is used to rank these pages, determine

the transition matrix A. Assume that the Web surfer will follow a

link on the current page 85 percent of the time.

6.6-5 Full Alternative Text

27. Let A be an n × n stochastic matrix and let e be the vector in R
n

whose entries are all equal to 1. Show that e is an eigenvector of 

AT
. Explain why a stochastic matrix must have λ = 1 as an

eigenvalue.

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig06-03-001.xhtml#la_unfig06-03-001


28. The transition matrix in Example 5 has the property that both its

rows and its columns add up to 1. In general, a matrix A is said to

be doubly stochastic if both A and AT
 are stochastic. Let A be an 

n × n doubly stochastic matrix whose eigenvalues satisfy

Show that if e is the vector in R
n

 whose entries are all equal to 1,

then the Markov chain will converge to the steady-state vector 

x = 1
n

e for any starting vector x0. Thus, for a doubly stochastic

transition matrix, the steady-state vector will assign equal

probabilities to all possible outcomes.

29. Let A be the PageRank transition matrix and let xk be a vector in

the Markov chain with starting probability vector x0. Since n is

very large, the direct multiplication xk+1 = Axk is

computationally intensive. However, the computation can be

simplified dramatically if we take advantage of the structured

components of A given in equation (5). Because M is sparse, the

multiplication wk = Mxk is computationally much simpler.

Show that if we set

b =
1 − p

n
e

then

k + b

where M, E, e, and p are as defined in equation (5).

30. Use the definition of the matrix exponential to compute eA
 for

each of the following matrices:

1. A = [ ]

2. A = [ ]

3. A =

31. Compute eA
 for each of the following matrices:

1. A = [ ]

2. A = [ ]

3. A =

λ1 = 1 and |λj| < 1 for j = 2, 3, … , n

Exk = e and xk+1 = pw

1 1

−1 −1

1 1

0 1

⎡⎢⎣ 1 0 −1

0 1 0

0 0 1

⎤⎥⎦−2 −1

6 3

3 4

−2 −3

⎡⎢⎣ 1 1 1

−1 −1 −1

1 1 1

⎤⎥⎦



32. In each of the following, solve the initial value problem 

Y′ = AY, Y(0) = Y0 by computing etAY0:

1. = [ ]

2. = [ ]

3. =

4. =

33. Let λ be an eigenvalue of an n × n matrix A and let x be an

eigenvector belonging to λ. Show that eλ
 is an eigenvalue of eA

and x is an eigenvector of eA
 belonging to eλ

.

34. Show that eA
 is nonsingular for any diagonalizable matrix A.

35. Let A be a diagonalizable matrix with characteristic polynomial

p(λ) = a1λn + a2λn−1 + … + an+1

1. Show that if D is a diagonal matrix whose diagonal

entries are the eigenvalues of A, then

p(D) = a1Dn + a2Dn−1 + … + an+1I = O

2. Show that p(A) = O.

3. Show that if an+1 ≠ 0, then A is nonsingular and 

A−1 = q(A) for some polynomial q of degree less than

n.

A = [ ], Y0
1 −2

0 −1

1

1

A = [ ], Y0
2 3

−1 −2

−4

2

A = , Y0

⎡⎢⎣ 1 1 1

0 0 1

0 0 −1

⎤⎥⎦ ⎡⎢⎣ 1

1

1

⎤⎥⎦A = , Y0

⎡⎢⎣ 1 1 1

1 0 1

−1 −1 −1

⎤⎥⎦ ⎡⎢⎣ 1

1

−1

⎤⎥⎦



6.4 Hermitian Matrices
Let C

n
 denote the vector space of all n-tuples of complex

numbers. The set ℂ of all complex numbers will be taken

as our field of scalars. We have already seen that a matrix

A with real entries may have complex eigenvalues and

eigenvectors. In this section, we study matrices with

complex entries and look at the complex analogues of

symmetric and orthogonal matrices.

Complex Inner Products
If α = a + bi is a complex scalar, the length of α is

given by

α = √ᾱα = √a2 + b2

The length of a vector z = (z1, z2, … , zn)T
 in Cn

 is

given by

As a notational convenience, we write zH
 for the

transpose of z̄. Thus,

Definition
Let V be a vector space over the complex numbers. An

inner product on V is an operation that assigns to each

pair of vectors z and w in V a complex number ⟨z, w⟩
satisfying the following conditions:∣ ∣∥z∥ = (|z1|2 + z2|2 + … + |zn|2)1/2

= (z̄1z1 + z̄2z2 + … + z̄nzn)1/2

= (z̄T z)1/2∣z̄T = zH and ∥z∥ = (zHz)1/2



1. ⟨z, z⟩ ≥ 0, 0, with equality if and only if z = 0

2. ⟨z, w⟩ = ⟨w, z⟩ for all z and w in V

3. ⟨αz + βw, u⟩ = α⟨z, u⟩ + β⟨w, u⟩

Note that for a complex inner product space, 

⟨z, w⟩ = ⟨w, z⟩, rather than ⟨w, z⟩. If we make the

proper modifications to allow for this difference, the

theorems on real inner product spaces in Section 6.5, will

all be valid for complex inner product spaces. In

particular, let us recall Theorem 5.5.2: If {u1, … , un}
is an orthonormal basis for a real inner product space V

and

x =
n

∑
i=1

ciui

then

In the case of a complex inner product space, if 

{w1, … , wn} is an orthonormal basis and

z =
n

∑
i=1

ciwi

then

2 =
n

∑
i=1

ci c̄i

We can define an inner product on Cn
 by

(1)

for all z and w in C
n

. We leave it to the reader to verify

that (1) actually does define an inner product on C
n

. The

complex inner product space C
n

 is similar to the real

inner product space R
n

. The main difference is that in

the complex case it is necessary to conjugate before

transposing when taking an inner product.

¯

¯

ci = ⟨ui, x⟩ = ⟨x, ui⟩ and ∥x∥2 =
n

∑
i=1

c2
i

ci = ⟨z, wi⟩, c̄i = ⟨wi, z⟩ and ||z||

⟨z, w⟩ = wHz



R
n
C

n

⟨x, y⟩ = yT x

xT y = yT x zHw = wHz

∥x∥2 = xT x ∥z∥2 = zHz

Example 1
If

then

It follows that z and w are orthogonal and

∎

Hermitian Matrices

Let M = (mij) be an m × n matrix with 

mij = aij + ibij for each i and j. We may write M in the

form

M = A + iB

where A = (aij) and B = (bij) have real entries. We

define the conjugate of M by

M = A − iB

⟨z, w⟩ = wHz

¯

z = [ ] and w = [ ]
5 + i

1 − 3i

2 + i

−2 + 3i

wHz = (2 − i, −2 − 3i)[ ] = (11 − 3i) + (−11 + 3i) = 0

zHz = |5 + i|2+|1 − 3i|2 = 36
wHw = |2 + i|2+|−2 + 3i|2 = 18

5 + i

1 − 3i

∥z∥ = 6, ∥w∥ = 3√2

¯



Thus, M  is the matrix formed by conjugating each of the

entries of M. The transpose of M  will be denoted by 

M H
. The vector space of all m × n matrices with

complex entries is denoted by Cm×n
. If A and B are

elements of Cm×n
 and C ∈ Cn×r

, then the following

rules are easily verified (see Exercise 9):

1. (AH)H = A

2. (αA + βB)H = ᾱAH + β̄BH

3. (AC)H = CHAH

Definition
A matrix M is said to be Hermitian if M = M H

.

Example 2
The matrix

M = [ ]

is Hermitian, since

M H = [ ]T = [ ] = M

∎

If M is a matrix with real entries, then M H = M T
. In

particular, if M is a real symmetric matrix, then M is

Hermitian. Thus, we may view Hermitian matrices as the

complex analogue of real symmetric matrices. Hermitian

matrices have many nice properties, as we shall see in

the next theorem.

¯
¯

3 2 − i

2 + i 4

¯

4̄

3̄ 2 − i

2̄ + i

3 2 − i

2 + i 4



Theorem 6.4.1
The eigenvalues of a Hermitian matrix are all real.

Furthermore, eigenvectors belonging to distinct

eigenvalues are orthogonal.

Proof

Let A be a Hermitian matrix. Let λ be an eigenvalue of A

and let x be an eigenvector belonging to λ. If 

α = xHAx, then

ᾱ = αH = (xHAx)H = x
HAx = α

Thus, α is real. It follows that

α = x
HAx = x

Hλx = λ∥x∥2

and hence

λ =
α

∥x∥2

is real. If x1 and x2 are eigenvectors belonging to

distinct eigenvalues λ1 and λ2, respectively, then

(Ax1)H
x2 = x

H
1 AH

x2 = x
H
1 Ax2 = λ2x

H
1 x2

and

(Ax1)H
x2 = (xH

2 Ax1)
H = (λ1x

H
2 x1)

H = λ1x
H
1 x2

Consequently,

λ1x
H
1 x2 = λ2x

H
1 x2

and since λ1 ≠ λ2, it follows that

⟨x2, x1⟩ = x
H
1 x2 = 0

∎

Definition



An n × n matrix U is said to be unitary if its column

vectors form an orthonormal set in C
n

.

Thus, U is unitary if and only if U HU = I. If U is

unitary, then, since the column vectors are orthonormal,

U must have rank n. It follows that

U −1 = IU −1 = U HUU −1 = U H

A real unitary matrix is an orthogonal matrix.

Corollary 6.4.2
If the eigenvalues of a Hermitian matrix A are distinct,

then there exists a unitary matrix U that diagonalizes A.

Proof

Let xi be an eigenvector belonging to λ  for each

eigenvalue λi of A. Let ui = (1/∥xi∥)xi. Thus, ui is a

unit eigenvector belonging to λi for each i. It follows

from Theorem 6.4.1 that {u1, … , un} is an

orthonormal set in Cn
. Let U be the matrix whose ith

column vector is ui for each i; then U is unitary and U

diagonalizes A.

∎

Example 3
Let

A = [ ]

Find a unitary matrix U that diagonalizes A.

SOLUTION

i

2 1 − i

1 + i 1



The eigenvalues of A are λ1 = 3 and λ2 = 0, with

corresponding eigenvectors x1 = (1 − i, 1)T
 and 

x2 = (−1, 1 + i)T
. Let

u1 =
1

∥x1∥
x1 =

1

√3
(1 − i, 1)T

and

u2 =
1

∥x2∥
x2 =

1

√3
(−1, 1 + i)T

Thus,

U =
1

√3
[ ]

and

Actually, Corollary 6.4.2 is valid even if the eigenvalues

of A are not distinct. To show this, we will first prove the

following theorem.

Theorem 6.4.3 Schur’s

Theorem
For each n × n matrix A, there exists a unitary matrix

U such that U HAU  is upper triangular.

Proof

The proof is by induction on n. The result is obvious if 

n = 1. Assume that the hypothesis holds for k × k

matrices, and let A be a (k + 1) × (k + 1) matrix. Let 

λ1 be an eigenvalue of A, and let w1 be a unit

eigenvector belonging to λ1. Using the Gram– Schmidt

process, construct w2, … , wk+1 such that 

1 − i −1
1 1 + i

U HAU = 1
3 [ ][ ][ ]

= [ ]

1 + i 1
−1 1 − i

2 1 − i

1 + i 1
1 − i −1

1 1 + i

3 0
0 0



{w1, … , wk+1} is an orthonormal basis for Ck+1
. Let

W be the matrix whose ith column vector is wi for 

i = 1, … , k + 1. Then, by construction, W is unitary.

The first column of W HAW  will be W HAw1.

W HAw1 = λ1 W H
w1 = λ1e1

Thus, W HAW  is a matrix of the form

where M is a k × k matrix. By the induction hypothesis,

there exists a k × k unitary matrix V1 such that 

V H
1 MV1 = T1, where T1 is triangular. Let

Here, V is unitary and



Let U = WV . The matrix U is unitary, since

U HU = (WV )HWV = V HW HWV = 1

and U HAU = T .

∎

The factorization A = UTU H
 is often referred to as the

Schur decomposition of A. In the case that A is

Hermitian, the matrix T will be diagonal.

Theorem 6.4.4 Spectral

Theorem
If A is Hermitian, then there exists a unitary matrix U

that diagonalizes A.

Proof

By Theorem 6.4.3, there is a unitary matrix U such that 

U HAU = T , where T is upper triangular. Furthermore,

T H = (U HAU)H = U HAHU = U HAU = T

Therefore, T is Hermitian and consequently must be

diagonal.



∎

Example 4
Given

A =

find an orthogonal matrix U that diagonalizes A.

Solution
The characteristic polynomial

p(λ) = −λ3 + 3λ2 + 9λ + 5 = (1 + λ)2(5 − λ)

has roots λ1 = λ2 = −1, and λ3 = 5. Computing

eigenvectors in the usual way, we see that 

x1 = (1, 0, 1)T
 and x2 = (−2, 1, 0)T

 form a basis for

the eigenspace N(A + I). We can apply the Gram–

Schmidt process to obtain an orthonormal basis for the

eigenspace corresponding to λ1 = λ2 = −1:

The eigenspace corresponding to λ3 = 5 is spanned by 

x3 = (−1, −2, 1)T
. Since x3 must be orthogonal to u1

and u2 (Theorem 6.4.1), we need only normalize

u3 =
1

∥x3∥
x3 =

1

√6
(−1, −2, 1)T

Thus, {u1, u2, u3} is an orthonormal set and

⎡⎢⎣ 0 2 −1
2 3 −2

−1 −2 0

⎤⎥⎦u1 = 1
∥x1∥

x1 = 1
√2

(1, 0, 1)T

p = (xT
2 u1)u1 = −√2u1 = (−1, 0, −1)T

x1 − p = (−1, 1, 1)T

u2 = 1
‖x2 − p‖ (x2 − p) = 1

√3
(−1, 1, 1)T



U =

diagonalizes A.

∎

It follows from Theorem 6.4.4 that each Hermitian

matrix A can be factored into a product UDU H
, where

U is unitary and D is diagonal. Since U diagonalizes A, it

follows that the diagonal elements of D are the

eigenvalues of A and the column vectors of U are

eigenvectors of A. Thus, A cannot be defective. It has a

complete set of eigenvectors that form an orthonormal

basis for Cn
. This is, in a sense, the ideal situation. We

have seen how to express a vector as a linear

combination of orthonormal basis elements (Theorem

5.5.2), and the action of A on any linear combination of

eigenvectors can easily be determined. Thus, if A has an

orthonormal set of eigenvectors {u1, … , un} and 

x = c1u1 + … + cnun, then

Ax = c1λ1u1 + … + cnλnun

Furthermore,

ci = ⟨x, ui⟩ = uH
i x

or, equivalently, c = U Hx. Hence,

Ax = λ1(u
H
1 x)u1 + … + λn(u

H
n x)un

The Real Schur

Decomposition

If A is a real n × n matrix, then it is possible to obtain a

factorization that resembles the Schur decomposition of

A, but involves only real matrices. In this case, 

⎡⎢⎣ 1
√2

− 1
√3

− 1
√6

0 1
√3

− 2
√6

1
√2

1
√3

1
√6

⎤⎥⎦



A = QTQT
, where Q is an orthogonal matrix and T is a

real matrix of the form

T =

(2)

where the Bi’s are either 1 × 1 or 2 × 2 matrices. Each

2 × 2 block will correspond to a pair of complex

conjugate eigenvalues of A. The matrix T is referred to as

the real Schur form of A. The proof that every real 

n × n matrix A has such a factorization depends on the

property that, for each pair of complex conjugate

eigenvalues of A, there is a two-dimensional subspace of 

R
n

 that is invariant under A.

Definition
A subspace S of R

n
 is said to be invariant under a

matrix A if, for each x ∈ S, Ax ∈ S.

Lemma 6.4.5
Let A be a real n × n matrix with eigenvalue 

λ1 = a + bi (where a and b are real and b ≠ 0), and

let z1 = x + iy (where x and y are vectors in Rn
) be

an eigenvector belonging to λ1. If S = Span(x, y),

then dim S = 2 and S is invariant under A.

Proof

Since λ is complex, y must be nonzero; otherwise, we

would have Az = Ax (a real vector) equal to λz = λx

(a complex vector). Since A is real, λ2 = a − bi is also

an eigenvalue of A and z2 = x − iy is an eigenvector

⎡⎢⎣B1 × ⋯ ×
B2 ×

O ⋱
Bj

⎤⎥⎦



belonging λ2. If there were a scalar c such that x = cy,

then z1 and z2 would both be multiples of y and could

not be independent. However, z1 and z2 belong to

distinct eigenvalues, so they must be linearly

independent. Therefore, x cannot be a multiple of y and

hence S = Span(x, y) has dimension 2.

To show the invariance of S, note that since Az1 = λ1z1

, the real and imaginary parts of both sides must agree.

Thus,

and it follows that

If w = c1x + c2y is any vector in S, then

Aw = c1Ax + c2Ay = c1(ax − by) + c2(bx + ay) = (c1a + c2b)x + (c2a − c1b)y

So Aw is in S, and hence S is invariant under A.

∎

Using this lemma, we can a prove version of Schur’s

theorem for matrices with real entries. As before, the

proof will be by induction.

Theorem 6.4.6 The Real Schur

Decomposition
If A is an n × n matrix with real entries, then A can be

factored into a product QTQT
, where Q is an

orthogonal matrix and T is in Schur form (2).

Proof

In the case that n = 2, if the eigenvalues of A are real,

we can take q1 to be a unit eigenvector belonging to the

Az1 = Ax + iAy

λ1z1 = (a + bi)(x + iy) = (ax − by) + i(bx + ay)

Ax = ax − by and Ay = bx + ay



first eigenvalue λ1 and let q2 be any unit vector that is

orthogonal to q1. If we set Q = (q1, q2), then Q is an

orthogonal matrix. If we set T = QT AQ, then the first

column of T is

QT Aq1 = λ1QT
q1 = λ1e1

So T is upper triangular and A = QTQT
. If the

eigenvalues of A are complex, then we simply set T = A

and Q = I. So every 2 × 2 real matrix has a real Schur

decomposition.

Now let A be a k × k matrix where k ≥ 3 and assume

that, for 2 ≤ m < k, every m × m real matrix has a

Schur decomposition of the form (2). Let λ1 be an

eigenvalue of A. If λ1 is real, let q1 be a unit eigenvector

belonging to λ1 and choose q2, q3, …, qn so that 

Q1 = (q1, q2, …, qn) is an orthogonal matrix. As in

the proof of Schur’s theorem, it follows that the first

column of QT
1 AQ1 will be λ1e1. In the case that λ1 is

complex, let z = x + iy (where x and y are real) be an

eigenvector belonging to λ1 and let S = Span(x, y).

By Lemma 6.4.5, dim S = 2 and S is invariant under A.

Let {q1, q2} be an orthonormal basis for S. Choose 

q3, q4, …, qn so that Q1 = (q1, q2, …, qn) is an

orthogonal matrix. Since S is invariant under A, it follows

that

for some scalars b11, b21, b12, b22 and hence the first two

columns of QT
1 AQ1 will be

(QT
1 Aq1, QT

1 Aq2) = (b11e1 + b21e2, b12e1 + b22e2)

So, in general, QT
1 AQ1 will be a matrix of block form

QT
1 AQ1 = [ ]

where

Aq1 = b11q1 + b21q2 and Aq2 = b12q1 + b22q2

B1 X

O 1A

( ) ( ) ( )



In either case, we can apply our induction hypothesis to 

A1 and obtain a Schur decomposition A1 = UT1U T
.

Let us assume that the Schur form T1 has j − 1 diagonal

blocks B2, B3, …Bj. If we set

then both Q2 and Q are k × k orthogonal matrices. If we

then set T = QT AQ, we will obtain a matrix in the

Schur form (2) and it follows that A will have Schur

decomposition QTQT
.

∎

In the case that all of the eigenvalues of A are real, the

real Schur form T will be upper triangular. In the case

that A is real and symmetric, then, since all of the

eigenvalues of A are real, T must be upper triangular;

however, in this case, T must also be symmetric. So we

end up with a diagonalization of A. Thus, for real

symmetric matrices, we have the following version of the

Spectral Theorem.

Corollary 6.4.7 Spectral

Theorem for Real Symmetric

Matrices

If A is a real symmetric matrix, then there is an

orthogonal matrix Q that diagonalizes A; that is, 

QT AQ = D, where D is diagonal.

Normal Matrices

B1 = (λ1) and A1 is (k − 1) × (k − 1) if λ1 is real
B1 is 2 × 2 and A1 is (k − 2) × (k − 2) if λ1 is complex.

Q2 = [ ] and Q = Q1Q2
I O

O Q1



There are non-Hermitian matrices that possess complete

orthonormal sets of eigenvectors. For example, skew-

symmetric and skew-Hermitian matrices have this

property. (A is skew Hermitian if AH = −A.) If

A is any matrix with a complete orthonormal set of

eigenvectors, then A = UDU H
, where U is unitary and

D is a diagonal matrix (whose diagonal elements may be

complex). In general, DH ≠ D and, consequently,

AH = UDHU H ≠ A

However,

AAH = UDUHUDHU H = UDDHU H

and

AHA = UDHU HUDUH = UDHDU H

Since

DHD = DDH =

it follows that

AAH = AHA

Definition
A matrix A is said to be normal if AAH = AHA.

We have shown that if a matrix has a complete

orthonormal set of eigenvectors, then it is normal. The

converse is also true.

Theorem 6.4.8

⎡⎢⎣|λ1|2

|λ2|2

⋱
|λn|2

⎤⎥⎦



A matrix A is normal if and only if A possesses a

complete orthonormal set of eigenvectors.

Proof

In view of the preceding remarks, we need only show

that a normal matrix A has a complete orthonormal set

of eigenvectors. By Theorem 6.4.3, there exists a unitary

matrix U and a triangular matrix T such that 

T = U HAU . We claim that T is also normal. To see

this, note that

T HT = U HAHUU HAU = U HAHAU

and

TT H = U HAUUHAHU = U HAAHU

Since AHA = AAH
, it follows that T HT = TT H

.

Comparing the diagonal elements of TT H
 and T HT , we

see that

It follows that tij = 0 whenever i ≠ j. Thus, U

diagonalizes A and the column vectors of U are

eigenvectors of A.

|t11|2 + |t12|2 + |t13|2 + … + |t1n|2 = 2

|t22|2 + |t23|2 + … + |t2n|2 = |t12|2 + |t22|2

⋮
2 = |t1n|2 + |t2n|2 + |t3n|2 + … + |tnn|2

|t11|

|tnn|



Section 6.4 Exercises

1. For each of the following pairs of vectors z and w, compute (i) 

||z||, (ii) ||w||, (iii) ⟨z,w⟩, and (iv) ⟨w, z⟩:

1. 

2. 

2. Let

1. Show that {z1, z2} is an orthonormal set in C
2

.

2. Write the vector z = [ ] as a linear combination

of z1 and z2.

3. Let {u1, u2} be an orthonormal basis for C
2

, and let 

z = (4 + 2i)u1 + (6 − 5i)u2.

1. What are the values of u
H
1 z, z

H
u1,u

H
2 z, and z

H
u2?

2. Determine the value of ∥z∥.

4. Which of the matrices that follow are Hermitian? Normal?

1. [ ]

2. [ ]

3. 

4. 

z = [ ], w = [ ]
4 + 2i

4i

−2
2 + i

z = , w =
⎡⎢⎣ 1 + i

2i

3 − i

⎤⎥⎦ ⎡⎢⎣ 2 − 4i

5
2i

⎤⎥⎦z1 =
⎡⎢⎣ 2
1 − i
2

1 + i ⎤⎥⎦ and z2

⎡⎢⎣ i

√2

− 1
√2

⎤⎥⎦2 + 4i

−2i

1 − i 2
2 3

1 2 − i

2 + i −1

⎡⎢⎣ 1
√2

− 1
√2

1
√2

1
√2

⎤⎥⎦⎡⎢⎣ 1
√2

i 1
√2

1
√2

− 1
√2

i

⎤⎥⎦



5. 

6. 

5. Find an orthogonal or unitary diagonalizing matrix for each of the

following:

1. [ ]

2. [ ]

3. 

4. 

5. 

6. 

7. 

6. Show that the diagonal entries of a Hermitian matrix must be real.

7. Let A be an n × n Hermitian matrix and let x be a vector in C
n

.

Show that if c = x
HAx, then c is real.

8. Let A be an Hermitian matrix and let B = iA. Show that B is

skew Hermitian.

9. Let A and C be matrices in C
m×n

 and let B ∈ C
n×r

. Prove each

of the following rules:

1. (AH)H = A

2. (αA + βC)H = ᾱAH + β̄CH

3. (AB)H = BHAH

⎡⎢⎣ 0 i 1
i 0 −2 + i

−1 2 + i 0

⎤⎥⎦⎡⎢⎣ 3 1 + i i

1 − i 1 3
−i 3 1

⎤⎥⎦2 1
1 2

1 3 + i

3 − i 4

⎡⎢⎣ 2 i 0
−i 2 0
0 0 2

⎤⎥⎦⎡⎢⎣ 2 1 1
1 3 −2
1 −2 3

⎤⎥⎦⎡⎢⎣ 0 0 1
0 1 0
1 0 0

⎤⎥⎦⎡⎢⎣ 1 1 1
1 1 1
1 1 1

⎤⎥⎦⎡⎢⎣ 4 2 −2
2 1 −1

−2 −1 1

⎤⎥⎦



10. Let A and B be Hermitian matrices. Answer true or false for each

of the statements that follow. In each case, explain or prove your

answer.

1. The eigenvalues of AB are all real.

2. The eigenvalues of ABA are all real.

11. Show that

⟨z,w⟩ = w
H

z

defines an inner product on C
n

.

12. Let x, y, and z be vectors in C
n

 and let α and β be complex

scalars. Show that

⟨z,αx + βy⟩ = ᾱ⟨z,x⟩ + β̄⟨z,y⟩

13. Let {u1,…,un} be an orthonormal basis for a complex inner

product space V, and let

Show that

⟨z,w⟩ =
n

∑
i=1

biai

14. Given that

A =

find a matrix B such that BHB = A.

15. Let U be a unitary matrix. Prove that

1. U is normal.

2. ‖Ux‖ = ∥x∥ for all x ∈ C
n

.

3. if λ is an eigenvalue of U, then |λ| = 1

16. Let u be a unit vector in C
n

 and define U = I − 2uu
H

. Show

that U is both unitary and Hermitian and, consequently, is its own

inverse.

17. Show that if a matrix U is both unitary and Hermitian, then any

eigenvalue of U must equal either 1 or −1.

18. Let A be a 2 × 2 matrix with Schur decomposition UTU H
 and

suppose that t12 ≠ 0. Show that

1. the eigenvalues of A are λ1 = t11 and λ2 = t22.

z = a1u1 + a2u2 +…+ anun

w = b1u1 + b2u2 +…+ bnun

⎡⎢⎣ 4 0 0
0 1 i

0 −i 1

⎤⎥⎦



2. u1 is an eigenvector of A belonging to λ1 = t11.

3. u2 is not an eigenvector of A belonging to λ2 = t22.

19. Let A be a 5 × 5 matrix with real entries. Let A = QTQT
 be the

real Schur decomposition of A, where T is a block matrix of the

form given in equation (2). What are the possible block structures

for T in each of the following cases?

1. All of the eigenvalues of A are real.

2. A has three real eigenvalues and two complex

eigenvalues.

3. A has one real eigenvalue and four complex eigenvalues.

20. Let A be a n × n matrix with Schur decomposition UTU H
. Show

that if the diagonal entries of T are all distinct, then there is an

upper triangular matrix R such that X = UR diagonalizes A.

21. Show that M = A + iB (where A and B are real matrices) is

skew Hermitian if and only if A is skew symmetric and B is

symmetric.

22. Show that if A is skew Hermitian and λ is an eigenvalue of A, then 

λ is purely imaginary (i.e., λ = bi, where b is real).

23. Show that if A is a normal matrix, then each of the following

matrices must also be normal:

1. AH

2. I + A

3. A2

24. Let A be a real 2 × 2 matrix with the property that a21a12 > 0,

and let

Compute B = SAS−1
. What can you conclude about the

eigenvalues and eigenvectors of B? What can you conclude about

the eigenvalues and eigenvectors of A? Explain.

25. Let p(x) = −x3 + cx2 + (c + 3)x + 1, where c is a real

number. Let

C =

and let

r = √a21/a12 and S = [ ]
r 0
0 1

⎡⎢⎣ c c + 3 1
1 0 0
0 1 0

⎤⎥⎦



A =

1. Compute A−1CA

2. Show that C is the companion matrix of p(x) and use the

result from part (a) to prove that p(x) will have only

real roots regardless of the value of c.

26. Let A be a Hermitian matrix with eigenvalues λ1,…,λn and

orthonormal eigenvectors u1,…,un. Show that

A = λ1u1u
H
1 + λ2u2u

H
2 +…+ λnunu

H
n

27. Let

A = [ ]

Write A as a sum λ1u1u
T
1 + λ2u2u

T
2 , where λ1 and λ2 are

eigenvalues and u1 and u2 are orthonormal eigenvectors.

28. Let A be a Hermitian matrix with eigenvalues 

λ1 ≥ λ2 ≥ … ≥ λn and orthonormal eigenvectors u1,…,un.

For any nonzero vector x in R
n

, the Rayleigh quotient ρ(x) is

defined by

ρ(x) =
⟨Ax,x⟩

⟨x,x⟩
=

x
HAx

xHx

1. If x = c1u1 +…+ cnun, show that

ρ(x) =
|c1|

2λ1 + |c2|
2λ2 +…+ |cn|

2λn

∥c∥2

2. Show that

λn ≤ ρ(x) ≤ λ1

3. Show that

29. Given A ∈ R
m×m,B ∈ R

n×n,C ∈ R
m×n

, the equation

AX − XB = C

(3)

is known as Sylvester’s equation. An m × n matrix X is said to be a

solution if it satisfies (3).

1. Show that if B has Schur decomposition B = UTU H
,

then Sylvester’s equation can be transformed into an

⎡⎢⎣ −1 2 −c − 3
1 −1 c + 2

−1 1 −c − 1

⎤⎥⎦0 1
1 0

max
x≠0

 ρ(x) = λ1 and min
x≠0

 ρ(x) = λn



equation of the form AY − Y T = G, where Y = XU

and G = CU .

2. Show that

3. Show that if A and B have no common eigenvalues, then

Sylvester’s equation has a solution.

(A − t11I)y1 = g1

(A − tjjI)yj = gj +
j−1

∑
i=1

tijyj,  j = 2,…,n



6.5 The Singular Value

Decomposition
In many applications, it is necessary either to determine

the rank of a matrix or to determine whether the matrix

is deficient in rank. Theoretically, we can use Gaussian

elimination to reduce the matrix to row echelon form

and then count the number of nonzero rows. However,

this approach is not practical in finite-precision

arithmetic. If A is rank deficient and U is the computed

echelon form, then, because of rounding errors in the

elimination process, it is unlikely that U will have the

proper number of nonzero rows. In practice, the

coefficient matrix A usually involves some error. This

may be due to errors in the data or to the finite number

system. Thus, it is generally more practical to ask

whether A is “close” to a rank-deficient matrix. However,

it may well turn out that A is close to being rank deficient

and the computed row echelon form U is not.

In this section, we assume throughout that A is an 

m × n matrix with m ≥ n. (This assumption is made

for convenience only; all the results will also hold if 

m < n.) We will present a method for determining how

close A is to a matrix of smaller rank. The method

involves factoring A into a product UΣV T
, where U is

an m × m orthogonal matrix, V is an n × n orthogonal

matrix, and Σ is an m × n matrix whose off-diagonal

entries are all 0’s and whose diagonal elements satisfy

σ1 ≥ σ2 ≥ … ≥ σn ≥ 0

∑ =

⎡⎢⎣σ1

σ2

⋱
σn

⎤⎥⎦



The σi’s determined by this factorization are unique and

are called the singular values of A. The factorization 

U∑V T
 is called the singular value decomposition of A,

or, for short, the svd of A. We will show that the rank of

A equals the number of nonzero singular values, and that

the magnitudes of the nonzero singular values provide a

measure of how close A is to a matrix of lower rank.

We begin by showing that such a decomposition is

always possible.

Theorem 6.5.1 The SVD

Theorem
If A is an m × n matrix, then A has a singular value

decomposition.

Proof

ATA is a symmetric n × n matrix. Therefore, its

eigenvalues are all real and it has an orthogonal

diagonalizing matrix V. Furthermore, its eigenvalues

must all be nonnegative. To see this, let λ be an

eigenvalue of ATA and x be an eigenvector belonging to 

λ. It follows that

Ax
2 = x

TATAx = λx
T

x = λ∥x∥2

Hence,

λ =
‖Ax‖2

∥x∥2
≥ 0

We may assume that the columns of V have been ordered

so that the corresponding eigenvalues satisfy

λ1 ≥ λ2 ≥ … ≥ λn ≥ 0

The singular values of A are given by∥ ∥



Let r denote the rank of A. The matrix ATA will also

have rank r. Since ATA is symmetric, its rank equals the

number of nonzero eigenvalues. Thus,

λr+2 = ⋅ ⋅ ⋅ = λn = 0

The same relation holds for the singular values

σr+2 = ⋅ ⋅ ⋅ = σn = 0

Now let

and

(1)

Hence, ∑1 is an r × r diagonal matrix whose diagonal

entries are the nonzero singular values σ1, …,σr. The 

m × n matrix ∑ is then given by

∑ = [ ]

The column vectors of V2 are eigenvectors of ATA

belonging to λ = 0. Thus,

and, consequently, the column vectors of V2 form an

orthonormal basis for N(ATA) = N(A). Therefore,

AV2 = O

and since V is an orthogonal matrix, it follows that

(2)

σj = √λj j = 1, …,n

λ1 ≥ λ2 ≥ … ≥ λr > 0 and λr+1 =

σ1 ≥ σ2 ≥ … ≥ σr > 0 and σr+1 =

V1 = (v1, …, vr), V2 = (vr+1, …, vn)

∑1 =

⎡⎢⎣ 1

2

⋱

r

σ

σ

σ

⎤⎥⎦∑1 O

O O

ATAvj = 0 j = r + 1, …,n

I = V V T = V1V
T

1 + V2V
T

2

A = AI = AV1V
T

1 + AV2V
T

2 = AV1V
T

1



So far we have shown how to construct the matrices V

and Σ of the singular value decomposition. To complete

the proof, we must show how to construct an m × m

orthogonal matrix U such that

A = UΣV T

or, equivalently,

AV = UΣ

(3)

Comparing the first r columns of each side of (3), we see

that

Thus, if we define

(4)

and

U1 = (u1, …, ur)

then it follows that

AV1 = U1Σ1

(5)

The column vectors of U1 form an orthonormal set since

It follows from (4) that each uj, 1 ≤ j ≤ r, is in the

column space of A. The dimension of the column space is

r, so u1, …, ur form an orthonormal basis for R(A).

The vector space R(A)⊥ = N(AT) has dimension 

Avj = σjuj j = 1, …, r

uj = 1
σj

Avj j = 1, …, r

uT
i uj 1 ≤ j ≤ r

= 1
σiσj

vT
i (A

TAvj)

=
σi
σi vT

i vj

= δij

= ( 1
σi

vT
i A

T)( 1
σi

Avj) 1 ≤ i ≤ r,



m − r. Let {ur+1, ur+2, …, um} be an orthonormal

basis for N(AT) and set

It follows from Theorem 5.2.2 that u1, …, um form an

orthonormal basis for R
m

. Hence, U is an orthogonal

matrix. We still must show that UΣV T
 actually equals

A. This follows from (5) and (2) since

∎

Observations
Let A be an m × n matrix with a singular value

decomposition .

1. The singular values σ1, … ,σn of A are unique; however, the

matrices U and V are not unique.

2. Since V diagonalizes ATA, it follows that the vj’s are eigenvectors

of ATA.

3. Since AAT = UΣΣTU T
, it follows that U diagonalizes AAT

and that the uj’s are eigenvectors of AAT
.

4. Comparing the jth columns of each side of the equation

AV = UΣ

we get

Similarly,

ATU = VΣT

and hence

U2 = (ur+1, ur+2, …, um)
U = [ ]U1 U2

UΣV T = [ ][ ][ ]

= U1Σ1V
T

1

= AV1V
T

1
= A

U1 U2
Σ1 O

O O

V T
1

V T
2

UΣV T

Avj = σjuj j = 1, … ,n

ATuj = σjvj for j = 1, … ,n
ATuj = 0 for j = n + 1, …,m



The vj’s are called the right singular vectors of A, and the uj’s are

called the left singular vectors of A.

5. If A has rank r, then

1. v1, … , vr form an orthonormal basis for R(AT).

2. vr+1, … , vn form an orthonormal basis for N(A).

3. u1, … , ur form an orthonormal basis for R(A).

4. ur+1, … , um form an orthonormal basis for N(AT).

6. The rank of the matrix A is equal to the number of its nonzero

singular values (where singular values are counted according to

multiplicity). The reader should be careful not to make a similar

assumption about eigenvalues. The matrix

M =

for example, has rank 3 even though all of its eigenvalues are 0.

7. In the case that A has rank r < n, if we set

and define Σ1 as in equation (1), then

A = U1Σ1V
T

1

(6)

The factorization (6) is called the compact form of the singular

value decomposition of A. This form is useful in many

applications.

Example 1
Let

A =

Compute the singular values and the singular value

decomposition of A.

SOLUTION

⎡⎢⎣0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎦U1 = (u1, u2, … , ur) V1 = (v1, v2, … , vr)

⎡⎢⎣1 1
1 1
0 0

⎤⎥⎦



The matrix

ATA = [ ]

has eigenvalues λ1 = 4 and λ2 = 0. Consequently, the

singular values of A are σ1 = √4 = 2 and σ2 = 0. The

eigenvalue λ1 has eigenvectors of the form α(1, 1)T ,

and λ2 has eigenvectors β(1, −1)T . Therefore, the

orthogonal matrix

v =
1

√2
[ ]

diagonalizes ATA. From observation 4, it follows that

u1 =
1
σ1

Av1 =
1
2

=

The remaining column vectors of U must form an

orthonormal basis for N(AT). We can compute a basis 

{x2, x3} for N(AT) in the usual way.

Since these vectors are already orthogonal, it is not

necessary to use the Gram–Schmidt process to obtain an

orthonormal basis. We need only set

It then follows that

A = UΣV T =

∎

2 2
2 2

1 1
1 −1

⎡⎢⎣1 1
1 1
0 0

⎤⎥⎦⎡⎢⎣ 1
√2
1

√2

⎤⎥⎦ ⎡⎢⎣ 1
√2
1

√2
0

⎤⎥⎦x2 = (1, −1, 0)T and x3 = (0, 0, 1)T

u2 = 1
∥x2∥

x2 = ( 1
√2

, − 1
√2

, 0)T

u3 = x3 = (0, 0, 1)T

⎡⎢⎣ 1
√2

1
√2

0

1
√2

− 1
√2

0

0 0 1

⎤⎥⎦⎡⎢⎣2 0
0 0
0 0

⎤⎥⎦⎡⎢⎣ 1
√2

1
√2

1
√2

− 1
√2

⎤⎥⎦



Visualizing the SVD
If we view an m × n matrix A with rank r as a mapping

from the row space of A to the column space of A, then in

light of observations (4) and (5) made earlier, it seems

natural to choose v1, v2, … , vr as an orthonormal

basis for the row space, since the image vectors

Av1 = σ1u1,Av2 = σ2u2, … ,Avr = σrur

are mutually orthogonal and the corresponding unit

vectors u1, u2, … , ur will form an orthonormal basis

for the column space of A. In the case of a 2 × 2 matrix,

the following example illustrates geometrically how one

could search for the right singular vectors by moving

around the unit circle.

Example 2
Let

A = [ ]

To find a pair of right singular vectors of A, we must find

a pair of orthonormal vectors x and y for which the

image vectors Ax and Ay are orthogonal. Choosing the

standard basis vectors for R2
 does not work, for if 

x = e1 and y = e2, then the image vectors

are not orthogonal. See Figure 6.5.1.

Figure 6.5.1.

0.4 −0.3
0.9 1.2

Ae1 = a1 = [ ] and Ae2 = a2 = [ ]
0.4
0.9

−0.3
1.2



Figure 6.5.1. Full Alternative Text

One way to search for the right singular vectors is to

simultaneously rotate this initial pair of vectors around

the unit circle and for each rotated pair

check to see if Ax and Ay are orthogonal. For the given

matrix A, this will happen when the tip of our initial x

x1 = [ ], y = [ ]
cos t
sin t

− sin t

cos t

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-05-001.xhtml#la_fig06-05-001


vector gets rotated to the point (0.6,0.8). It follows that

the right singular vectors are

Since

it follows that the singular values are σ1 = 1.5 and 

σ2 = 0.5, and the left singular vectors are u1 = e2 and 

u2 = −e1. See Figure 6.5.2.

∎

Figure 6.5.2.

v1 = [ ], v2 = [ ]
0.6
0.8

−0.8
0.6

Av1 = [ ] = 1.5e2,
0

1.5
Av2 = [ ] = −0.5e1and

−0.5
0



Figure 6.5.2. Full Alternative Text

Numerical Rank and Lower

Rank Approximations
If A is an m × n matrix of rank r and 0 < k < r, we

can use the singular value decomposition to find a matrix

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-05-002.xhtml#la_fig06-05-002


in R
m×n

 of rank k that is closest to A with respect to the

Frobenius norm. Let 𝓜 be the set of all m × n matrices

of rank k or less. It can be shown that there is a matrix X

in 𝓜 such that

‖A − X‖F = min
S∈𝓜

‖A − S‖F

(7)

We will not prove this result, since the proof is beyond

the scope of this text. Assuming that the minimum is

achieved, we will show how such a matrix X can be

derived from the singular value decomposition of A. The

following lemma will be useful.

Lemma 6.5.2
If A is an m × n matrix and Q is an m × m orthogonal

matrix, then

‖QA‖F = ‖A‖F

Proof

∎

If A has singular value decomposition UΣV T
, then it

follows from the lemma that

‖A‖F = ‖ΣV T‖F

Since

ΣV T
F = ‖(ΣV T)T‖F = ‖VΣT‖F = ‖ΣT‖F

It follows that

/

‖QA‖2
F = ‖(Qa1,Qa2, … ,Qan)‖2

F

=
n

∑
i=1

Qai∥
2
2

=
n

∑
i=1

ai∥
2
2

2
F∥∥= ‖A‖∥ ∥



‖A‖F = (σ2
1 + σ2

2 + … + σ2
n)

1/2

Theorem 6.5.3
Let A = UΣV T

 be an m × n matrix, and let 𝓜 denote

the set of all m × n matrices of rank k or less, where 

0 < k < rank (A). If X is a matrix in 𝓜 satisfying (7),

then

A − X F = (σ2
k+1 + σ2

k+2 + … + σ2
n)

1/2

In particular, if A′ = UΣ′V T
, where

then

‖A − A′‖F = (σ2
k+1 + … + σ2

n)
1/2 = min

S∈M
‖A − S‖F

Proof

Let X be a matrix in M satisfying (7). Since A′ ∈ 𝓜, it

follows that

‖A − X‖F ≤ ‖A − A′‖F = (σ2
k+1 + … + σ2

n)
1/2

(8)

We will show that

‖A − X‖F ≥= (σ2
k+1 + … + σ2

n)
1/2∥ ∥



and hence that equality holds in (8). Let QΩP T
 be the

singular value decomposition of X, where

If we set B = QTAP , then A = QBPT
, and it follows

that

A − X F = ‖Q(B − Ω)P T‖F = ‖B − Ω‖F

Let us partition B in the same manner as Ω.

It follows that

A − X 2
F = ‖B11 − Ωk

2
F + ‖B12‖

2
F + ‖B21‖

2
F + ‖B22‖

2
F∥ ∥∥ ∥ ∥



We claim that B12 = O. If not, then define

Y = Q[ ]P T

The matrix Y is in 𝓜 and

A − Y 2
F = ‖B21‖

2
F + ‖B22‖

2
F < A − X 2

F

But this contradicts the definition of X. Therefore, 

B12 = O. In a similar manner, it can be shown that B21

must equal O. If we set

Z = Q[ ]P T

then Z ∈ M  and

A − Z 2
F = ‖B22‖2

F ≤ ‖B11 − Ωk‖2
F + ‖B22‖2

F A − X 2
F

It follows from the definition of X that B11 must equal 

ΩK . If B22 has singular value decomposition U1ΛV T
1 ,

then

‖A − X‖F = ‖B22‖F = ‖Λ‖F

Let

Now,

and hence it follows that the diagonal elements of Λ are

singular values of A. Thus,

A − X F = Λ F ≥ (σ2
k+1 + … + σ2

n)
1/2

It then follows from (8) that

A − X F = (σ2
k+1 + … + σ2

n)
1/2 = ‖A − A′‖F

B11 B12

O O∥ ∥ ∥ ∥B11 O

O O∥ ∥ ∥ ∥U2 = [ ] and V2 = [ ]
Ik O

O U1

Ik O

O V1

U T
2 Q

TAPV2 = [ ]

A = (QU2)[ ](PV2)T

Ωk O

O Λ
Ωk O

O Λ∥ ∥ ∥ ∥∥ ∥



∎

If A has singular value decomposition UΣV T
, then we

can think of A as the product of UΣ times V T
. If we

partition UΣ into columns and V T
 into rows, then

UΣ = (σ1u1,σ2u2, … ,σun)

and we can represent A by an outer product expansion

A = σ1u1v
T
1 + σ2u2v

T
2 + … + σnunvT

n

(9)

If A is of rank n, then

will be the matrix of rank n − 1 that is closest to A with

respect to the Frobenius norm. Similarly,

A′′ = σ1u1vT
1 + σ2u2vT

2 … + σn−2un−2vT
n−2

will be the nearest matrix of rank n − 2, and so on. In

particular, if A is a nonsingular n × n matrix, then A′
 is

singular and ‖A − A′‖F = σn. Thus, σn may be

taken as a measure of how close a square matrix is to

being singular.

The reader should be careful not to use the value of det

(A) as a measure of how close A is to being singular. If,

for example, A is the 100 × 100 diagonal matrix whose

diagonal entries are all 
1
2 , then det(A) = 2−100

;

however, σ100 = 1
2 . By contrast, the matrix in the next

example is very close to being singular even though its

determinant is 1 and all its eigenvalues are equal to 1.

A′ = U V T

= σ1u1vT
1 + σ2u2vT

2 + … + σn−1un−1vT
n−1

⎡⎢⎣σ1

σ2

⋱
σn−1

0

⎤⎥⎦



Example 3
Let A be an n × n upper triangular matrix whose

diagonal elements are all 1 and whose entries above the

main diagonal are all −1:

A =

Notice that detdet(A) = det(A−1) = 1 and all the

eigenvalues of A are 1. However, if n is large, then A is

close to being singular. To see this, let

B =

The matrix B must be singular, since the system 

Bx = 0 has a nontrivial solution 

x = (2n−2, 2n−3, … , 20, 1)T . Since the matrices A

and B differ only in the (n, 1) position, we have

‖A − B‖F =
1

2n−2

It follows from Theorem 6.5.3 that

σn = min
X  sin gular

‖A − X‖F ≤ ‖A − B‖F =
1

2n−2

Thus, if n = 100, then σn ≤ 1/298
 and, consequently,

A is very close to singular.

∎

⎡⎢⎣1 −1 −1 … −1 −1
0 1 −1 … −1 −1
0 0 1 … −1 −1

⋮ …
0 0 0 … 1 −1
0 0 0 … 0 1

⎤⎥⎦⎡⎢⎣ 1 −1 −1 … −1 −1
0 1 −1 … −1 −1
0 0 1 … −1 −1

⋮ …
0 0 0 … 1 −1

−1
2n−2 0 0 … 0 1

⎤⎥⎦



Application 1 Numerical Rank
In most practical applications, matrix computations are

carried out by computers using finite-precision

arithmetic. If the computations involve a nonsingular

matrix that is very close to being singular, then the

matrix will behave computationally exactly like a

singular matrix. In this case, computed solutions of

linear systems may have no digits of accuracy

whatsoever. More generally, if an m × n matrix A is

close enough to a matrix of rank r, where 

r < min(m,n), then A will behave like a rank r matrix

in finite-precision arithmetic. The singular values

provide a way of measuring how close a matrix is to

matrices of lower rank; however, we must clarify what we

mean by “very close.” We must decide how close is close

enough. The answer depends on the machine precision

of the computer that is being used.

Machine precision can be measured in terms of the unit

roundoff error for the machine. Another name for unit

roundoff is machine epsilon. To understand this concept,

we need to know how computers represent numbers. If

the computer uses the number base β and keeps track of

n digits, then it will represent a real number x by a

floating-point number, denoted fl(x), of the form 

±0.d1d2 … dn × βk, where the digits di are integers

with 0 ≤ di < β. For example, −0.54321469 × 1025

is an 8-digit, base 10 floating-point number, and 

0.110100111001 × 2−9
 is a 12-digit, base 2 floating-

point number. In Section 1 of Chapter 7, we will discuss

floating-point numbers in more detail and give a precise

definition of the machine epsilon. It turns out that the

machine epsilon, ∊, is the smallest floating-point

number that will serve as a bound for the relative error

whenever we approximate a real number by a floating-

point number; that is, for any real number x,

( )



fl(x) − x

x
<∈

(10)

For 8-digit, base 10 floating-point arithmetic, the

machine epsilon is 5 × 10−8
. For 12-digit, base 2

floating-point arithmetic, the machine epsilon is 

( 1
2 )−12

, and, in general, for n-digit base β arithmetic,

the machine epsilon is 
1
2 × β−n+1

.

In light of (10), the machine epsilon is the natural choice

as a basic unit for measuring rounding errors. Suppose

that A is a matrix of rank n, but k of its singular values

are less than a “small” multiple of the machine epsilon.

Then A is close enough to matrices of rank n − k so that

for floating point computations, it is impossible to tell

the difference. In this case, we would say that A has

numerical rank n − k. The multiple of the machine

epsilon that we use to determine numerical rank depends

on the dimensions of the matrix and on its largest

singular value. The definition of numerical rank that

follows is one that is commonly used.

Definition
The numerical rank of an m × n matrix is the

number of singular values of the matrix that are greater

than σ1  max(m,n) ∈, where σ1 is the largest singular

value of A and is the machine epsilon.

Often in the context of finite-precision computations, the

term rank will be used with the understanding that it

actually refers to the numerical rank. For example, the

MATLAB command rank(A) will compute the

numerical rank of A, rather than the exact rank.

∣ ∣



Example 4
Suppose that A is a 5 × 5 matrix with singular values

σ1 = 4,σ2 = 1,σ3 = 10−12,σ4 = 3.1 × 10−14,σ5 = 2.6 × 10−15

and suppose that the machine epsilon is 5 × 10−15
. To

determine the numerical rank, we compare the singular

values to

σ1 max(m,n) ∈= 4.5.5 × 10−15 = 10−13

Since three of the singular values are greater than 10−13
,

the matrix has numerical rank 3.

∎

Application 2 Digital Image

Processing
A video image or photograph can be digitized by

breaking it up into a rectangular array of cells (or pixels)

and measuring the gray level of each cell. This

information can be stored and transmitted as an m × n

matrix A. The entries of A are nonnegative numbers

corresponding to the measures of the gray levels.

Because the gray levels of any one cell generally turn out

to be close to the gray levels of its neighboring cells, it is

possible to reduce the amount of storage necessary from

mn to a relatively small multiple of m + n + 1.

Generally, the matrix A will have many small singular

values. Consequently, A can be approximated by a matrix

of much lower rank.

If A has singular value decomposition UΣV T
, then A

can be represented by the outer product expansion

A = σ1u1vT
1 + σ2u2vT

2 + … + σnunvT
n



The closest matrix of rank k is obtained by truncating

this sum after the first k terms:

Ak = σ1u1v
T
1 + σ2u2v

T
2 + … + σkukv

T
k

The total storage for Ak is k(m + n + 1). We can

choose k to be considerably less than n and still have the

digital image corresponding to Ak very close to the

original. For typical choices of k, the storage required for 

Ak will be less than 20 percent of the amount of storage

necessary for the entire matrix A.

Figure 6.5.3 shows an image corresponding to a 

176 × 260 matrix A and three images corresponding to

lower rank approximations of A. The gentlemen in the

picture are (left to right) James H. Wilkinson, Wallace

Givens, and George Forsythe (three pioneers in the field

of numerical linear algebra).

Figure 6.5.3.



Courtesy Oakridge National Laboratory, U.S. Dept. of

Energy

Figure 6.5.3. Full Alternative Text

Application 3 Information

Retrieval-Latent Semantic

Indexing
We return again to the information retrieval application

discussed in Sections 1.3 and 5.1. In this application, a

database of documents is represented by a database

matrix Q. To search the database, we form a unit search

vector x and set y = QTx. The documents that best

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-05-003.xhtml#la_fig06-05-003


match the search criteria are those corresponding to the

entries of y that are closest to 1.

Because of the problems of polysemy and synonymy, we

can think of our database as an approximation. Some of

the entries of the database matrix may contain

extraneous components due to multiple meanings of

words, and some may miss including components

because of synonymy. Suppose that it were possible to

correct for these problems and come up with a perfect

database matrix P. If we set E = Q − P , then, since 

Q = P + E, we can think of E as a matrix representing

the errors in our database matrix Q. Unfortunately, E is

unknown, so we cannot determine P exactly. However, if

we can find a simpler approximation Q1 for Q, then Q1

will also be an approximation for P. Thus, 

Q1 = P + E1 for some error matrix E1. In the method

of latent semantic indexing (LSI), the database matrix Q

is approximated by a matrix Q1 with lower rank. The

idea behind the method is that the lower rank matrix

may still provide a good approximation to P and, because

of its simpler structure, may actually involve less error;

that is, ∥E1 ∥<∥ E∥.

The lower rank approximation can be obtained by

truncating the outer product expansion of the singular

value decomposition of Q. This is equivalent to setting

σr+1 = σr+2 = ⋅ ⋅ ⋅ = σn = 0

and then setting Q1 = U1Σ1V
T

1 , the compact form of

the singular value decomposition of the rank r matrix.

Furthermore, if r < min(m,n)/2, then this

factorization is computationally more efficient to use and

the searches will be speeded up. The speed of

computation is proportional to the amount of arithmetic

involved. The matrix vector multiplication QTx requires

a total of mn scalar multiplications (m multiplications

for each of the n entries of the product). In contrast, 

QT
1 = V1Σ1U

T
1 , and the multiplication 



QT
1 x = V1(Σ1(U1xT)) requires a total of 

r(m + n + 1) scalar multiplications. For example, if 

m = n = 1000 and r = 200, then

The search with the lower rank matrix should be more

than twice as fast.

Application 4 Psychology—

Principal Component Analysis
In Section 5.1, we saw how psychologist Charles

Spearman used a correlation matrix to compare scores

on a series of aptitude tests. On the basis of the observed

correlations, Spearman concluded that the test results

provided evidence of common basic underlying

functions. Further work by psychologists to identify the

common factors that make up intelligence has led to

development of an area of study known as factor

analysis.

Predating Spearman’s work by a few years is a 1901

paper by Karl Pearson analyzing a correlation matrix

derived from measuring seven physical variables for each

of 3000 criminals. This study contains the roots of a

method popularized by Harold Hotelling in a well-known

paper published in 1933. The method is known as

principal component analysis.

To see the basic idea of this method, assume that a series

of n aptitude tests is administered to a group of m

individuals and that the deviations from the mean for the

tests form the columns of an m × n matrix X. Although,

in practice, column vectors of X are positively correlated,

the hypothetical factors that account for the scores

should be uncorrelated. Thus, we wish to introduce

mutually orthogonal vectors y1, y2, . . . , yr

mn = 106 and r(m + n + 1) = 200 ⋅ 2001 = 400, 200



corresponding to the hypothetical factors. We require

that the vectors span R(X), and hence the number of

vectors, r, should be equal to the rank of X. Furthermore,

we wish to number these vectors in decreasing order of

variance.

The first principal component vector, y1, should account

for the most variance. Since y1 is in the column space of

X, we can represent it as a product Xv1 for some 

v1 ∈ R
n

. The covariance matrix is

S =
1

n − 1
XTX

and the variance of y1 is given by

var(y1) =
(Xv1)TXv1

n − 1
= v

T
1 Sv1

The vector v1 is chosen to maximize vTSv over all unit

vectors v. This can be accomplished by choosing v1 to be

a unit eigenvector of XTX belonging to its maximum

eigenvalue λ1. (See Exercise 28 of Section 6.4.) The

eigenvectors of XTX are the right singular vectors of X.

Thus, v1 is the right singular vector of X corresponding

to the largest singular value σ1 = √λ1. If u1 is the

corresponding left singular vector, then

y1 = Xv1 = σ1u1

The second principal component vector must be of the

form y2 = Xv2. It can be shown that the vector which

maximizes vTSv over all unit vectors that are

orthogonal to v1 is just the second right singular vector 

v2 of X. If we choose v2 in this way and u2 is the

corresponding left singular vector, then

y2 = Xv2 = σ2u2

and since

y
T
1 y2 = σ1σ2u

T
1 u2 = 0



it follows that y1 and y2 are orthogonal. The remaining 

yi’s are determined in a similar manner.

In general, the singular value decomposition solves the

principal component problem. If X has rank r and

singular value decomposition X = U1Σ1V
T

1  (in

compact form), then the principal component vectors are

given by

y1 = σ1u1, y2 = σ2u2, . . . , yr = σrur

The left singular vectors u1, . . . , un are the normalized

principal component vectors. If we set W = Σ1V
T

1 ,

then

X = U1Σ1V
T

1 = U1W

The columns of the matrix U1 correspond to the

hypothetical intelligence factors. The entries in each

column measure how well the individual students exhibit

that particular intellectual ability. The matrix W

measures to what extent each test depends on the

hypothetical factors.



Section 6.5 Exercises

1. Show that A and AT
 have the same nonzero singular values. How

are their singular value decompositions related?

2. Use the method of Example 1 to find the singular value

decomposition of each of the following matrices:

1. [ ]

2. [ ]

3. 

4. 

3. For each of the matrices in Exercise 2:

1. determine the rank.

2. find the closest (with respect to the Frobenius norm)

matrix of rank 1.

4. Let

A = =

Find the closest (with respect to the Frobenius norm) matrices of

rank 1 and rank 2 to A.

5. The matrix

A =

has singular value decomposition

1 1
2 2

2 −2
1 2

⎡⎢⎣ 1 3
3 1
0 0
0 0

⎤⎥⎦⎡⎢⎣ 2 0 0
0 2 1
0 1 2
0 0 0

⎤⎥⎦⎡⎢⎣ −2 8 20
14 19 10
2 −2 1

⎤⎥⎦ ⎡⎢⎣ 3
5 − 4

5 0
4
5

3
5 0

0 0 1

⎤⎥⎦ ⎡⎢⎣ 30 0 0
0 15 0
0 0 3

⎤⎥⎦ ⎡⎢⎣ 1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤⎥⎦⎡⎢⎣ 2 5 4
6 3 0
6 3 0
2 5 4

⎤⎥⎦



1. Use the singular value decomposition to find

orthonormal bases for R(AT) and N(A).

2. Use the singular value decomposition to find

orthonormal bases for R(A) and N(AT).

6. Prove that if A is a symmetric matrix with eigenvalues 

λ1, λ2, . . . , λn, then the singular values of A are 

|λ1|, |λ2|, . . . , |λn|.

7. Let A be an m × n matrix with singular value decomposition 

U∑V T
, and suppose that A has rank r, where r < n. Show that 

{v1, . . . , vr} is an orthonormal basis for R(AT).

8. Let A be an n × n matrix. Show that AT A and AAT
 are similar.

9. Let A be an n × n matrix with singular values σ1, σ2, . . . , σn

and eigenvalues λ1, λ2, . . . , λn. Show that

|λ1, λ2, . . . , λn| = σ1σ2 ⋅ ⋅ ⋅ σn

10. Let A be an n × n matrix with singular value decomposition 

U∑V T
 and let

B = [ ]

Show that if

then the xi’s and yi’s are eigenvectors of B. How do the

eigenvalues of B relate to the singular values of A?

11. Show that if σ is a singular value of A, then there exists a nonzero

vector x such that

σ =
∥Ax∥2

∥x∥2

12. Let A be an m × n matrix of rank n with singular value

decomposition U∑V T
. Let ∑+

 denote the n × m matrix

⎡⎢⎣ 1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

⎤⎥⎦ ⎡⎢⎣ 12 0 0
0 6 0
0 0 0
0 0 0

⎤⎥⎦ ⎡⎢⎣ 2
3

2
3

1
3

− 2
3

1
3

2
3

1
3 − 2

3
2
3

⎤⎥⎦O AT

A O

xi = [ ], yi = [ ], i = 1, . . . , n
vi

ui

−vi

ui

⎡⎢⎣ 1
σ1

1
σ2

0

⋱
1

σn

⎤⎥⎦



and define A+ = V∑+U T
. Show that x̂ = A+b satisfies the

normal equations AT Ax = AT b.

13. Let A+
 be defined as in Exercise 12 and let P = AA+

. Show that 

P 2 = P  and P T = P .



6.6 Quadratic Forms
By this time, the reader should be well aware of the

important role that matrices play in the study of linear

equations. In this section, we will see that matrices also

play an important role in the study of quadratic

equations. With each quadratic equation, we can

associate a vector function f(x) = xTAx. Such a vector

function is called a quadratic form. Quadratic forms

arise in a wide variety of applied problems. They are

particularly important in the study of optimization

theory.

Definition
A quadratic equation in two variables x and y is an

equation of the form

ax2 + 2bxy + cy2 + dx + cy + f = 0

(1)

Equation (1) may be rewritten in the form

[ ][ ][ ] + [ ][ ] + f = 0

(2)

Let

The term

xTAx = ax2 + 2bxy + cy2

is called the quadratic form associated with (1).

Conic Sections
The graph of an equation of the form (1) is called a conic

section. [If there are no ordered pairs (x, y) which

satisfy (1), we say that the equation represents an

x y
a b

b c

x

y
d e

x

y

x = [ ] and A = [ ]
x

y

a b

b c



imaginary conic.] If the graph of (1) consists of a single

point, a line, or a pair of lines, we say that (1) represents

a degenerate conic. Of more interest are the

nondegenerate conics. Graphs of nondegenerate conics

turn out to be circles, ellipses, parabolas, or hyperbolas

(see Figure 6.6.1). The graph of a conic is particularly

easy to sketch when its equation can be put into one of

the following standard forms:

Figure 6.6.1.

Figure 6.6.1. Full Alternative Text

(see Figure 6.6.1). The graph of a conic is particularly

easy to sketch when its equation can be put into one of

the following standard forms:

Here, α, β, and r are nonzero real numbers. Note that

the circle is a special case of the ellipse (α = β = r). A

conic section is said to be in standard position if its

x2 + y2 = r2 (circle)

x2

α2 +
y2

β2 = 1 (ellipse)

(hyperbola)

(iv) (parabola)

(i)

(ii)

(iii) x2

α2 −
y2

β2 = 1 or  y2

α2 − x2

β2 = 1

x2 = αy or y2 = αx
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equation can be put into one of these four standard

forms. The graphs of (i), (ii), and (iii) in Figure 6.6.1

will all be symmetric to both coordinate axes and the

origin. We say that these curves are centered at the

origin. A parabola in standard position will have its

vertex at the origin and will be symmetric to one of the

axes.

What about the conics that are not in standard position?

Let us consider the following cases:

Case 1.

The conic section has been translated horizontally from

the standard position. This occurs when the x2
 and x

terms in (1) both have nonzero coefficients.

Case 2.

The conic section has been translated vertically from the

standard position. This occurs when the y2
 and y terms

in (1) have nonzero coefficients (i.e., c ≠ 0 and e ≠ 0).

Case 3.

The conic section has been rotated from the standard

position by an angle θ that is not a multiple of 90°. This

occurs when the coefficient of the xy term is nonzero

(i.e., b ≠ 0).

In general, we may have any one or any combination of

these three cases. To graph a conic section that is not in

standard position, we usually find a new set of axes x′

and y′ such that the conic section is in standard position

with respect to the new axes. This is not difficult if the

conic has only been translated horizontally or vertically,

in which case the new axes can be found by completing

the squares. The following example illustrates how this is

done.

Example 1
Sketch the graph of the equation

9x2 − 18x + 4y2 + 16y − 11 = 0



Solution
To see how to choose our new axis system, we complete

the squares.

9(x2 − 2x + 1) + 4(y2 + 4y + 4) − 11 = 9 + 16

This equation can be simplified to the form

(x − 1)2

22
+

(y + 2)2

32
= 1

If we let

= y + 2

the equation becomes

(x′)2

22
+

(y′)2

32
= 1

which is in standard form with respect to the variables x′
and y′. Thus, the graph, as shown in Figure 6.6.2, will be

an ellipse that is in standard position in the x′y′ − axis
system. The center of the ellipse will be at the origin of

the x′y′ − plane [i.e., at the point (x, y) = (1, −2)].

The equation of the x′ − axis is simply y′ = 0, which is

the equation of the line y = −2 in the xy − plane.

Similarly, the y′ − axis coincides with the line x = 1.

∎

Figure 6.6.2.

y′x′ = x − 1 and



Figure 6.6.2. Full Alternative Text

There is little problem if the center or vertex of the conic

section has been translated. If, however, the conic

section has also been rotated from the standard position,

it is necessary to change coordinates so that the equation

in terms of the new coordinates x′ and y′ involves no 

x′y′ term. Let x = (x, y)T  and x′ = (x′, y′)T . Since

the new coordinates differ from the old coordinates by a

rotation, we have

where

If 0 < θ < π, then the matrix Q corresponds to a

rotation of θ radians in the clockwise direction and QT

corresponds to a rotation of θ radians in the

x′ = QTxx = Qx′ or

QT = [ ]Q = [ ] or
cos θ sin θ

− sin θ cos θ
cos θ − sin θ

sin θ cos θ
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counterclockwise direction (see Example 2 in Section

4.2). With this change of variables, (2) becomes

(x′)T(QTAQ)x′ + [ ] x′ + f = 0

(3)

where [ ] = [ ] Q. This equation will involve

no x′y′ term if and only if QTAQ is diagonal. Since A is

symmetric, it is possible to find a pair of orthonormal

eigenvectors q1 = (x1, −yl)
T

 and q2 = (y1,x1)T .

Thus, if we set cos θ = x1 and sin θ = y1, then

Q = [ ] = [ ]

diagonalizes A and (3) simplifies to

λ1(x′)2 + λ2(y′)2 + d′x′ + e′y′ + f = 0

Example 2
Consider the conic section

3x2 + 2xy + 3y2 − 8 = 0

This equation can be written in the form

[ ][ ][ ] = 8

The matrix

[ ]

has eigenvalues λ = 2 and λ = 4 with corresponding

unit eigenvectors

Let

Q = = [ ]

and set

d′ e′

d′ e′ d e

q1 q2
x1 y1

−y1 x1

x y
3 1
1 3

x

y

3 1
1 3

and( 1
√2

, − 1
√2

)T ( 1
√2

, 1
√2

)T

⎡⎢⎣ 1
√2

1
√2

− 1
√2

1
√2

⎤⎥⎦ cos 45° sin 45°
− sin 45° cos 45°



[ ] = [ ]

Thus,

QTAQ = [ ]

and the equation of the conic becomes

2(x′)2 + 4(y′)2 = 8

or

(x′)2

4
+

(y′)2

2
= 1

In the new coordinate system, the direction of the x′-axis

is determined by the point x′ = 1, y′ = 0. To translate

this to the xy coordinate system, we multiply

[ ] = = q1

The x′-axis will be in the direction of q1. Similarly, to

find the direction of the y′-axis, we multiply

Q e2 = q2

The eigenvectors that form the columns of Q tell us the

directions of the new coordinate axes (see Figure 6.6.3).

∎

Figure 6.6.3.

x

y

⎡⎢⎣ 1
√2

1
√2

− 1
√2

1
√2

⎤⎥⎦ x′
y′

2 0
0 4

⎡⎢⎣ 1
√2

1
√2

− 1
√2

1
√2

⎤⎥⎦ 1
0

⎡⎢⎣ 1
√2

− 1
√2

⎤⎥⎦



Figure 6.6.3. Full Alternative Text

Example 3
Given the quadratic equation

3x2 + 2xy + 3y2 + 8√2y − 4 = 0

find a change of coordinates so that the resulting

equation represents a conic in standard position.

Solution
The xy term is eliminated in the same manner as in

Example 2. In this case, we use the rotation matrix

Q =
⎡⎢⎣ 1

√2
1

√2

− 1
√2

1
√2

⎤⎥⎦
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to rotate the axis system. The equation with respect to

the new axis system is

2(x′)2 + 4(y′)2 + [ ] Q[ ] = 4

or

(x′)2 − 4x′ + 2(y′)2 + 4y′ = 2

If we complete the square, we get

(x′ − 2)2 + 2(y′ + 1)2 = 8

If we set x′′ = x′ − 2 and y′′ = y′ + 1 (see Figure

6.6.4), the equation simplifies to

(x′′)2

8
+

(y′′)2

4
= 1

∎

Figure 6.6.4.

0 8√2
x′
y′



Figure 6.6.4. Full Alternative Text

To summarize, a quadratic equation in the variables x

and y can be written in the form

xTAx + Bx + f = 0

where x = (x, y)T , A is a 2 × 2 symmetric matrix, B is

a 1 × 2 matrix, and f is a scalar. If A is nonsingular,

then, by rotating and translating the axes, it is possible to

rewrite the equation in the form

λ1(x′)2 + λ2(y′)2 + f′ = 0

(4)

where λ1 and λ2 are the eigenvalues of A. If (4)

represents a real nondegenerate conic, it will be either an

ellipse or a hyperbola, depending on whether λ1 and λ2

agree in sign or differ in sign. If A is singular and exactly

one of its eigenvalues is zero, the quadratic equation can

be reduced to either

2
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These equations will represent parabolas, provided that 

e′ and d′ are nonzero.

There is no reason to limit ourselves to two variables. We

could just as well have quadratic equations and quadratic

forms in any number of variables. Indeed, a quadratic

equation in n variables x1, … ,xn is one of the form

xTAx + Bx + α = 0

(5)

where x = (x1, … ,xn)T , A is an n × n symmetric

matrix, B is a 1 × n matrix, and α is a scalar. The vector

function

f(x) = xTAx =
n

∑
i=1
(

n

∑
j=1

aijxj) xi

is the quadratic form in n variables associated with the

quadratic equation.

In the case of three unknowns, if

then (5) becomes

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + gx + hy + iz + α = 0

The graph of a quadratic equation in three variables is

called a quadric surface.

There are four basic types of nondegenerate quadric

surfaces:

1. Ellipsoids

2. Hyperboloids (of one or two sheets)

3. Cones

4. Paraboloids (either elliptic or hyperbolic)

As in the two-dimensional case, we can use translations

and rotations to transform the equation into the

standard form

λ1(x′)2 + λ2(y′)2 + λ3(z′)2 + α = 0

2 + d′x′ + f′ = 0λ1(x′)2 + e′y′ + f′ = 0 or λ2(y′)

x = , A = , B =
⎡⎢⎣xyz⎤⎥⎦ ⎡⎢⎣a d e

d b f

e f c

⎤⎥⎦ ⎡⎢⎣ghi⎤⎥⎦



where λ1,λ2,λ3 are the eigenvalues of A. For the

general n-dimensional case, the quadratic form can

always be translated to a simpler diagonal form. More

precisely, we have the following theorem.

Theorem 6.6.1 Principal Axes

Theorem
If A is a real symmetric n × n matrix, then there is a

change of variables u = QTx such that 

xTAx = uTDu, where D is a diagonal matrix.

Proof

If A is a real symmetric matrix, then by Corollary 6.4.7,

there is an orthogonal matrix Q that diagonalizes A; that

is, QTAQ = D (diagonal). If we set u = QTx, then 

x = Qu and

xTAx = uTQTAQu = uTDu

∎

Optimization: An Application

to the Calculus
Let us consider the problem of maximizing and

minimizing functions of several variables. In particular,

we would like to determine the nature of the critical

points of a real-valued vector function w = F(x). If the

function is a quadratic form, w = xTAx, then 0 is a

critical point. Whether it is a maximum, minimum, or

saddle point depends on the eigenvalues of A. More

generally, if the function to be maximized or minimized

is sufficiently differentiable, it behaves locally like a

quadratic form. Thus, each critical point can be tested by

determining the signs of the eigenvalues of the matrix of

an associated quadratic form.

Definition



Let F(x) be a real-valued vector function on R
n

. A point

x0 in R
n

 is said to be a stationary point of F if all the

first partial derivatives of F at x0 exist and are zero.

If F(x) has either a local maximum or a local minimum

at a point x0 and the first partials of F exist at x0, they

will all be zero. Thus, if F(x) has first partials

everywhere, its local maxima and minima will occur at

stationary points.

Consider the quadratic form

f(x, y) = ax2 + 2bxy + cy2

The first partials of f are

Setting these equal to zero, we see that (0, 0) is a

stationary point. Moreover, if the matrix

A = [ ]

is nonsingular, this will be the only critical point. Thus, if

A is nonsingular, f will have either a global minimum, a

global maximum, or a saddle point at (0, 0).

Let us write f in the form

Since f(0) = 0, it follows that f will have a global

minimum at 0 if and only if

and f will have a global maximum at 0 if and only if

If xTAx changes sign, then 0 is a saddle point.

In general, if f is a quadratic form in n variables, then, for

each x ∈ R
n

,

f(x) = xTAx

where A is a symmetric n × n matrix.

fx = 2ax + 2by
fy = 2bx + 2cy

a b

b c

f(x) = xTAx where x = [ ]
x

y

xTAx > 0 for all x ≠ 0

xTAx < 0 for all x ≠ 0



Definition
A quadratic form f(x) = xTAx is said to be definite if

it takes on only one sign as x varies over all nonzero

vectors in Rn
. The form is positive definite if 

xTAx > 0 for all nonzero x in R
n

 and negative

definite if xTAx < 0 for all nonzero x in R
n

. A

quadratic form is said to be indefinite if it takes on

values that differ in sign. If f(x) = xTAx ≥ 0 and

assumes the value 0 for some x ≠ 0, then f (x) is said to

be positive semidefinite. If f(x) ≤ 0 and assumes

the value 0 for some x ≠ 0, then f (x) is said to be

negative semidefinite.

Whether the quadratic form is positive definite or

negative definite depends on the matrix A. If the

quadratic form is positive definite, we say simply that A

is positive definite. The preceding definition can then be

restated as follows.

Definition
A real symmetric matrix A is said to be

1. positive definite if xTAx > 0 for all nonzero x in R
n

.

2. negative definite if xTAx < 0 for all nonzero x in R
n

.

3. positive semidefinite if xTAx ≥ 0 for all nonzero x in R
n

.

4. negative semidefinite if xTAx ≤ 0 for all nonzero x in R
n

.

5. indefinite if xTAx takes on values that differ in sign.

If A is nonsingular, then 0 will be the only stationary

point of f(x) = xTAx. It will be a global minimum if A

is positive definite and a global maximum if A is negative

definite. If A is indefinite, then 0 is a saddle point. To

classify the stationary point, we must then classify the

matrix A. There are a number of ways of determining

whether a matrix is positive definite. We will study some

of these methods in the next section. The following

theorem gives perhaps the most important

characterization of positive definite matrices.



Theorem 6.6.2
Let A be a real symmetric n × n matrix. Then A is

positive definite if and only if all its eigenvalues are

positive.

Proof

If A is positive definite and λ is an eigenvalue of A, then,

for any eigenvector x belonging to λ,

xTAx = λxTx = λ∥x∥2

Hence,

λ =
xTAx

∥x∥2
> 0

Conversely, suppose that all the eigenvalues of A are

positive. Let {u1, … , un} be an orthonormal set of

eigenvectors of A. If x is any nonzero vector in R
n

, then

x can be written in the form

x = c1u1 + c2u2 + … + cnun

where

It follows that

and hence A is positive definite.

∎

If the eigenvalues of A are all negative, then −A must be

positive definite and, consequently, A must be negative

definite. If A has eigenvalues that differ in sign, then A is

indefinite. Indeed, if λ1 is a positive eigenvalue of A and 

x1 is an eigenvector belonging to λ1, then

xT
1 Ax1 = λ1xT

1 x1 = λ1∥x1∥2 > 0

and if λ2 is a negative eigenvalue with eigenvector x2,

then

2

ci = xTui for  i = 1, … ,n
n

∑
i=1

c2
i = ∥x∥2 > 0and

xTAx = xT(c1λ1u1 + … + cnλnun)

=
n

∑
i=1

c2
iλi

≥ (min λi)∥x∥2 > 0



xT
2 Ax2 = λ2xT

2 x2 = λ2∥x2∥2 < 0

Example 4
The graph of the quadratic form 

f(x, y) = 2x2 − 4xy + 5y2
 is pictured in Figure 6.6.5.

It is not entirely clear from the graph if the stationary

point (0, 0) is a global minimum or a saddle point. We

can use the matrix A of the quadratic form to decide the

issue:

A = [ ]

Figure 6.6.5.

2 −2
−2 5



Figure 6.6.5. Full Alternative Text

The eigenvalues of A are λ1 = 6 and λ2 = 1. Since both

eigenvalues are positive, it follows that A is positive

definite and hence the stationary point (0, 0) is a global

minimum.

∎

Suppose now that we have a function F(x, y) with a

stationary point (x0, y0). If F has continuous third

partials in a neighborhood of (x0, y0), it can be

expanded in a Taylor series about that point.

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-06-005.xhtml#la_fig06-06-005


where

and the remainder R is given by

If h and k are sufficiently small, |R| will be less than 

1
2 ah2 + 2bhk + ck2

, and hence 

[F(x0 + h, y0 + k) − F(x0, y0)] will have the same

sign as (ah2 + 2bhk + ck2). The expression

f(h, k) = ah2 + 2bhk + ck2

is a quadratic form in the variables h and k. Thus, 

F(x, y) will have a local minimum (maximum) at 

(x0, y0) if and only if f(h, k) has a minimum

(maximum) at (0, 0). Let

H = [ ] = [ ]

and let λ1 and λ2 be the eigenvalues of H. If H is

nonsingular, then λ1 and λ2 are nonzero and we can

classify the stationary points as follows:

1. F has a minimum at (x0, y0) if λ1 > 0,λ2 > 0.

2. F has a maximum at (x0, y0) if λ1 < 0,λ2 < 0.

3. F has a saddle point at (x0, y0) if λ1 and λ2 differ in sign.

Example 5
The graph of the function

F(x, y) =
1

3
x3 + xy2 − 4xy + 1

is pictured in Figure 6.6.6. Although all the stationary

points lie in the region shown, it is difficult to distinguish

them just by looking at the graph. However, we can solve

for the stationary points analytically and then classify

each stationary point by examining the corresponding

matrix of second partial derivatives.

= F(x0, y0)+[hFx(x0, y0) + kFy(x0, y0)] + 1
2 [h

2Fxx(x0, y0) + 2hkFxy(x0, y0) + k2Fyy(x0, y0)] + R

= F(x0, y0)+ 1
2 (ah

2 + 2bhk + ck2) + R

F(x0 + h, y0 + k)

a = Fxx(x0, y0), b = Fxy(x0, y0), c = Fyy(x0, y0)

R = 1
6 [h3Fxx(z) + 3h2kFxxy(z) + 3hk2Fxyy(z) + k3Fyyy(z)]

z = θ < 10 <(x0 + θh, y0 + θk),∣ ∣a b

b c

Fxx(x0, y0) Fxy(x0, y0)
Fxy(x0, y0) Fyy(x0, y0)



Figure 6.6.6.

Figure 6.6.6. Full Alternative Text

SOLUTION

The first partials of F are

Setting Fy = 0, we get x = 0 or y = 2. Setting Fx = 0,

we see that if x = 0, then y must either be 0 or 4, and if 

y = 2, then x = ±2. Thus, (0, 0), (0, 4), (2, 2), and 

Fx = x2 + y2 − 4y
Fy = 2xy − 4x = 2x(y − 2)

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig06-06-006.xhtml#la_fig06-06-006


(−2, 2) are the stationary points of F. To classify the

stationary points, we compute the second partials:

For each stationary point (x0, y0), we determine the

eigenvalues of

[ ]

These values are summarized in Table 6.6.1.

∎

Table 6.6.1 Stationary Points

of F(x, y)

Stationary Point (x0, y0)λ1λ2Description

(0, 0)   4 −4 Saddle point

(0, 4)   4 −4 Saddle point

(2, 2)   4   4 Local minimum

(−2, 2) −4 −4 Local maximum

We can now generalize our method of classifying

stationary points to functions of more than two variables.

Let F(x) = F(x1, … ,xn) be a real-valued function

whose third partial derivatives are all continuous. Let x0

be a stationary point of F and define the matrix 

H = H(x0) by

hij = Fxixj(x0)

H(x0) is called the Hessian of F at x0.

The stationary point can be classified as follows:

1. x0 is a local minimum of F if H(x0) is positive definite.

2. x0 is a local maximum of F if H(x0) is negative definite.

3. x0 is a saddle point of F if H(x0) is indefinite.

Fxx = 2x, Fxy = 2y − 4, Fyy = 2x

2x0 2y0 − 4
2y0 − 4 2x0



Example 6
Find the local minima of the function

F(x, y, z) = x2 + xz − 3  cos y + z2

SOLUTION

The first partials of F are

It follows that (x, y, z) is a stationary point of F if and

only if x = z = 0 and y = nπ, where n is an integer.

Let x0 = (0, 2kπ, 0)T . The Hessian of F at x0 is given

by

H(x0) =

The eigenvalues of H(x0) are 3, 3, and 1. Since the

eigenvalues are all positive, it follows that H(x0) is

positive definite and hence F has a local minimum at x0.

At a stationary point of the form 

x1 = (0, (2k − 1)π, 0)T , the Hessian will be

H(x1) =

The eigenvalues of H(x1) are −3, 3, and 1. It follows

that H(x1) is indefinite and hence x1 is a saddle point

of F.

∎

Fx = 2x + y

Fy = 3  sin y

Fz = x + 2z

⎡⎢⎣2 0 1
0 3 0
1 0 2

⎤⎥⎦⎡⎢⎣2 0 1
0 −3 0
1 0 2

⎤⎥⎦



Section 6.6 Exercises

1. Find the matrix associated with each of the following quadratic

forms:

1. 3x2 − 5xy + y2

2. 2x2 + 3y2 + z2 + xy − 2xz + 3yz

3. x2 + 2y2 + z2 + xy − 2xz + 3yz

2. Reorder the eigenvalues in Example 2 so that λ1 = 4 and λ2 = 2
and rework the example. In what quadrants will the positive x′ and

y′ axes lie? Sketch the graph and compare it to Figure 6.6.3.

3. In each of the following, (i) find a suitable change of coordinates

(i.e., a rotation and/or a translation) so that the resulting conic

section is in standard form, (ii) identify the curve, and (iii) sketch

the graph:

1. x2 + xy + y2 − 6 = 0

2. 3x2 + 8xy + 3y2 + 28 = 0

3. −3x2 + 6xy + 5y2 − 24 = 0

4. x2 + 6xy + y2 + 3x + y − 1 = 0

4. Let λ1 and λ2 be the eigenvalues of

A = [ ]

What kind of conic section will the equation

ax2 + 2bxy + cy2 = 1

represent if λ1λ2 < 0? Explain.

5. Let A be a symmetric 2 × 2 matrix and let α be a nonzero scalar

for which the equation x
T
Ax = 𝛂 is consistent. Show that the

corresponding conic section will be nondegenerate if and only if A

is nonsingular.

6. Which of the matrices that follow are positive definite? Negative

definite? Indefinite?

1. [ ]

2. [ ]

a b

b c

3 2

2 2

3 4

4 1



3. [ ]

4. 

5. 

6. 

7. For each of the following functions, determine whether the given

stationary point corresponds to a local minimum, local maximum,

or saddle point:

1. 

2. 

3. 

4. 

5. 

6. 

8. Show that if A is symmetric positive definite, then det(A) > 0.

Give an example of a 2 × 2 matrix with positive determinant that

is not positive definite.

9. Show that if A is a symmetric positive definite matrix, then A is

nonsingular and A−1
 is also positive definite

10. Let A be a singular n × n matrix. Show that AT A is positive

semidefinite, but not positive definite.

11. Let A be a symmetric n × n matrix with eigenvalues λ1, . . . ,λn.

Show that there exists an orthonormal set of vectors 

{x1, . . . , xn} such that

x
T Ax =

n

∑
i=1

λi(x
T

xi)2

for each x ∈ Rn
.

12. Let A be a symmetric positive definite matrix. Show that the

diagonal elements of A must all be positive.

13. Let A be a symmetric positive definite n × n matrix and let S be a

nonsingular n × n matrix. Show that ST AS is positive definite.

3 √2

√2 4

⎡⎢⎣−2 0 1

0 −1 0

1 0 −2

⎤⎥⎦⎡⎢⎣1 2 1

2 1 1

1 1 2

⎤⎥⎦⎡⎢⎣2 0 0

0 5 3

0 3 5

⎤⎥⎦f(x, y) = 3x2 − xy + y2 (0, 0)

f(x, y) = sinx + y3 + 3xy + 2x − 3y (0,−1)

f(x, y) = 1
3 x3 − 1

3 y3 + 3xy + 2x − 2y (1,−1)

f(x, y) =
y

x2 + x
y2 + xy (1, 1)

f(x, y, z) = x3 + xyz + y2 − 3x (1, 0, 0)

f(x, y, z) = − 1
4 (x−4 + y−4 + z−4)+ yz − x − 2y − 2z (1, 1, 1)



14. Let A be a symmetric positive definite n × n matrix. Show that A

can be factored into a product QQT
, where Q is an n × n matrix

whose columns are mutually orthogonal. [Hint: See Corollary

6.4.7.]



6.7 Positive Definite Matrices
In Section 6.6, we saw that a symmetric matrix is

positive definite if and only if its eigenvalues are all

positive. These types of matrices occur in a wide variety

of applications. They frequently arise in the numerical

solution of boundary value problems by finite difference

methods or by finite element methods. Because of their

importance in applied mathematics, we devote this

section to studying their properties.

Recall that a symmetric n × n matrix A is positive

definite if xT Ax > 0 for all nonzero vectors x in R
n

. In

Theorem 6.6.2, symmetric positive definite matrices

were characterized by the condition that all their

eigenvalues are positive. This characterization can be

used to establish the following properties:

Property I If A is a symmetric positive definite matrix, then A is

nonsingular.

Property II If A is a symmetric positive definite matrix, then 

det(A) > 0.

If A were singular, λ = 0 would be an eigenvalue of A.

However, since all the eigenvalues of A are positive, A

must be nonsingular. The second property also follows

from Theorem 6.6.2, since

det(A) = λ1. . . λn > 0

Given an n × n matrix A, let Ar denote the matrix

formed by deleting the last n − r rows and columns of 

A. Ar is called the leading principal submatrix of A of

order r. We can now state a third property of positive

definite matrices:

Property III If A is a symmetric positive definite matrix, then the

leading principal submatrices A1, A2, . . . , An of A are all

positive definite.



Proof

To show that Ar is positive definite, 1 ≤ r ≤ n, let 

xr = (x1, . . . ,xr)T
 be any nonzero vector in R

r
 and

set

x = (x1, . . . , xr, 0, . . . ,0)T

Since

x
T
r Arxr = x

T Ax > 0

it follows that Ar is positive definite.

An immediate consequence of properties I, II, and III is

that if Ar is a leading principal submatrix of a symmetric

positive definite matrix A, then Ar is nonsingular and 

det(Ar) > 0 This has significance in relation to the

Gaussian elimination process. In general, if A is an 

n × n matrix whose leading principal submatrices are

all nonsingular, then A can be reduced to upper

triangular form using only row operation III; that is, the

diagonal elements will never be 0 in the elimination

process, so the reduction can be completed without

interchanging rows.

Property IV If A is a symmetric positive definite matrix, then A

can be reduced to upper triangular form using only row operation

III, and the pivot elements will all be positive.

Let us illustrate property IV in the case of a 4 × 4
symmetric positive definite matrix A. Note first that

a11 = det(A1) > 0

so a11 can be used as a pivot element and row 1 is the

first pivot row. Let a
(1)
22  denote the entry in the (2, 2)

position after the last three elements of column 1 have

been eliminated (see Figure 6.7.1). At this step, the

submatrix A2 has been transformed into a matrix:

[ ]
a11 a12

0 a
(1)
22



Figure 6.7.1.

Figure 6.7.1. Full Alternative Text

Since the transformation was accomplished using only

row operation III, the value of the determinant remains

unchanged. Thus,

det(A2) = a11a
(1)
22

and hence

a
(1)
22 =

det(A2)
a11

=
det(A2)

det(A1)
> 0

Since a
(1)
22 ≠ 0, it can be used as a pivot in the second

step of the elimination process. After step 2, the matrix 

A3 has been transformed into

Because only row operation III was used,

det(A3) = a11a
(1)
22 a

(2)
33

and hence

a
(2)
33 =

det(A3)

a11a
(1)
22

=
det(A3)

det(A2)
> 0

⎡⎢⎣a11 a12 a13

0 a
(1)
22 a

(1)
23

0 0 a
(2)
33

⎤⎥⎦

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_f0382-01.xhtml#la_f0382-01


Thus, a
(2)
33  can be used as a pivot in the last step. After

step 3, the remaining diagonal entry will be

a
(3)
44 =

det(A4)
det(A3)

> 0

In general, if an n × n matrix A can be reduced to an

upper triangular form U without any interchanges of

rows, then A can be factored into a product LU, where L

is lower triangular with 1’s on the diagonal. The (i, j)
entry of L below the diagonal will be the multiple of the

ith row that was subtracted from the jth row during the

elimination process. We illustrate with a 3 × 3 example:

Example 1
Let

A =

The matrix L is determined as follows: At the first step of

the elimination process, 
1
2  times the first row is

subtracted from the second row and − 1
2  times the first

row is subtracted from the third. Corresponding to these

operations, we set l21 = 1
2  and l31 = − 1

2 . After step 1,

we obtain the matrix

A(1) =

The final elimination is carried out by subtracting 
1
3

times the second row from the third row. Corresponding

to this step, we set l32 = 1
3 . After step 2, we end up with

the upper triangular matrix

U = A(2) =

⎡⎢⎣ 4 2 −2
2 10 2

−2 2 5

⎤⎥⎦⎡⎢⎣4 2 −2
0 9 3
0 3 4

⎤⎥⎦⎡⎢⎣4 2 −2
0 9 3
0 0 3

⎤⎥⎦



The matrix L is given by

L =

and we can verify that the product LU = A.

To see why this factorization works, let us view that

process in terms of elementary matrices. Row operation

III was applied three times during the process. This is

equivalent to multiplying A on the left by three

elementary matrices E1, E2, E3. Thus, E3E2E1A = U

:

Since the elementary matrices are nonsingular, it follows

that

A = (E−1
1 E−1

2 E−1
3 )U

When the inverse elementary matrices are multiplied in

this order, the result is a lower triangular matrix L with

1’s on the diagonal. The entries below the diagonal of L

will just be the multiples that were subtracted during the

elimination process.

∎

⎡⎢⎣ 1 0 0
1
2 1 0

− 1
2

1
3 1

⎤⎥⎦=
⎡⎢⎣ 1 0 0

1
2 1 0

− 1
2

1
3 1

⎤⎥⎦ ⎡⎢⎣4 2 −2
0 9 3
0 0 3

⎤⎥⎦ ⎡⎢⎣ 4 2 −2
2 10 2

−2 2 5

⎤⎥⎦ =
⎡⎢⎣1 0 0

0 1 0

0 1
3 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0
1
2 0 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0

− 1
2 1 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ 4 2 −2
2 10 2

−2 2 5

⎤⎥⎦ ⎡⎢⎣4 2 −2
0 9 3
0 0 3

⎤⎥⎦E−1
1 E−1

2 E−1
3 =

=

⎡⎢⎣ 1 0 0
1
2 1 0
0 0 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
0 1 0

− 1
2 0 1

⎤⎥⎦ ⎡⎢⎣1 0 0
0 1 0

0 1
3 1

⎤⎥⎦⎡⎢⎣ 1 0 0
1
2 1 0

− 1
2

1
3 1

⎤⎥⎦



Given an LU factorization of a matrix A, it is possible to

go one step further and factor U into a product DU1,

where D is diagonal and U1 is upper triangular with 1’s

on the diagonal:

DU1 =

It follows, then, that A = LDU1. The matrices L and 

U1 are referred to as unit triangular matrices since they

are triangular and their diagonal entries are all equal to

1. The representation of a square matrix A as a product of

the form LDU, where L is a unit lower triangular matrix,

D is diagonal, and U is a unit upper triangular matrix, is

referred to as an LDU factorization of A. In general, if A

has an LDU factorization, then it is unique (see Exercise

8 at the end of this section).

If A is a symmetric positive definite matrix, then A can be

factored into a product LU = LDU1. The diagonal

elements of D are the entries u11, …  , unn, which were

the pivot elements in the elimination process. By

property IV, these elements are all positive.

Furthermore, since A is symmetric,

LDU1 = A = AT = (LDU1)T = U T
1 DT LT

It follows from the uniqueness of the LDU factorization

that LT = U1. Thus,

A = LDLT

This important factorization is often used in numerical

computations. There are efficient algorithms that make

use of the LDLT
 factorization in solving symmetric

positive definite linear systems.

Property V If A is a symmetric positive definite matrix, then A

can be factored into a product LDLT
, where L is lower triangular

⎡⎢⎣u11

u22

⋱
unn

⎤⎥⎦⎡⎢⎣1 u12
u11

u13
u11

… u1n
u11

1 u23
u22

… u2n
u22

⋮
1

⎤⎥⎦



with 1’s along the diagonal and D is a diagonal matrix whose

diagonal entries are all positive.

Example 2
We saw in Example 1 that

Factoring out the diagonal entries of U, we get

Since the diagonal elements u11, . . . , unn are positive,

it is possible to go one step further with the factorization.

Let

D1/2 =

and set L1 = LD1/2
. Then

A = LDLT = LD1/2(D1/2)T LT = L1LT
1

This factorization is known as the Cholesky

decomposition of A.

Property VI (Cholesky Decomposition) If A is a symmetric

positive definite matrix, then A can be factored into a product 

LLT
, where L is lower triangular with positive diagonal elements.

The Cholesky decomposition of a symmetric positive

definite matrix A can also be represented in terms of an

A =

= = LU

⎡⎢⎣ 4 2 −2
2 10 2

−2 2 5

⎤⎥⎦⎡⎢⎣ 1 0 0
1
2 1 0

− 1
2

1
3 1

⎤⎥⎦ ⎡⎢⎣4 2 −2
0 9 3
0 0 3

⎤⎥⎦ = LDLTA =
⎡⎢⎣ 1 0 0

1
2 1 0

− 1
2

1
3 1

⎤⎥⎦ ⎡⎢⎣4 0 0
0 9 0
0 0 3

⎤⎥⎦ ⎡⎢⎣1 1
2 − 1

2

0 1 1
3

0 0 1

⎤⎥⎦⎡⎢⎣√u11

√u22

⋱
√unn

⎤⎥⎦



upper triangular matrix. Indeed, if A has Cholesky

decomposition LLT
 where L is lower triangular with

positive diagonal entries, then the matrix R = LT
 is

upper triangular with positive diagonal entries and

A = LLT = RT R

Example 3
Let A be the matrix from Examples 1 and 2. If we set

then

The Cholesky factorization of the symmetric positive

definite matrix A in Example 3 could also have been

written in terms of the upper triangular matrix R = LT
1 .

A = L1LT
1 = RT R

More generally, it is not difficult to show that any

product of the BT B will be positive definite, provided

that B is nonsingular. Putting all these results together,

we have the following theorem.

Theorem 6.7.1
Let A be a symmetric n × n matrix. The following are

equivalent:

1. A is positive definite.

L1 = LD1/2 = =
⎡⎢⎣ 1 0 0

1
2 1 0

− 1
2

1
3 1

⎤⎥⎦ ⎡⎢⎣2 0 0
0 3 0

0 0 √3

⎤⎥⎦ ⎡⎢⎣ 2 0 0
1 3 0

−1 1 √3

⎤⎥⎦L1LT
1 =

= = A

⎡⎢⎣ 2 0 0
1 3 0

−1 1 √3

⎤⎥⎦ ⎡⎢⎣2 1 −1
0 3 1

0 0 √3

⎤⎥⎦⎡⎢⎣ 4 2 −2
2 10 2

−2 2 5

⎤⎥⎦



2. The leading principal submatrices A1, . . . , An all have positive

determinants.

3. A can be reduced to upper triangular form using only row

operation III, and the pivot elements will all be positive.

4. A has a Cholesky factorization LLT
 (where L is lower triangular

with positive diagonal entries).

5. A can be factored into a product BTB for some nonsingular

matrix B.

Proof

We have already shown that (a) implies (b), (b) implies

(c), and (c) implies (d). To see that (d) implies (e),

assume that A = LLT
. If we set B = LT

, then B is

nonsingular and

A = LLT = BT B

Finally, to show that (e) ⇒ (a), assume that A = BT B

, where B is nonsingular. Let x be any nonzero vector in 

Rn
 and set y = Bx. Since B is nonsingular, y ≠ 0 and

it follows that

x
T Ax = x

T BT Bx = y
T

y = ||y||2 > 0

∎

Thus, A is positive definite.

Analogous results to Theorem 6.7.1 are not valid for

positive semidefiniteness. For example, consider the

matrix

A =

The leading principal submatrices all have nonnegative

determinants:

However, A is not positive semidefinite, since it has a

negative eigenvalue λ = −1. Indeed, x = (1, 1, 1)T
 is

⎡⎢⎣ 1 1 −3
1 1 −3

−3 −3 5

⎤⎥⎦det(A3) = 0det(A1) = 1, det(A2) = 0,



an eigenvector belonging to λ = −1 and

x
T Ax = −3



Section 6.7 Exercises

1. For each of the following matrices, compute the determinants of

all the leading principal submatrices and use them to determine

whether the matrix is positive definite:

1. [ ]

2. [ ]

3. 

4. 

2. Let A be a 3 × 3 symmetric positive definite matrix and suppose

that det(A1) = 3, det(A2) = 6, and det(A3) = 8. What

would the pivot elements be in the reduction of A to triangular

form, assuming that only row operation III is used in the

reduction process?

3. Let

A =

1. Compute the LU factorization of A.

2. Explain why A must be positive definite.

4. For each of the following, factor the given matrix into a product 

LDLT
, where L is lower triangular with 1’s on the diagonal and D

is a diagonal matrix:

1. [ ]

2. [ ]

2 −1

−1 2

3 4

4 2

⎡⎢⎣ 6 4 −2

4 5 3

−2 3 6

⎤⎥⎦⎡⎢⎣ 4 2 1

2 3 −2

1 −2 5

⎤⎥⎦⎡⎢⎣ 2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎤⎥⎦4 2

2 10

9 −3

−3 2



3. 

4. 

5. Find the Cholesky decomposition LLT
 for each of the matrices in

Exercise 4.

6. Let A be an n × n symmetric positive definite matrix. For each x,

y ∈ R
n

, define

⟨x, y⟩ = x
T Ay

Show that ⟨ , ⟩, defines an inner product on R
n

.

7. Prove each of the following:

1. If U is a unit upper triangular matrix, then U is

nonsingular and U −1
 is also unit upper triangular.

2. If U1 and U2 are both unit upper triangular matrices,

then the product U1U2 is also a unit upper triangular

matrix.

8. Let A be a nonsingular n × n matrix, and suppose that 

A = L1D1U1 = L2D2U2, where L1 and L2 are lower

triangular, D1 and D2 are diagonal, U1 and U2 are upper

triangular, and L1, L2, U1, U2 all have 1’s along the diagonal.

Show that L1 = L2, D1 = D2, and U1 = U2. [Hint: L−1
2  is

lower triangular and U −1
1  is upper triangular. Compare both sides

of the equation D−1
2 L−1

2 L1D1 = U2U −1
1 .]

9. Let A be a symmetric positive definite matrix with Cholesky

decomposition A = LLT = RT R. Prove that the lower

triangular matrix L (or that the upper triangular matrix R) in the

factorization is unique.

10. Let A be an m × n matrix with rank n. Show that the matrix AT A

is symmetric positive definite.

11. Let A be an m × n matrix with rank n and let QR be the

factorization obtained when the Gram–Schmidt process is applied

to the column vectors of A. Show that if AT A has Cholesky

factorization RT
1 R1, then R1 = R. Thus, the upper triangular

factors in the Gram–Schmidt QR factorization of A and the

Cholesky decomposition of AT A are identical.

12. Let A be a symmetric positive definite matrix and let Q be an

orthogonal diagonalizing matrix. Use the factorization 

A = QDQT
 to find a nonsingular matrix B such that BT B = A.

13. Let A be a symmetric n × n matrix. Show that eA
 is symmetric

and positive definite.

⎡⎢⎣ 16 8 4

8 6 0

4 0 7

⎤⎥⎦⎡⎢⎣ 9 3 −6

3 4 1

−6 1 9

⎤⎥⎦



14. Show that if B is a symmetric nonsingular matrix, then B2
 is

positive definite.

15. Let

1. Show that A is positive definite and that 

xT Ax = xT Bx for all x ∈ R
2

.

2. Show that B is positive definite, but B2
 is not positive

definite.

16. Let A be an n × n symmetric negative definite matrix.

1. What will the sign of det(A) be if n is even? If n is odd?

2. Show that the leading principal submatrices of A are

negative definite.

3. Show that the determinants of the leading principal

submatrices of A alternate in sign.

17. Let A be a symmetric positive definite n × n matrix.

1. If k < n, then the leading principal submatrices Ak and 

Ak+1 are both positive definite and, consequently, have

Cholesky factorizations LkLT
k

 and Lk+1LT
k+1. If Ak+1 is

expressed in the form

Ak+1 = [ ]

where yk ∈ R
k

 and βk is a scalar, show that Lk+1 is of

the form

Lk+1 = [ ]

and determine xk and αk in terms of Lk, yk, and βk.

2. The leading principal submatrix A1 has Cholesky

decomposition L1LT
1 , where L1 = (√a11). Explain

how part (a) can be used to compute successively the

Cholesky factorizations of A2, . . . , An. Devisean

algorithm that computes L2, L3, . . . , Ln in a single

loop. Since A = An, the Cholesky decomposition of A

will be LnLT
n . (This algorithm is efficient in that it uses

approximately half the amount of arithmetic that would

generally be necessary to compute an LU factorization.)

A = and B = [ ]
⎡⎢⎣ 1 − 1

2

− 1
2 1

⎤⎥⎦ 1 −1

0 1

Ak yk

yT
k

βk

Lk 0

xT
k αk



6.8 Nonnegative Matrices
In many of the types of linear systems that occur in

applications, the entries of the coefficient matrix

represent nonnegative quantities. This section deals with

the study of such matrices and some of their properties.

Definition
An n × n matrix A with real entries is said to be

nonnegative if aij ≥ 0 for each i and j and positive if 

aij > 0 for each i and j.

Similarly, a vector x = (x1, . . . , xn)T  is said to be

nonnegative if each xi ≥ 0 and positive if each 

xi > 0.

For an example of one of the applications of nonnegative

matrices, we consider the Leontief input–output models.

Application 1 The Open Model
Suppose that there are n industries producing n different

products. Each industry requires input of the products

from the other industries and possibly even of its own

product. In the open model, it is assumed that there is an

additional demand for each of the products from an

outside sector. The problem is to determine the output of

each of the industries that is necessary to meet the total

demand.

We will show that this problem can be represented by a

linear system of equations and that the system has a

unique nonnegative solution. Let aij denote the amount



of input from the ith industry necessary to produce one

unit of output in the jth industry. By a unit of input or

output, we mean one dollar’s worth of the product. Thus,

the total cost of producing one dollar’s worth of the jth

product will be

a1j + a2j + ⋅ ⋅ ⋅ + anj

Since the entries of A are all nonnegative, this sum is

equal to ||aj||1. Clearly, production of the jth product

will not be profitable unless ||aj||1 < 1. Let di denote

the demand of the open sector for the ith product.

Finally, let xi represent the amount of output of the ith

product necessary to meet the total demand. If the jth

industry is to have an output of xj, it will need an input

of aijxj units from the ith industry. Thus, the total

demand for the ith product will be

ai1x1 + ai2x2 + ⋅ ⋅ ⋅ + ainxn + di

and hence we require that

xi = ai1x1 + ai2x2 + ⋅ ⋅ ⋅ + ainxn + di

for i = 1, . . . ,n. This leads to the system

which may be written in the form

(I − A)x = d

(1)

The entries of A have two important properties:

1. aij ≥ 0 for each i and j.

2. ||aj||1 =
n

∑
i=1

aij < 1 for each j.

The vector x must not only be a solution of (1); it must

also be nonnegative. (It would not make any sense to

(1 − a11)x1 + (−a12)x2 + ⋅ ⋅ ⋅ + (−a1n)xn = d1

(−a21)x1 + (1 − a22)x2 + ⋅ ⋅ ⋅ + (−a2n)xn = d2

⋮
(−an1)x1 + (−an2)x2 + ⋅ ⋅ ⋅ + (1 − ann)xn = dn



have a negative output.)

To show that the system has a unique nonnegative

solution, we need to make use of a matrix norm that is

related to the 1-norm for vectors that was introduced in

Section 5.4. The matrix norm is also referred to as the 1-

norm and is denoted by || ⋅ ||1. The definition and

properties of the 1-norm for matrices are studied in

Section 7.4. In that section, we will show that, for any 

m × n matrix B,

||B||1 = max
1≤j≤n

 (
m

∑
i=1

 |bij|) = max(||b1||1, ||b2||1, . . . , ||bn||1)

(2)

It will also be shown that the 1-norm satisfies the

following multiplicative properties:

(3)

In particular, if A is an n × n matrix satisfying

conditions (i) and (ii), then it follows from (2) that 

||A||1 < 1. Furthermore, if λ is any eigenvalue of A and

x is an eigenvector belonging to λ, then

|λ| ||x||1 = ||λx||1 = ||Ax||1 ≤ ||A||1 ||x||1

and hence

|λ| ≤ ||A||1 < 1

Thus, 1 is not an eigenvalue of A. It follows that I − A is

nonsingular and hence the system (1) has a unique

solution

x = (I − A)−1
d

We would like to show that this solution must be

nonnegative. To do this, we will show that (I − A)−1
 is

nonnegative. First note that, as a consequence of

multiplicative property (3), we have

m

||BC||1 ≤ ||B||1 ||C||1
||Bx||1 ≤ ||B||1 ||x||1

for any matrix C ∈ R
n×r

x ∈ R
nfor any



||Am||1 ≤ ||A||m1

Since ||A||1 < 1, it follows that

and hence Am
 approaches the zero matrix as m → ∞.

Since

(I − A)(I + A + ⋅ ⋅ ⋅ + Am) = I − Am+1

it follows that

I + A + ⋅ ⋅ ⋅ + Am = (I − A)−1 − (I − A)−1
Am+1

As m → ∞,

(I − A)−1 − (I − A)−1
Am+1 → (I − A)−1

and hence the series I+A+ ⋅ ⋅ ⋅ +Am
 converges to 

(I − A)−1
 as m → ∞. By condition (i), 

I+A+ ⋅ ⋅ ⋅ +Am
 is nonnegative for each m, and

therefore (I − A)−1
 must be nonnegative. Since d is

nonnegative, it follows that the solution x must be

nonnegative. We see, then, that conditions (i) and (ii)

guarantee that the system (1) will have a unique

nonnegative solution x.

As you have probably guessed, there is also a closed

version of the Leontief input– output model. In the

closed version, it is assumed that each industry must

produce enough output to meet the input needs of only

the other industries and itself. The open sector is

ignored. Thus, in place of the system (1), we have

(I − A)x = 0

and we require that x be a positive solution. The

existence of such an x in this case is a much deeper result

than in the open version and requires some more

advanced theorems.

m → ∞||Am||1 → 0 as



Theorem 6.8.1
Perron’s Theorem

If A is a positive n × n matrix, then A has a positive

real eigenvalue r with the following properties:

1. r is a simple root of the characteristic equation.

2. r has a positive eigenvector x.

3. If λ is any other eigenvalue of A, then |λ| < r.

The Perron theorem may be thought of as a special case

of a more general theorem due to Frobenius. The

Frobenius theorem applies to irreducible nonnegative

matrices.

Definition
A nonnegative matrix A is said to be reducible if there

exists a partition of the index set {1, 2, . . . , n} into

nonempty disjoint sets I1 and I2 such that aij = 0
whenever i ∈ I1 and j ∈ I2. Otherwise, A is said to be

irreducible.

Example 1
Let A be a matrix of the form

Let I1 = {1, 2, 5} and I2 = {3, 4}. Then 

I1 ∪ I2 = {1, 2, 3, 4, 5} and aij = 0 whenever i ∈ I1

and j ∈ I2. Therefore, A is reducible. If P is the

⎡⎢⎣ × × 0 0 ×
× × 0 0 ×
× × × × ×
× × × × ×
× × 0 0 ×

⎤⎥⎦



permutation matrix formed by interchanging the third

and fifth rows of the identity matrix I, then

PA =

and

In general, it can be shown that an n × n matrix A is

reducible if and only if there exists a permutation matrix

P such that PAPT
 is a matrix of the form

where B and C are square matrices.

∎

Theorem 6.8.2
Frobenius Theorem

⎡⎢⎣ × × 0 0 ×
× × 0 0 ×
× × 0 0 ×
× × × × ×
× × × × ×

⎤⎥⎦



If A is an irreducible nonnegative matrix, then A has a

positive real eigenvalue r with the following properties:

1. r has a positive eigenvector x.

2. If λ is any other eigenvalue of A, then |λ| ≤ r. The eigenvalues

with absolute value equal to r are all simple roots of the

characteristic equation. Indeed, if there are m eigenvalues with

absolute value equal to r, they must be of the form

The proof of this theorem is beyond the scope of the text.

We refer the reader to Gantmacher [4, Vol. 2]. Perron’s

theorem follows as a special case of the Frobenius

theorem.

Application 2 The Closed

Model
In the closed Leontief input–output model, we assume

that there is no demand from the open sector and we

wish to find outputs to satisfy the demands of all n

industries. Thus, defining the xi’s and the aij’s as in the

open model, we have

xi = ai1x1 + ai2x2 + ⋅ ⋅ ⋅ + ainxn

for i = 1, . . . , n. The resulting system may be written

in the form

(A − I)x = 0

(4)

As before, we have the condition

aij ≥ 0

(i)

Since there is no open sector, the amount of output from

the jth industry should be the same as the total input for

that industry. Thus,

k = 0, 1, . . . , m − 1λk = re2kπ i/m



xj =
n

∑
i=1

 aijxj

and hence we have as our second condition

(ii)

Condition (ii) implies that A − I  is singular, because the

sum of its row vectors is 0. Therefore, 1 is an eigenvalue

of A, and since ||A||1 = 1, it follows that all the

eigenvalues of A have moduli less than or equal to 1. Let

us assume that enough of the coefficients of A are

nonzero so that A is irreducible. Then, by Theorem 6.8.2,

λ = 1 has a positive eigenvector x. Thus, any positive

multiple of x will be a positive solution of (4).

Application 3 Markov Chains

Revisited
Nonnegative matrices also play an important role in the

theory of Markov processes. Recall that if A is an n × n

stochastic matrix, then λ1 = 1 is an eigenvalue of A and

the remaining eigenvalues satisfy

In the case that A is stochastic and all of its entries are

positive, it follows from Perron’s theorem that λ1 = 1
must be a dominant eigenvalue and this, in turn, implies

that the Markov chain with transition matrix A will

converge to a steady-state vector for any starting

probability vector x0. In fact, if, for some k, the matrix 

Ak
 is positive, then by Perron’s theorem, λ1 = 1 must

be a dominant eigenvalue of Ak
. One can then show that 

λ1 = 1 must also be a dominant eigenvalue of A. (See

Exercise 12.) We say that a Markov process is regular if

all of the entries of some power of the transition matrix

are strictly positive. The transition matrix for a regular

n

∑
i=1

 aij = 1 j = 1, . . . , n

|λj| ≤ 1 for j = 2, . . . , n



Markov process will have λ1 = 1 as a dominant

eigenvalue, and hence the Markov chain is guaranteed to

converge to a steady-state vector.

Application 4 Analytic

Hierarchy Process:

Eigenvector Computation of

Weights
In Section 6.3, we considered an example involving a

search process to fill a full professor position at a large

university. In order to assign weights to the quality of the

research of the four candidates, the committee did

pairwise comparisons of the relative quality of the

research publications of the candidates. After studying

the publications of all the candidates, the committee

agreed upon the following pairwise comparisons of the

weights:

w1 = 1.75w2,w1 = 1.5w3,w1 = 1.25w4,w2 = 0.75w3,w2 = 0.50w4,w3 = 0.75w4

Here, an equation such as w2 = 0.50w4 would indicate

that the quality of research from candidate 2 was only

half as strong as the quality of research from candidate 4.

Equivalently, one could say that the quality of research

from candidate 4 is twice as strong as the quality of

research from candidate 2. In Chapter 5, we added the

condition that the weights must all add up to 1. Using

this condition, we were able to express w4 in terms of 

w1,w2, and w3. We then found the values of w1,w2,

and w3 by calculating the least squares solution to a 

6 × 3 linear system. The calculated weight vector was 

w1 = (0.3289, 0.1739, 0.2188, 0.2784)T .

We now consider an alternative method for computing

the weight vector based on an eigenvector calculation. To

do this, we first form a comparison matrix C. The (i, j)



entry of C indicates how the quality of the research of

candidate i compares to the quality of the research of

candidate j. Thus if, for example, w2 = 0.5w4, then 

c24 = 2 and c42 = 1
2 . The comparison matrix for

judging the quality of research is given by

C =

The matrix C is called a reciprocal matrix since it has the

property that cji = 1
cij

 for all i and j. The matrix C is a

positive matrix, so it follows by Perron’s theorem that C

has a dominant eigenvalue with a positive eigenvector.

The dominant eigenvalue is λ1 = 4.0106. If we

compute the eigenvector belonging to λ1 and then

normalize so that its entries add up to 1, we end up with

a weight vector

w2 = (0.3255, 0.1646, 0.2177, 0.2922)T

The eigenvector solution w2 is very close to the weight

vector w1 computed using least squares. Why does this

eigenvector method work so well? To answer this

question, let us first consider a simple example where

both methods of computing weights give the exact same

answer.

Suppose the mathematics department at a small college

is conducting a search for an assistant professor position.

Candidates will be evaluated in the areas of teaching,

research, and professional activities. The committee

decides that teaching is twice as important as research

and 8 times as important as professional activities. The

committee also decides that research is 4 times as

important as professional activities. In this case, it is easy

to find the weight vector since the decisions about the

relative importance of the three areas were done in a

consistent way.

⎡⎢⎣ 1 7
4

3
2

5
4

4
7 1 3

4
1
2

2
3

4
3 1 3

4
4
5 2 4

3 1

⎤⎥⎦



If w3 is the weight assigned to professional activities,

then the weight for research w2 must be 4w3 and the

weight w1 must be 8w3. So w1 is automatically equal to 

2w2. The weight vector then must be of the form 

w = (8w3, 4w3,w3)T . In order for the entries of w to

add up to 1, the value of w3 must be 
1
13 . If we use the

least squares method discussed in Section 6.3, we would

set w3 = 1 − w1 − w1. The weight vector would then

be computed by finding the least squares solution to a 

3 × 2 linear system. In this case, the 3 × 2 system is

consistent, so the least squares solution is the exact

solution and our computed weight vector is 

w = ( 8
13 , 4

13 , 1
13 )

T

.

Let us now compute the weight vector using the

eigenvector method. To do this, we first form the

comparison matrix

C =

Note that c12 = 2 since teaching is considered twice as

important as professional activities and c23 = 4 since

research is considered 4 times as important as

professional activities. Because the judgments of relative

importance were made in a consistent manner, the value

of c13, the relative importance of teaching to professional

activities, should be

c13 = 2 ⋅ 4 = c12c23

Indeed, if all decisions on the relative importance of the

criteria are made in a consistent manner, then the entries

of the comparison matrix will satisfy the property 

cij = cikckj for all i, j, and k. A reciprocal comparison

matrix with this property is said to be consistent. Note

that the matrix C in our example has rank 1 since

⎡⎢⎣ 1 2 8
1
2 1 4
1
8

1
4 1

⎤⎥⎦



=
1
4

c3

In general, if C is an n × n consistent reciprocal

comparison matrix and cj and ck are column vectors of

C, then

cj = = = ckjck

Therefore, C must have rank equal to 1. It follows that 0

must be an eigenvalue of C and the dimension of its

eigenspace must be n − 1, the nullity of C. So 0 must be

an eigenvalue of multiplicity n − 1. The remaining

eigenvalue λ1 must equal the trace of C. So λ1 = n is

the dominant eigenvalue of C. Furthermore, since C has

rank 1, any column vector of C will be an eigenvector

belonging to the dominant eigenvalue. (See Exercise 17

in Section 6.3.)

For our example, it follows that the dominant eigenvalue

of C is λ1 = 3 and that c3 is an eigenvector belonging to 

λ1. If we divide c3 by the sum of its entries, we end up

with the weight vector w = ( 8
13 , 4

13 , 1
13 )

T

.

In general, if the decisions on the relative importance are

made in a consistent manner, then there is only one way

to choose the weights and both the least squares method

and the eigenvector method will produce the same

weight vector. Suppose now that the decisions are not

made in a consistent manner. This is not uncommon

when decisions are made based on human judgments.

For the least squares method, the linear system in the

variables w1,w2, . . . ,wn−1 will not be consistent, but

we can always find a least squares solution. If the

eigenvector method is used, the comparison matrix C1

will not be consistent. By Perron’s theorem, C1 will have

a positive dominant eigenvalue λ1 and a positive

c1 = 1
8 c3 and c2

⎡⎢⎣ cnj⋮c1j

c2j

⎤⎥⎦ ⎡⎢⎣ cnkckj⋮

c1kckj

c2kckj

⎤⎥⎦



eigenvector x1. The eigenvector can be scaled to form a

vector w1 whose entries add to 1. The scaled vector w1

is used to assign weights to the criteria. If the decisions

on the relative importance have not been made in a

wildly inconsistent manner, but in a way that is in some

sense close to being consistent, then the eigenvector w1

is a reasonable choice for a weight vector. In this case,

the matrix C1 should in some sense be close to a

consistent reciprocal comparison matrix and λ1 and w1

should be close to the dominant eigenvalue and

eigenvector of a consistent matrix.

Suppose, for example, that the search committee at the

college had decided, as before, that teaching is twice as

important as research and 8 times as important as

professional activities; however, suppose this time they

decided that research should only be 3 times as

important as professional activities. In this case, the

comparison matrix is

C1 =

The matrix C  is not consistent so its dominant

eigenvalue λ1 = 3.0092 is not equal to 3; however, it is

close to 3. The eigenvector belonging to λ1 (normalized

so that its entries add up to 1) is 

w1 = (0.6282, 0.2854, 0.864)T . Table 6.8.1

summarizes the results for both the problem with the

consistent comparison matrix and for the inconsistent

version of the problem. For each comparison matrix, the

table includes the dominant eigenvalue and the

computed weights. All computed values are rounded to

four decimal places.

⎡⎢⎣ 1 2 8
1
2 1 3
1
8

1
3 1

⎤⎥⎦1



Table 6.8.1 A Comparison of

Comparison Matrices

Weights
MatrixEigenvalueTeachingResearchProf. Activities

C 3 0.6154 0.3077 0.0769

C1 3.0092 0.6282 0.2854 0.0864



Section 6.8 Exercises

1. Find the eigenvalues of each of the following matrices and verify

that conditions (i), (ii), and (iii) of Theorem 6.8.1 hold:

1. [ ]

2. [ ]

3. 

2. Find the eigenvalues of each of the following matrices and verify

that conditions (i) and (ii) of Theorem 6.8.2 hold:

1. [ ]

2. [ ]

3. 

3. Find the output vector x in the open version of the Leontief input–

output model if

4. Consider the closed version of the Leontief input–output model

with input matrix

A =

If x = (x1, x2, x3)
T

 is any output vector for this model, how are

the coordinates x1, x2, and x3 related?

5. Prove: If Am = O for some positive integer m, then I − A is

nonsingular.

6. Let

2 3

2 1

4 2

2 7

⎡⎢⎣ 1 2 4

2 4 1

1 2 4

⎤⎥⎦2 3

1 0

0 2

2 0

⎡⎢⎣ 0 0 8

1 0 0

0 1 0

⎤⎥⎦A = and d =
⎡⎢⎣ 0.2 0.4 0.4

0.4 0.2 0.2

0.0 0.2 0.2

⎤⎥⎦ ⎡⎢⎣ 16, 000

8, 000

24, 000

⎤⎥⎦⎡⎢⎣ 0.5 0.4 0.1

0.5 0.0 0.5

0.0 0.6 0.4

⎤⎥⎦



A =

1. Compute (I − A)−1
.

2. Compute A2
 and A3

. Verify that 

(I − A)−1 = I + A + A2
.

7. Which of the matrices that follow are reducible? For each

reducible matrix, find a permutation matrix P such that PAP T
 is

of the form

where B and C are square matrices.

1. 

2. 

3. 

4. 

8. Let A be a nonnegative irreducible 3 × 3 matrix whose

eigenvalues satisfy λ1 = 2 = |λ2| = |λ3|. Determine λ2 and λ3.

9. Let

⎡⎢⎣ 0 1 1

0 −1 1

0 −1 1

⎤⎥⎦⎡⎢⎣ 1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

⎤⎥⎦⎡⎢⎣ 1 0 1 1

1 1 1 1

1 0 1 1

1 0 1 1

⎤⎥⎦⎡⎢⎣ 1 0 1 0 0

0 1 1 1 1

1 0 1 0 0

1 1 0 1 1

1 1 1 1 1

⎤⎥⎦⎡⎢⎣ 1 1 1 1 1

1 1 0 0 1

1 1 1 1 1

1 1 0 0 1

1 1 0 0 1

⎤⎥⎦



where B and C are square matrices.

1. If λ is an eigenvalue of B with eigenvector 

x = (x1, . . . , xk)T
, show that λ is also an eigenvalue

of A with eigenvector x̃ = (x1, . . . , xk, 0, . . . , 0)
T

.

2. If B and C are positive matrices, show that A has a

positive real eigenvalue r with the property that |λ| < r

for any eigenvalue λ ≠ r. Show also that the multiplicity

of r is at most 2 and that r has a nonnegative

eigenvector.

3. If B = C, show that the eigenvalue r in part (b) has

multiplicity 2 and possesses a positive eigenvector.

10. Prove that a 2 × 2 matrix A is reducible if and only if a12a21 = 0.

11. Prove the Frobenius theorem in the case where A is a 2 × 2
matrix.

12. We can show that, for an n × n stochastic matrix, λ1 = 1 is an

eigenvalue and the remaining eigenvalues must satisfy

(See Exercise 24 of Section 7.4.) Show that if A is an n × n

stochastic matrix with the property that Ak
 is a positive matrix for

some positive integer k, then

13. Let A be an n × n positive stochastic matrix with dominant

eigenvalue λ1 = 1 and linearly independent eigenvectors 

x1, x2, . . . , xn, and let y0 be an initial probability vector for a

Markov chain

y0, y1 = Ay0, y2 = Ay1, . . .

1. Show that λ1 = 1 has a positive eigenvector x1.

2. Show that ||yj||1 = 1, j = 0, 1, . . . .

3. Show that if

y0 = c1x1 + c2x2 + ⋅ ⋅ ⋅ + cnxn

then the component c1 in the direction of the positive

eigenvector x1 must be nonzero.

4. Show that the state vectors yj of the Markov chain

converge to a steady-state vector.

|λj| ≤ 1 j = 2, . . . , n

|λj| < 1 j = 2, . . . , n



5. Show that

c1 =
1

||x1||1

and hence the steady-state vector is independent of the

initial probability vector y0.

14. Would the results of parts (c) and (d) in Exercise 13 be valid if the

stochastic matrix A was not a positive matrix? Answer this same

question in the case when A is a nonnegative stochastic matrix

and, for some positive integer k, the matrix Ak
 is positive. Explain

your answers.

15. A management student received fellowship offers from four

universities and now must choose which one to accept. The

student uses the analytic hierarchy process to decide among the

universities and bases the decision process on the following four

criteria:

1. financial matters—tuition and scholarships

2. the reputation of the university

3. social life at the university

4. geography—how desirable is the location of the

university

In order to weigh the criteria, the student decides that finance and

reputation are equally important and both are 4 times as

important as social life and 6 times as important as geography.

The student also rates social life twice as important as geography.

1. Determine a reciprocal comparison matrix C based on

the given judgments of the relative importance of the

four criteria.

2. Show that the matrix C is not consistent.

3. Make the problem consistent by changing the relative

importance of one pair of criteria and determine a new

comparison matrix C1 for the consistent problem.

4. Find an eigenvector belonging to the dominant

eigenvalue of C1 and use it to determine a weight vector

for the decision criteria.



Chapter 6 Exercises

MATLAB Exercises

Critical Loads for a Beam

1. Consider the application relating to critical loads for a beam from

Section 6.1. For simplicity, we will assume that the beam has

length 1 and that its flexural rigidity is also 1. Following the

method described in the application, if the interval [0, 1] is

partitioned into n subintervals, then the problem can be translated

into a matrix equation Ay = λy. The critical load for the beam

can be approximated by setting P = sn2
, where s is the smallest

eigenvalue of A. For n = 100, 200, 400, form the coefficient

matrix by setting

In each case, determine the smallest eigenvalue of A by setting

s = min(eig(A))

and then compute the corresponding approximation to the critical

load.

Diagonalizable and Defective

Matrices

2. Construct a symmetric matrix A by setting

Compute the eigenvalues of A by setting

e = eig(A)

1. The trace of A can be computed with the MATLAB

command trace(A), and the sum of the eigenvalues of A

D = diag(ones(n − 1, 1), 1);

A = 2 * eye(n) − D − D′;

A = round(5 * rand(6)); A = A + A′



can be computed with the command sum(e). Compute

both of these quantities and compare the results. Use the

command prod(e) to compute the product of the

eigenvalues of A and compare the result with det(A).

2. Compute the eigenvectors of A by setting 

[X, D] = eig(A). Use MATLAB to compute X−1AX

and compare the result with D. Compute also A−1
 and 

XD−1X−1
 and compare the results.

3. Set

A = ones(10) + eye(10)

1. What is the rank of A − I? Why must λ = 1 be an

eigenvalue of multiplicity 9? Compute the trace of A

using the MATLAB function trace. The remaining

eigenvalue λ10 must equal 11. Why? Explain. Compute

the eigenvalues of A by setting e = eig(A). Examine

the eigenvalues, using format long. How many digits of

accuracy are there in the computed eigenvalues?

2. The MATLAB routine for computing eigenvalues is based

on the QR algorithm described in Section 7.6. We can

also compute the eigenvalues of A by computing the

roots of its characteristic polynomial. To determine the

coefficients of the characteristic polynomial of A, set 

p = poly(A). The characteristic polynomial of A

should have integer coefficients. Why? Explain. If we set 

p = round(p), we should end up with the exact

coefficients of the characteristic polynomial of A.

Compute the roots of p by setting

r = roots(p)

and display the results, using format long. How many

digits of accuracy are there in the computed results?

Which method of computing eigenvalues is more

accurate, using the eig function or computing the roots

of the characteristic polynomial?

4. Consider the matrices

Note that the two matrices are the same except for their (2, 2)

entries.

1. Use MATLAB to compute the eigenvalues of A and B. Do

they have the same type of eigenvalues? The eigenvalues

of the matrices are the roots of their characteristic

polynomials. Use the following MATLAB commands to

A = [ ] and B = [ ]
5 −3

3 −5

5 −3

3 5



form the polynomials and plot their graphs on the same

axis system:

The hold on command is used so that subsequent plots

in part (b) will be added to the current figure. How can

you use the graph to estimate the eigenvalues of A? What

does the graph tell you about the eigenvalues of B?

Explain.

2. To see how the eigenvalues change as the (2, 2) entry

changes, let us construct a matrix C with a variable (2, 2)

entry. Set

As t goes from 0 to 10, the (2, 2) entries of these matrices

go from −5 to 5. Use the following MATLAB commands

to plot the graphs of the characteristic polynomials for

the intermediate matrices corresponding to 

t = 1, 2, . . . , 9:

Which of these intermediate matrices have real

eigenvalues and which have complex eigenvalues? The

characteristic polynomial of the symbolic matrix C is a

quadratic polynomial whose coefficients are functions of

t. To find exactly where the eigenvalues change from real

to complex, write the discriminant of the quadratic as a

function of t and then find its roots. One root should be

in the interval (0, 10). Plug that value of t back into the

matrix C and determine the eigenvalues of the matrix.

Explain how these results correspond to your graph.

Solve for the eigenvectors by hand. Is the matrix

diagonalizable?

5. Set

( )

p = poly(A);

q = poly(B);

x = −8 : 0.1 : 8;

z = zeros(size(x));

y = polyval(p, x);

w = polyval(q, x);

plot(x, y, x, w, x, z)

hold on

t = sym(′t′) C = [5, −3; 3, t − 5]

p = poly(C)

for j = 1 : 9

s = subs(p, t, j);

ezplot(s, [−10, 10])

axis([−10, 10, −20, 220])

pause(2)

end



B = toeplitz(0 :  − 1 : − 3, 0 : 3)

The matrix B is not symmetric and hence it is not guaranteed to be

diagonalizable. Use MATLAB to verify that the rank of B equals 2.

Explain why 0 must be an eigenvalue of B and the corresponding

eigenspace must have dimension 2. Set [X, D] = eig(B).

Compute X−1BX and compare the result with D. Compute also 

XD5X−1
 and compare the result with B5

.

6. Set

C = triu(ones(4), 1) + diag([1, −1], −2)

and

[X, D] = eig(C)

Compute X−1CX and compare the result with D. Is C

diagonalizable? Compute the rank of X and the condition number

of X. If the condition number of X is large, the computed values

for the eigenvalues may not be accurate. Compute the reduced row

echelon form of C. Explain why 0 must be an eigenvalue of C and

the corresponding eigenspace must have dimension 1. Use

MATLAB to compute C4
. It should equal the zero matrix. Given

that C4 = O, what can you conclude about the actual values of

the other three eigenvalues of C? Explain. Is C defective? Explain.

7. Construct a defective matrix by setting

It is easily seen that λ = 0 is the only eigenvalue of A and that its

eigenspace is spanned by e1. Verify that this is indeed the case by

using MATLAB to compute the eigenvalues and eigenvectors of A.

Examine the eigenvectors using format long. Are the computed

eigenvectors multiples of e1? Now perform a similarity

transformation on A. Set

If the computations had been done in exact arithmetic, the matrix

B would be similar to A and hence defective. Use MATLAB to

compute the eigenvalues of B and a matrix X consisting of the

eigenvectors of B. Determine the rank of X. Is the computed

matrix B defective? Because of rounding error, a more reasonable

question to ask is whether the computed matrix B is close to being

defective (i.e., are the column vectors of X close to being linearly

dependent?). To answer this question, use MATLAB to compute

rcond(X), the reciprocal of the condition number of X. Avalue of

rcond close to zero indicates that X is nearly rank deficient.

8. Generate a matrix A by setting

A = ones(6); A = A − tril(A) − triu(A, 2)

B = Q′ * A * QQ = orth(rand(6)); and

B = [−1, −1; 1, 1],

A = [zeros(2), eye(2); eye(2), B]



1. The matrix A should have eigenvalues λ1 = 1 and 

λ2 = −1. Use MATLAB to verify that these are the

correct eigenvalues by computing the reduced row

echelon forms of A − I  and A + I. What are the

dimensions of the eigenspaces of λ1 and λ2?

2. It is easily seen that trace(A) = 0 and dat(A) = 1.

Verify these results in MATLAB. Use the values of the

trace and determinant to prove that 1 and −1 are

actually both double eigenvalues. Is A defective? Explain.

3. Set e = eig(A) and examine the eigenvalues using

format long. How many digits of accuracy are there in

the computed eigenvalues? Set [X, D] = eig(A) and

compute the condition number of X. The log of the

condition number gives an estimate of how many digits

of accuracy are lost in the computation of the

eigenvalues of A.

4. Compute the rank of X. Are the computed eigenvectors

linearly independent? Use MATLAB to compute 

X−1AX. Does the computed matrix X diagonalize A?

Application: Sex-Linked Genes

9. Suppose that 10,000 men and 10,000 women settle on an island

in the Pacific that has been opened to development. Suppose also

that a medical study of the settlers finds that 200 of the men are

color blind and only 9 of the women are color blind. Let x(1)

denote the proportion of genes for color blindness in the male

population and let x(2) be the proportion for the female

population. Assume that x(1) is equal to the proportion of color-

blind males and that x(2)
2

 is equal to the proportion of color-

blind females. Determine x(1) and x(2) and enter them in

MATLAB as a column vector x. Enter also the matrix A from

Application 3 of Section 6.3. Set MATLAB to format long, and

use the matrix A to compute the proportions of genes for color

blindness for each sex in generations 5, 10, 20, and 40. What are

the limiting percentages of genes for color blindness for this

population? In the long run, what percentage of males and what

percentage of females will be color blind?

Similarity

10. Set

( * ( ))



1. The exact inverse of S should have integer entries. Why?

Explain. Check the entries of T using format long.

Round the entries of T to the nearest integer by setting 

T = round(T ). Compute T * S and compare with

eye(5).

2. Set

The matrices A and B both have the eigenvalues 1, 2, 3, 4, and 5.

Use MATLAB to compute the eigenvalues of B. How many digits of

accuracy are there in the computed eigenvalues? Use MATLAB to

compute and compare each of the following:

1. det(A) and det(B)

2. trace(A) and trace(B)

3. SA2T  and B2

4. SA−1T  and B−1

Hermitian Matrices

11. Construct a complex Hermitian matrix by setting

1. The eigenvalues of A should be real. Why? Compute the

eigenvalues and examine your results, using format
long. Are the computed eigenvalues real? Compute also

the eigenvectors by setting

[X, D] = eig(A)

What type of matrix would you expect X to be? Use the

MATLAB command X′ * X to compute XHX. Do the

results agree with your expectations?

2. Set

S = round(10 * rand(5));

S = triu(S, 1) + eye(5)

S = S′ * S

T = inv(S)

A = triu(ones(5), 1) + diag(1 : 5),

B = S * A * T

j = sqrt(−1);

A = rand(5) + j * rand(5);

A = (A + A′)/2

E = D + j * eye(5) and B = X * E/X



What type of matrix would you expect B to be? Use

MATLAB to compute BHB and BBH
. How do these

two matrices compare?

Optimization

12. Use the following MATLAB commands to construct a symbolic

function:

Compute the first partials of f and the Hessian of f by setting

We can use the subs command to evaluate the Hessian for any

pair (x, y). For example, to evaluate the Hessian when x = 3 and 

y = 5, set

H1 = subs(H, [x, y], [3, 5])

Use the MATLAB command solve(fx, fy) to determine vectors x

and y containing the x-and y-coordinates of the stationary points.

Evaluate the Hessian at each stationary point and then determine

whether the stationary point is a local maximum, local minimum,

or saddle point.

Positive Definite Matrices

13. Set

C = ones(6) + 7 * eye(6)

and

[X, D] = eig(C)

1. Even though λ = 7 is an eigenvalue of multiplicity 5, the

matrix C cannot be defective. Why? Explain. Check that

C is not defective by computing the rank of X. Compute

also XT X. What type of matrix is X? Explain. Compute

also the rank of C − 7I. What can you conclude about

the dimension of the eigenspace corresponding to λ = 7
? Explain.

2. The matrix C should be symmetric positive definite.

Why? Explain. Thus, C should have a Cholesky

syms x y

f = (y + 1) ∧ 3 + x * y ∧ 2 + y ∧ 2 − 4 * x * y − 4 * y + 1

fx = diff(f, x), fy = diff(f, y)

H = [diff(fx, x), diff(fx, y); diff(fy, x), diff(fy, y)]



factorization LLT
. The MATLAB command 

R = chol(C) will generate an upper triangular matrix

R that is equal to LT
. Compute R in this manner and set 

L = R′. Use MATLAB to verify that

C = LLT = RT R

3. Alternatively, one can determine the Cholesky factors

from the LU factorization of C. Set

[L U ] = lu(C)

and

D = diag(sqrt(diag)(U)))

and

W = (L * D)′

How do R and W compare? This method of computing

the Cholesky factorization is less efficient than the

method MATLAB uses for its Chol function.

14. For various values of k, form an k × k matrix A by setting

In each case, compute the LU factorization of A and the

determinant of A. If A is an n × n matrix of this form, what will

its LU factorization be? What will its determinant be? Why must

the matrix be positive definite?

15. For any positive integer n, the MATLAB command 

P = pascal(n) will generate an n × n matrix P whose entries

are given by

The name pascal refers to Pascal’s triangle, a triangular array of

numbers that is used to generate binomial coefficients. The entries

of the matrix P form a section of Pascal’s triangle.

1. Set

P = pascal(6)

and compute the value of its determinant. Now subtract

1 from the (6, 6) entry of P by setting

P(6, 6) = P(6, 6) − 1

and compute the determinant of the new matrix P. What

is the overall effect of subtracting 1 from the (6, 6) entry

of the 6 × 6 Pascal matrix?

D = diag(ones(k − 1, 1), 1);

A = 2 * eye(k) − D − D′;

pij = {
1

pi−1,j + pi,j−1

if i = 1

if i > 1

or

and

j = 1

j > 1



2. In part (a), we saw that the determinant of the 6 × 6
Pascal matrix is 1, but if we subtract 1 from the (6, 6)

entry, the matrix becomes singular. Will this happen in

general for n × n Pascal matrices? To answer this

question, consider the cases n = 4, 8, 12.

In each case, set P = pascal(n) and compute its

determinant. Next, subtract 1 from the (n, n) entry and

compute the determinant of the resulting matrix. Does

the property that we discovered in part (a) appear to

hold for Pascal matrices in general?

3. Set

P = pascal(8)

and examine its leading principal submatrices. Assuming

that all Pascal matrices have determinants equal to 1,

why must P be positive definite? Compute the upper

triangular Cholesky factor R of P. How can the nonzero

entries of R be generated as a Pascal triangle? In general,

how is the determinant of a positive definite matrix

related to the determinant of one of its Cholesky factors?

Why must det(P) = 1?

4. Set

The matrix Q should be singular. Why? Explain. Why

must the matrices P and Q be the same except for the (8,

8) entry? Why must q88 = p88 − 1? Explain. Verify the

relation between P and Q by computing the difference 

P − Q.

R(8, 8) = 0 and Q = R′ * R



Chapter Test A True or False
In each of the following, answer true if the statement is

always true and false otherwise. In the case of a true

statement, explain or prove your answer. In the case of

a false statement, give an example to show that the

statement is not always true.

1. If A is an n × n matrix whose eigenvalues are all nonzero, then A

is nonsingular.

2. If A is an n × n matrix, then A and AT
 have the same

eigenvectors.

3. If A and B are similar matrices, then they have the same

eigenvalues.

4. If A and B are n × n matrices with the same eigenvalues, then

they are similar.

5. If A has eigenvalues of multiplicity greater than 1, then A must be

defective.

6. If A is a 4 × 4 matrix of rank 3 and λ = 0 is an eigenvalue of

multiplicity 3, then A is diagonalizable.

7. If A is a 4 × 4 matrix of rank 1 and λ = 0 is an eigenvalue of

multiplicity 3, then A is defective.

8. The rank of an n × n matrix A is equal to the number of nonzero

eigenvalues of A, where eigenvalues are counted according to

multiplicity.

9. The rank of an m × n matrix A is equal to the number of nonzero

singular values of A, where singular values are counted according

to multiplicity.

10. If A is Hermitian and c is a complex scalar, then cA is Hermitian.

11. If an n × n matrix A has Schur decomposition A = UTUH
,

then the eigenvalues of A are t11, t22, . . . , tnn.

12. If A is normal, but not Hermitian, then A must have at least one

complex eigenvalue.

13. If A is symmetric positive definite, then A is nonsingular and A−1

is also symmetric positive definite.

14. If A is symmetric and (A) > 0, then A is positive definite.

15. If A is symmetric, then eA
 is symmetric positive definite.



Chapter Test B

1. Let

A =

1. Find the eigenvalues of A.

2. For each eigenvalue, find a basis for the corresponding

eigenspace.

3. Factor A into a product XDX−1
, where D is a diagonal

matrix, and then use the factorization to compute A7
.

2. Let A be a 4 × 4 matrix with real entries that has all 1’s on the

main diagonal (i.e., a11 = a22 = a33 = a44 = 1). If A is

singular and λ1 = 3 + 2i is an eigenvalue of A, then what, if

anything, is it possible to conclude about the values of the

remaining eigenvalues λ2, λ3, and λ4? Explain.

3. Let A be a nonsingular n × n matrix and let λ be an eigenvalue of

A.

1. Show that λ ≠ 0.

2. Show that 
1
λ

 is an eigenvalue of A−1
.

4. Show that if A is a matrix of the form

A =

then A must be defective.

5. Let

A =

1. Without computing the eigenvalues of A, show that A is

positive definite.

2. Factor A into a product LDLT
, where L is unit lower

triangular and D is diagonal.

3. Compute the Cholesky factorization of A.

6. The function

3 2 2

⎡⎢⎣ 1 0 0

1 1 −1

1 2 −2

⎤⎥⎦⎡⎢⎣ a 0 0

0 a 1

0 0 a

⎤⎥⎦⎡⎢⎣ 4 2 2

2 10 10

2 10 14

⎤⎥⎦



f(x, y) = x3y + x2 + y2 − 2x − y + 4

has a stationary point (1, 0). Compute the Hessian of f at (1, 0),

and use it to determine whether the stationary point is a local

maximum, local minimum, or saddle point.

7. Given

= Y0

where

compute etA
 and use it to solve the initial value problem.

8. Let A be a 4 × 4 real symmetric matrix with eigenvalues

1. Explain why the multiple eigenvalue λ = 0 must have

three linearly independent eigenvectors x2, x3, x4.

2. Let x1 be an eigenvector belonging to λ1. How is x1

related to x2, x3, and x4? Explain.

3. Explain how to use x1, x2, x3, and x4 to construct an

orthogonal matrix U that diagonalizes A.

4. What type of matrix is eA
? Is it symmetric? Is it positive

definite? Explain your answers.

9. Let {u1, u2} be an orthonormal basis for C
2

 and suppose that a

vector z can be written as a linear combination

z = (5 − 7i)u1 + c2u2

1. What are the values of uH
1 z and zHu1? If 

zHu2 = 1 + 5i, determine the value of c2.

2. Use the results from part (a) to determine the value of 

||z||2.

10. Let A be a 5 × 5 nonsymmetric matrix with rank equal to 3, let 

B = AT A, and let C = eB
.

1. What, if anything, can you conclude about the nature of

the eigenvalues of B? Explain. What words best describe

the type of matrix that B is?

2. What, if anything, can you conclude about the nature of

the eigenvalues of C? Explain. What words best describe

the type of matrix that C is?

11. Let A and B be n × n matrices.

Y′(t) = AY(t) Y(0)

A = [ ] Y0 = [ ]
1 −2

3 −4

1

2

λ1 = 1, λ2 = λ3 = λ4 = 0



1. If A is real and nonsymmetric with Schur decomposition 

UTUH
, then what types of matrices are U and T? How

are the eigenvalues of A related to U and T? Explain your

answers.

2. If B is Hermitian with Schur decomposition WSWH
,

then what types of matrices are W and S? How are the

eigenvalues and eigenvectors of B related to W and S?

Explain your answers.

12. Let A be a matrix whose singular value decomposition is given by

Make use of the singular value decomposition to do each of the

following:

1. Determine the rank of A.

2. Find an orthonormal basis for R(A).

3. Find an orthonormal basis for N(A).

4. Find the matrix B that is the closest matrix of rank 1 to A.

(The distance between matrices is measured using the

Frobenius norm.)

5. Let B be the matrix asked for in part (d). Use the singular

values of A to determine the distance between A and B

(i.e., use the singular values of A to determine the value

of ||B − A||F ).

⎡⎢⎣ 2
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− 2
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− 2
5

− 2
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3
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Chapter 7 Numerical Linear

Algebra

Full Alternative Text

In this chapter, we consider computer methods for

solving linear algebra problems. To understand these

methods, you should be familiar with the type of number

system used by the computer. When data are read into

the computer, they are translated into its finite number

system. This translation will usually involve some

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_co-007.xhtml#la_co-007


roundoff error. Additional rounding errors will occur

when the algebraic operations of the algorithm are

carried out. Because of rounding errors, we cannot

expect to get the exact solution to the original problem.

The best we can hope for is a good approximation to a

slightly perturbed problem. Suppose, for example, that

we wanted to solve Ax = b. When the entries of A and

b are read into the computer, rounding errors will

generally occur. Thus, the program will actually be

attempting to compute a good approximation to the

solution of a perturbed system of the form

(A + E)x = b + e

where the entries of E and e are all very small. An

algorithm is said to be stable if it will produce a good

approximation to the exact solution to a slightly

perturbed problem. Algorithms that ordinarily would

converge to the solution in exact arithmetic could very

well fail to be stable, owing to the growth of error in the

algebraic processes.

Even with a stable algorithm, we may encounter

problems that are highly sensitive to perturbations. For

example, if A is “nearly singular,” the exact solutions of 

Ax = b and (A + E)x = b may vary greatly, even

though all the entries of E are small. The major part of

this chapter is devoted to numerical methods for solving

linear systems. We will pay particular attention to the

growth of error and to the sensitivity of systems to small

changes.

Another problem that is very important in numerical

applications is the problem of finding the eigenvalues of

a matrix. Two iterative methods for computing

eigenvalues are presented in Section 7.6. The second of

these methods is the powerful QR algorithm, which

makes use of the special types of orthogonal

transformations presented in Section 7.5.



In Section 7.7, we will look at numerical methods for

solving least squares problems. In the case where the

coefficient matrix is rank deficient, we will make use of

the singular value decomposition to find the particular

least squares solution that has the smallest 2-norm. The

Golub–Reinsch algorithm for computing the singular

value decomposition will also be presented in this

section.



7.1 Floating-Point Numbers
In solving a numerical problem on a computer, we do not

usually expect to get the exact answer. Some amount of

error is inevitable. Rounding errors may occur initially

when the data are represented in the finite number

system of the computer. Further rounding errors may

occur whenever arithmetic operations are used. In some

cases, it is possible to have a catastrophic loss of digits of

accuracy or a more subtle growth of error as the

algorithmic proceeds. In either of these cases, one could

end up with a completely unreliable computed solution.

To avoid this, we must understand how computational

errors occur. To do that, we must be familiar with the

type of numbers used by the computer.

Definition
A floating-point number in base β is a number of the

form

±(
d1

β
+

d2

β2
+ ⋅ ⋅ ⋅ +

dt

βt
) × βe

where t, d1, d2, … , dt,β, and e are all integers and

The integer t refers to the number of digits and this

depends on the word length of the computer. The

exponent e is restricted to be within certain bounds, 

L ≤ e ≤ U , which also depend on the particular

computer. Commonly, computers use a standard base 2

representation for floating-point numbers. This standard

representation was established by the Institute for

Electrical and Electronics Engineers (IEEE). We will

0 ≤ di ≤ β − 1 i = 1, … , t



discuss the IEEE 754 standard floating-point

representation in more detail at the end of this section.

This representation is used in major software packages

such as MATLAB.

Example 1
The following are five-digit decimal (base 10) floating-

point numbers:

Note that the numbers 0.00112 × 108
 and 

0.11200 × 106
 are equal. Thus, the floating-point

representation of a number need not be unique.

Floating-point numbers that are written with no leading

zeros are said to be normalized. For nonzero base-2

floating-point numbers, the lead digit will always be a 1.

Thus, if the number is normalized, we can represent in

the form

1.b1b2 ⋅ ⋅ ⋅ bt × 2e

This form allows us to represent a normalized t + 1 digit

number while only storing t digits in memory.

Example 2
(0.236)8 × 82

 and (1.01011)2 × 24
 are normalized

floating-point numbers. Here, (0.236)8 represents

2

8
+

3

82
+

6

83

Hence, (0.236)8 × 82
 is the base 8 floating-point

representation of the decimal number 19.75. Similarly,

0.53216 × 10−4

−0.81724 × 1021

0.00112 × 108

0.11200 × 106



(1.01011)2 × 24 = (1 +
1

22
+

1

24
+

1

25
) × 24

is a normalized base 2 representation of the decimal

number 21.5.

To better understand the type of number systems that we

are working with, it may help to look at a very simple

example.

Example 3
Suppose that t = 1, L = −1, U = 1, and β = 10.

There are altogether 55 one-digit floating-point numbers

in this system. These are

Although all these numbers lie in the interval [−9, 9],
over one-third of the numbers have absolute value less

than 0.1 and over two-thirds have absolute value less

than 1. Figure 7.1.1 illustrates how the floating-point

numbers in the interval [0, 2] are distributed.

Figure 7.1.1.

Figure 7.1.1. Full Alternative Text

Most real numbers have to be rounded off in order to be

represented as t-digit floating-point numbers. The

difference between the floating-point number x′ and the

original number x is called the roundoff error. The size

of the roundoff error is perhaps more meaningful when it

is compared with the size of the original number. Table

0, ±0.1 × 10−1, ±0.2 × 10−1, … , ±0.9 × 10−1

±0.1 × 100, ±0.2 × 100, … , ±0.9 × 100

±0.1 × 101, ±0.2 × 101, … , ±0.9 × 101
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7.1.1 illustrates the absolute and relative errors when real

numbers are approximated by 4-digit decimal floating

point numbers.

Table 7.1.1 Rounding Errors

for 4-Digit Decimal Floating-

Point Numbers

Real Number

x

4-digit Decimal

Representation x′

Absolute Error

x′ − x

Relative Error

(x′ − x)/x

6

2

,1

3

3

0.6213 × 105 −3
−3

62, 133
≈ −4.8 × 10−5

0

.1

2

6

5

8

0.1266 × 100 2 × 10−5 1
6329

≈ 1.6 × 10−4

4

7

.

2

1

3

0.4721 × 102 −3.0 × 10−3 −0.003
47.213

≈ −6.4 × 10−5

π 0.3142 × 101 3.142 − π ≈ 4 × 10−4 3.142 − π
π ≈ 1.3 × 10−4

Definition
If x is a real number and x′ is its floating-point

approximation, then the difference x′ − x is called the



absolute error and the quotient (x′ − x)/x is called

the relative error.

Modern computers commonly use base 2 floating-point

numbers. When a decimal number is converted to a base

2 floating-point number, some rounding may occur. The

following example illustrates how to convert a decimal

number into a base 2 floating-point number.

Example 4
Consider the problem of representing the decimal

number 11.31 as a 10-digit base 2 floating-point number.

It is easy to see how to represent the integer part of the

number as a base 2 number. Since 11 = 23 + 21 + 20
,

it follows that its base 2 representation is (1011)2. Now,

we need to represent the fractional part m = 0.31 as a

base 2 number (0.b1b2b3b4b5b6)2. Since m is less than 

1
2 , the digit b1 must be 0. Note that 

2m = 2 × 0.31 = 0.62 so that b1 equals the integer

part of 0.62. To determine b2, we double 0.62 and set b2

equal to the integer part of 1.24. Thus, b2 = 1. Next, we

double the fractional part of the resulting 1.24. Since 

2 × 0.24 = 0.48, we set b3 = 0. Continuing in this

manner, we get

Since 1.84 is not an integer, we cannot represent 0.31

exactly as a 6-digit base 2 number. If we were to compute

one more digit b7, it would be a 1. In the case where the

next digit would be a 1, we round up. Thus instead of 

(.010011)2, we end up with (.010100)2. It follows that

the 10-digit base 2 representation of 11.31 is 

(1011.010100)2. The normalized base 2 floating-point

representation is (1.011010100)2 × 23
.

2 × 0.48 = 0.96 b4 = 0

2 × 0.96 = 1.92 b5 = 1

2 × 0.92 = 1.84 b6 = 1



The absolute error in approximating 11.31 by its 10-digit

base 2 floating-point representation is 0.0025 and the

relative error is approximately 2.2 × 10−4
.

When arithmetic operations are applied to floating-point

numbers, additional roundoff errors may occur.

Example 5
Let a′ = 0.263 × 104

 and b′ = 0.466 × 101
 be three-

digit decimal floating-point numbers. If these numbers

are added, the exact sum will be

a′ + b′ = 0.263446 × 104

However, the floating-point representation of this sum is

0.263 × 104
. This then should be the computed sum.

We will denote the floating-point sum by fl(a′ + b′).

The absolute error in the sum is

fl(a′ + b′) − (a′ + b′) = −4.46

and the relative error is

−4.46

0.26344 × 104
≈ −0.17 × 10−2

The actual value of a′ b′ is 11,729.8; however, fl(a′b′) is 

0.117 × 105
. The absolute error in the product is 

−29.8 and the relative error is approximately 

−0.25 × 10−2
. Floating-point subtraction and division

can be done in a similar manner.

The relative error in approximating a number x by its

floating-point representation x′ is usually denoted by the

symbol δ. Thus,

(1)

δ = x′ − x
x or x′ = x(1 + δ)



|δ| can be bounded by a positive constant ∈, called the

machine precision or the machine epsilon. The machine

epsilon is defined to be the smallest floating-point

number ∈ for which

fl(1+ ∈) > 1

For example, if the computer uses three-digit decimal

floating-point numbers, then

fl(1 + 0.499 × 10−2) = 1

while

fl(1 + 0.500 × 10−2) = 1.01

Therefore, the machine epsilon would be 0.500 × 10−2
.

More generally, for t-digit base β floating-point

arithmetic, the machine epsilon is 
1
2 β

−t+1
. In

particular, for t-digit base 2 arithmetic, the machine

epsilon is

∈=
1

2
× 2−t+1 = 2−t

It follows from (1) that if a′ and b′ are two floating-point

numbers, then

The δi’s are relative errors and will all have absolute

values less than ∈. Note in Example 5 that 

δ1 ≈ −0.17 × 10−2
, δ2 ≈ −0.25 × 10−2

, and 

∈= 0.5 × 10−2
.

If the numbers you are working with involve some slight

errors, arithmetic operations may compound these

errors. If two numbers agree to k decimal places and one

number is subtracted from the other, there will be a loss

of significant digits in your answer. In this case, the

fl(a′ + b′) = (a′ + b′)(1 + δ1)

fl(a′b′) = (a′b′)(1 + δ2)

fl(a′ − b′) = (a′ − b′)(1 + δ3)

fl(a′ ÷ b′) = (a′ ÷ b′)(1 + δ4)



relative error in the difference will be many times as

great as the relative error in either of the numbers.

Example 6
Let c = 3.4215298 and d = 3.4213851. Calculate c−d

using six-digit decimal floating-point arithmetic.

SOLUTION

1. The first step is to represent c and d by six-digit decimal floating-

point numbers.

The relative errors in c and d are, respectively,

2. fl(c′ − d′) = c′ − d′ = 0.140000 × 10−3
. The actual value of

c − d is 0.1447 × 10−3
. The absolute and relative errors in

approximating c − d by fl(c′ − d′) are, respectively,

fl(c′ − d′) − (c − d) = −0.47 × 10−5

and

fl(c′ − d′) − (c − d)

c − d
≈ −3.2 × 10−2

Note that the magnitude of the relative error in the difference is

more than 104
 times the relative error in either c or d.

Example 6 illustrates the loss of accuracy when

subtraction is performed with two numbers that are close

together. The floating-point representations of c and d in

the example were accurate to six digits; however, we lost

four digits of accuracy when the difference c − d was

computed.

c′ = 0.342153 × 101

d′ = 0.342139 × 101

d′ − d
d

≈ 1.4 × 10−6c′ − c
c ≈ 0.6 × 10−7 and



The IEEE Standard 754

Floating-Point Representation
The standard IEEE single-precision format represents a

floating-point number using a sequence of 32 bits:

b1b2 ⋅ ⋅ ⋅ b9b10 ⋅ ⋅ ⋅ b31b32

where each bit bj is either a 0 or a 1. The first bit b1 is

used to determine the sign of the floating-point number,

bits b2 through b9 are used to determine the exponent of

the base β = 2, and the remaining bits are used to

determine the fractional part of the normalized mantissa.

The base 2 number (b2b3 ⋅ ⋅ ⋅ b9)2 represents an integer

e in the range 0 ≤ e ≤ 255. This number e is not used

as the exponent for the floating-point number since it is

always nonnegative. Instead, to allow for negative

powers of 2, the number k = e − 127 is used. This

value yields exponents in the range from −127 to 128. If

we set s = b1 and let m be the base 2 number 

b10b11 ⋅ ⋅ ⋅ b32, then the normalized floating number x

represented by the bit sequence b1b2 ⋅ ⋅ ⋅ b32 is given by

x = (−1)
s

× (1.m)2 × 2k

Example 7
Determine the IEEE single-precision floating-point

number represented by the sequence of bits

01000001100011000000000000000000.

SOLUTION

Since the first bit is 0, the number will have a positive

sign. The next 8 bits are used to determine the exponent.

If one sets

e = (100011)2 = 20 + 21 + 27 = 131



then the exponent will be k = e − 127 = 4. It follows

that the floating-point number corresponding to the

given bit sequence is (1.0001100 … 0)2 × 24
, which is

equal to

(1 +
1

24
+

1

25
) × 24 = 17.5

The standard IEEE double-precision format represents a

floating-point number using a sequence of 64 bits:

b1b2 ⋅ ⋅ ⋅ b12b13 ⋅ ⋅ ⋅ b63b64

As before, the sign of the number is determined by the

first bit b1. The exponent is determined by the bits 

b2, b3, … b12. In this case, if e is the integer with base 2

representation (b2, b3, ⋅ ⋅ ⋅b12)2, then the exponent of

the base β = 2 will be the shifted value k = e − 1023.

The remaining 52 bits, b13, … , b64, are used to

determine m, the fractional part of the mantissa. Thus

for double precision, the normalized floating-point

representation is of the form

x = (−1)s × (1.m)2 × 2k

For IEEE arithmetic double-precision, t = 52 and hence

the machine epsilon is

∈= 2−52 ≈ 2.22 × 10−16

So double-precision floating-point representations of

decimal numbers should be accurate to about 16 decimal

digits. The software package MATLAB represents

floating-point numbers using either an IEEE double-

precision or single-precision format. The default is

double precision. When the command eps is entered in

MATLAB, a decimal representation of 2−52
 is returned.

Loss of Accuracy and

Instability



In the remaining sections of this chapter, we consider

numerical algorithms for solving linear systems, least

squares problems, and eigenvalue problems. The

previous methods we have learned in Chapters 1–6 for

solving these problems work when exact arithmetic is

used; however, they may not yield accurate answers

when the computations are carried out using finite-

precision arithmetic (i.e., the algorithms may be

unstable). In designing stable algorithms, one should try

to avoid losing digits of accuracy. Digits of accuracy may

be lost when subtractions are performed using two

numbers that are close together, as we saw in Example 6.

In this case, we say that the resulting instabilities are due

to catastrophic cancellation of digits. Consider, for

example, the problem of computing the roots to a

quadratic equation:

ax2 + bx + c = 0

If exact arithmetic is used, the roots are usually

computed using the quadratic formula

x =
−b ± √b2 − 4ac

2a

(2)

If we use equation (2) for floating-point arithmetic and

the value of |b| is far greater than the value of |4ac|, then

for one of the roots we could expect to get cancellation of

digits of accuracy. To avoid this, we first find the root r1

for which there is no cancellation of significant digits. To

do this, we set

s = {

and compute

r1 =
−b − s√b2 − 4ac

2a

(3)

If r2 is the other root, then we can factor ax2 + bx + c:

2

1 if b ≥ 0

−1 if b < 0



ax2 + bx + c = a(x − r1)(x − r2)

Equating the constant terms in this equation, we see that

c = ar1r2. We can find the second root by simply

setting

r2 =
c

ar1

(4)

Example 8
If a = 1, b = −(107 + 10−7), and c = 1, then the

quadratic polynomial ax2 + bx + c factors as

x2 − (107 + 10−7)x+1 = (x − 107)(x − 10−7)

and the exact roots are r1 = 107
 and r2 = 10−7

. The

roots were computed using MATLAB with standard IEEE

double-precision arithmetic in two ways. First, we

calculated the roots using the quadratic formula from

equation (2). MATLAB returned the following values for

the computed roots:

Next, we used equations (3) and (4) to compute the

roots. This time MATLAB returned the correct answers

An algorithm may fail to be numerically stable due to

catastrophic cancellation or to the build-up of roundoff

error in the algebraic processes. As was illustrated in

Example 8, there are often simple precautions one can

take to avoid catastrophic cancellation (see Exercise 10 at

the end of this section).

There are also precautions one can take to avoid the

build-up of roundoff error in an algorithm. The Gaussian

elimination method introduced in Chapter 1 for solving

linear systems could be unstable due to the build-up of

r2 = 9.965151548385620e − 008r1 = 10000000 and

r2 = 1.000000000000000e − 007r1 = 10000000 and



roundoff unless care is taken in the choice of the row

operations that are used. In Section 7.3, we will learn a

strategy for interchanging rows in the elimination

process that is commonly used in order to guarantee

numerical stability of the algorithm. In Chapter 6, we

learned to compute the eigenvalues of a matrix by

finding the roots of its characteristic polynomial. This

method does not work well when finite-precision

arithmetic is used. Small errors in the coefficients or

rounding errors in arithmetic computations could result

in significant changes in the computed roots. In Section

7.6, we will learn alternative methods for computing

eigenvalues and eigenvectors that are numerically stable.

In Chapter 5, we learned to solve least squares problems

using the normal equations and a QR factorization

derived from the classical Gram–Schmidt process.

Neither of these methods is guaranteed to give accurate

solutions when carried out in finite-precision arithmetic.

In Section 7.7, we will present some alternative

numerically stable methods for solving least squares

problems.



Section 7.1 Exercises

1. Find the three-digit decimal floating-point representation of each

of the following numbers:

1. 2312

2. 32.56

3. 0.01277

4. 82,431

2. Find the absolute error and the relative error when each of the real

numbers in Exercise 1 is approximated by a three-digit decimal

floating-point number.

3. Represent each of the following numbers as normalized base 2

floating-point numbers using four digits to represent the fractional

part of the mantissa; that is, represent the numbers in the form 

±(1.b1b2b3b4)2 × 2k
.

1. 21

2. 
3
8

3. 9.872

4. −0.1

4. Use four-digit decimal floating-point arithmetic to do each of the

following and calculate the absolute and relative errors in your

answers:

1. 10, 420 + 0.0018

2. 10, 424 − 10, 416

3. 0.12347 − 0.12342

4. (3626.6) ⋅ (22.656)

5. Let x1 = 94, 210, x2 = 8631, x3 = 1440, x4 = 133, and 

x5 = 34. Calculate each of the following, using four-digit decimal

floating-point arithmetic:

1. (((x1 + x2) + x3) + x4) + x5

2. x1 + ((x2 + x3) + (x4 + x5))

3. (((x5 + x4) + x3) + x2) + x1



6. What would the machine epsilon be for a computer that uses 16-

digit base 10 floating-point arithmetic?

7. What would the machine epsilon be for a computer that uses 36-

digit base 2 floating-point arithmetic?

8. How many floating-point numbers are there in the system if t = 2
, L = −2, U = 2, and β = 2?

9. In each of the following, you are given a bit sequence

corresponding to the IEEE single-precision representation of a

floating-point number. In each case, determine the base 2

floating-point representation of the number and also the base 10

decimal representation of the number.

1. 01000001000110100000000000000000

2. 10111100010110000000000000000000

3. 11000100010010000000000000000000

10. When the following functions are evaluated at values of x that are

close to 0, there will be a loss of significant digits of accuracy. For

each function, (i) use identities or Taylor series approximations to

find an alternative representation of the function that avoids

cancellation of significant digits, (ii) use a hand calculator or

computer to evaluate the function by plugging in the value 

x = 10−8
 and also evaluate the alternative representation of the

function at the point x = 10−8
.

1. f(x) = 1 − cos x
sin x

2. f(x) = ex − 1

3. f(x) = sec x − cos x

4. f(x) = sin x
x − 1



7.2 Gaussian Elimination
In this section, we discuss the problem of solving a

system of n linear equations in n unknowns. Gaussian

elimination is generally considered to be the most

efficient computational method, since it involves the

least amount of arithmetic operations. If the coefficient

matrix A is nonsingular, then the reduction to strict

triangular form can be carried out using only row

operations I and III. The algorithm is much simpler if we

do not have to interchange rows and can do all of the

eliminations using only row operation III. For simplicity,

we will consider this first, although it should be pointed

out that, in general, it is necessary to interchange rows to

achieve numerical stability. The more general

elimination algorithm that incorporates row

interchanges will be covered in the next section of the

book.

Gaussian Elimination without

Interchanges

Let A = A(1) = (a
(1)
ij ) be a nonsingular matrix. Then

A can be reduced to strict triangular form using row

operations I and III. For simplicity, let us assume that

the reduction can be done by using only row operation

III. Initially, we have



7.3-2 Full Alternative Text

1. Step 1. Let lk1 = a
(1)
k1 /a

(1)
11  for k = 2, … , n [by our assumption, 

a
(1)
11 ≠ 0]. The first step of the elimination process is to apply row

operation III n − 1 times to eliminate the entries below the

diagonal in the first column of A. Note that lk1 is the multiple of

the first row that is to be subtracted from the kth row. The new

matrix obtained will be

A(2) =

where

The first step of the elimination process requires n − 1 divisions, 

(n − 1)2
 multiplications, and (n − 1)2

 additions/subtractions.

2. Step 2. If a
(2)
22 ≠ 0, then it can be used as a pivot element to

eliminate a
(2)
32 , … , a

(2)
n2 . For k = 3, … , n, set

lk2 =
a

(2)
k2

a
(2)
22

and subtract lk2 times the second row of A(2)
 from the kth row.

The new matrix obtained will be

⎡⎢⎣ a
(1)
11 a

(1)
12 ⋅ ⋅ ⋅ a

(1)
1n

0 a
(2)
22 ⋅ ⋅ ⋅ a

(2)
2n

⋮

0 a
(2)
n2 ⋅ ⋅ ⋅ a

(2)
nn

⎤⎥⎦a
(2)
kj

= a
(1)
kj

− lk1a
(1)
1j (2 ≤ k ≤ n, 2 ≤ j ≤ n)
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A(3) =

The second step requires n − 2 divisions, (n − 2)2

multiplications, and (n − 2)2
 additions/subtractions.

If we continue this process, then after n − 1 steps, we

will end up with a strictly triangular matrix U = A(n)
.

The operation count for the entire process can be

determined as follows:

Divisions: 

(n − 1) + (n − 2) + ⋅ ⋅ ⋅ + 1 =
n(n − 1)

2

Multiplications: 

(n − 1)2 + (n − 2)2 + ⋅ ⋅ ⋅ + 12 =
n(2n − 1)(n − 1)

6

Additions and/or subtractions: 

(n − 1)2 + ⋅ ⋅ ⋅ + 12 =
n(2n − 1)(n − 1)

6

The elimination process is summarized in the following

algorithm.

Algorithm 7.2.1 Gaussian Elimination without

Interchanges

⎡⎢⎣ a
(1)
11 a

(1)
12 a

(1)
13 … a

(1)
1n

0 a
(2)
22 a

(2)
23 … a

(2)
2n

0 0 a
(3)
33 … a

(3)
3n

⋮ ⋮ ⋮ ⋮

0 0 a
(3)
n3 … a

(3)
nn

⎤⎥⎦



7.3-3 Full Alternative Text

To solve the system Ax = b, we could augment A by b.

Thus, b would be stored in an extra column of A. The

reduction process could then be done by using Algorithm

7.2.1 and letting j run from i + 1 to n + 1 instead of

from i + 1 to n. The triangular system could then be

solved by back substitution.
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Using the Triangular

Factorization to Solve 

Ax = b
Most of the work involved in solving a system Ax = b

occurs in the reduction of A to strict triangular form.

Suppose that, after having solved Ax = b, we want to

solve another system, Ax = b1. We know the triangular

form U from the first system, and consequently, we

would like to be able to solve the new system without

having to go through the entire reduction process again.

We can do this if we make use of the LU factorization

discussed in Section 1.5. The matrix L is a lower

triangular matrix whose diagonal entries are all equal to

1. The subdiagonal entries of L are the numbers lki used

in Algorithm 7.2.1. These numbers are referred to as

multipliers since lki is the multiple of the ith row that is

subtracted from the kth row during the ith step of the

reduction process. The matrix U is the upper triangular

matrix obtained from the elimination process. To review

how the factorization works, we consider the following

example.

Example 1
Let

A =

The elimination can be carried out in two steps:

1
→

2
→

⎡⎢⎣ 2 3 1
4 1 4
3 4 6

⎤⎥⎦⎡⎢⎣ 2 3 1
4 1 4
3 4 6

⎤⎥⎦ ⎡⎢⎣ 2 3 1
0 −5 2

0 − 1
2

9
2

⎤⎥⎦ ⎡⎢⎣ 2 3 1
0 −5 2
0 0 4.3

⎤⎥⎦



The multipliers for step 1 were l21 = 2 and l31 = 3
2  and

the multiplier for step 2 was l32 = 1
10 . Let

L = =

and

U =

The reader may verify that LU = A.

Once A has been reduced to triangular form and the

factorization LU has been determined, the system 

Ax = b can be solved in two steps.

1. Step 1. Forward Substitution. The system Ax = b can be written

in the form

LUx = b

Let y = Ux. It follows that

Ly = LUx = b

Thus, we can find y by solving the lower triangular system:

It follows from the first equation that y1 = b1. This value can be

used in the second equation to solve for y2. The values of y1 and 

y2 can be used in the third equation to solve for y3, and so on.

This method of solving a lower triangular system is called forward

substitution.

2. Step 2. Back Substitution. Once y has been determined, we need

only solve the upper triangular system Ux = y to find the

solution x of the system. The upper triangular system is solved by

back substitution.

Example 2

⎡⎢⎣ 1 0 0
l21 1 0
l31 l32 1

⎤⎥⎦ ⎡⎢⎣ 1 0 0
2 1 0
3
2

1
10 1

⎤⎥⎦⎡⎢⎣ 2 3 1
0 −5 2
0 0 4.3

⎤⎥⎦y1 = b1

l21y1 + y2 = b2

l31y1 + l32y2 + y3 = b3

⋮
ln1y1 + ln2y2 + ln3y3 + ⋅ ⋅ ⋅ + yn = bn



Solve the system

SOLUTION

The coefficient matrix for this system is the matrix A in

Example 1. Since L and U have been determined, the

system can be solved by forward and back substitution.

The solution of the system is x = (2, −3, 1)T
.

Algorithm 7.2.2 Forward and Back Substitution

2x1 + 3x2 + x3 = −4
4x1 + x2 + 4x3 = 9
3x1 + 4x2 + 6x3 = 0

⎡⎢⎣ 1 0 0
2 1 0
3
2

1
10 1∣−4

9
0

⎤⎥⎦ y1 = −4
y2 = 9 − 2y1 = 17

y3 = 0 − 3
2 y1 − 1

10 y2 = 4.3

⎡⎢⎣ 2 3 1
0 −5 2
0 0 4.3∣−4

17
4.3

⎤⎥⎦ 2x1 + 3x2 + x3 = −4 x1 = 2
−5x2 + 2x3 = 17 x2 = −3

4.3x3 = 4.3 x3 = 1



7.3-4 Full Alternative Text

Operation Count
Algorithm 7.2.2 requires n divisions, n(n − 1)
multiplications, and n(n − 1) additions/subtractions.

The total operation count for solving a system Ax = b

using Algorithms 7.2.1 and 7.2.2 is then

Multiplications/divisions: 1
3 n3 + n2 − 1

3 n

Additions/subtractions: 1
3 n3 + 1

2 n2 − 5
6 n
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In both cases, 
1
3 n3

 is the dominant term. We will say

that solving a system by Gaussian elimination involves

roughly 
1
3 n3

 multiplications/divisions and 
1
3 n3

additions/subtractions.

Algorithm 7.2.1 breaks down if, at any step, a
(k)
kk

 is 0. If

this happens, it is necessary to perform row

interchanges. In the next section, we will see how to

incorporate interchanges into our elimination algorithm.



Section 7.2 Exercises

1. Let

A =

Factor A into a product LU, where L is lower triangular with 1’s

along the diagonal and U is upper triangular.

2. Let A be the matrix in Exercise 1. Use the LU factorization of A to

solve Ax = b for each of the following choices of b:

1. (4, 3, −13)T

2. (3, 1, −10)T

3. (7, 23, 0)T

3. Let A and B be n × n matrices and let x ∈ R
n

.

1. How many scalar additions and multiplications are

necessary to compute the product Ax?

2. How many scalar additions and multiplications are

necessary to compute the product AB?

3. How many scalar additions and multiplications are

necessary to compute (AB)x? To compute A(Bx)?

4. Let A ∈ R
m×n,B ∈ R

n×r
, and x, y ∈ R

n
. Suppose that the

product AxyT B is computed in the following ways:

1. (A(xyT))B

2. (Ax)(yTB)

3. ((Ax)yT)B

1. How many scalar additions and multiplications are

necessary for each of these computations?

2. Compare the number of scalar additions and

multiplications for each of the three methods when 

m = 5,n = 4, and r = 3. Which method is most

efficient in this case?

⎡⎢⎣ 1 1 1
2 4 1

−3 1 −1

⎤⎥⎦



5. Let Eki be the elementary matrix formed by subtracting α times

the ith row of the identity matrix from the kth row.

1. Show that Eki = I − αekeT
i .

2. Let Eji = I − βeje
T
i . Show that 

EjiEki = I − (αek + βej)eT
i .

3. Show that E−1
ki = I + αekeT

i .

6. Let A be an n × n matrix with triangular factorization LU. Show

that

det(A) = u11u22 ⋅ ⋅ ⋅ unn

7. If A is a symmetric n × n matrix with triangular factorization LU,

then A can be factored further into a product LDLT
 (where D is

diagonal). Devise an algorithm, similar to Algorithm 7.2.2, for

solving LDLTx = b.

8. Write an algorithm for solving the tridiagonal system

=

by Gaussian elimination with the diagonal elements as pivots.

How many additions/subtractions and multiplications/divisions

are necessary?

9. Let A = LU , where L is lower triangular with 1’s on the diagonal

and U is upper triangular.

1. How many scalar additions and multiplications are

necessary to solve Ly = ej by forward substitution?

2. How many additions/subtractions and

multiplications/divisions are necessary to solve 

Ax = ej? The solution xj of Ax = ej will be the jth

column of A−1
.

3. Given the factorization A = LU , how many additional

multiplications/divisions and additions/ subtractions

are needed to compute A−1
?

10. Suppose that A−1
 and the LU factorization of A have already been

determined. How many scalar additions and multiplications are

necessary to compute A−1b? Compare this number with the

number of operations required to solve LUx = b using Algorithm

7.2.2. Suppose that we have a number of systems to solve with the

⎡⎢⎣ a1 b1

⋱
c1 a2

⋱

⋱ an−1 bn−1

cn−1 an

⎤⎥⎦ ⎡⎢⎣ x1

x2

⋮
xn−1

xn

⎤⎥⎦ ⎡⎢⎣ d1

d2

⋮
dn−1

dn

⎤⎥⎦



same coefficient matrix A. Is it worthwhile to compute A−1
?

Explain.

11. Let A be a 3 × 3 matrix and assume that A can be transformed

into a lower triangular matrix L by using only column operations

of type III; that is,

AE1E2E3 = L

where E1,E2,E3 are elementary matrices of type III. Let

U = (E1E2E3)−1

Show that U is upper triangular with 1’s on the diagonal and 

A = LU . (This exercise illustrates a column version of Gaussian

elimination.)



7.3 Pivoting Strategies
In this section, we present an algorithm for Gaussian

elimination with row interchanges. At each step of the

algorithm, it will be necessary to choose a pivotal row.

We can often avoid unnecessarily large error

accumulations by choosing the pivotal rows in a

reasonable manner.

Gaussian Elimination with

Interchanges
Consider the following example.

Example 1
Let

A =

We wish to reduce A to triangular form by using row

operations I and III. To keep track of the interchanges,

we will use a row vector p. The coordinates of p will be

denoted by p(1), p(2), and p(3). Initially, we set 

p = (1, 2, 3). Suppose that, at the first step of the

reduction process, the third row is chosen as the pivotal

row. Then instead of interchanging the first and third

rows, we will interchange the first and third entries of p.

Setting p(1) = 3 and p(3) = 1, the vector p becomes 

(3, 2, 1). The vector p is used to keep track of the

reordering of the rows. We can think of p as a

renumbering of the rows. The actual physical reordering

⎡⎢⎣ 6 −4 2

4 2 1

2 −1 1

⎤⎥⎦



of the rows can be deferred until the end of the reduction

process.

7.5-5 Full Alternative Text

If, at the second step, row p(3) is chosen as the pivotal

row, the entries of p(3) and p(2) are switched. The final

step of the elimination process is then carried out as

follows:

7.5-6 Full Alternative Text

If the rows are reordered in the order 

(p(1), p(2), p(3)) = (3, 1, 2), the resulting matrix will

be in strict triangular form:

Had the rows been written in the order (3, 1, 2) to begin

with, the reduction would have been exactly the same,

p(1) = 3

p(2) = 1

p(3) = 2

⎡⎢⎣ 2 −1 1

0 −1 −1

0 0 −5

⎤⎥⎦
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except that there would have been no need for

interchanges. Reordering the rows of A in the order (3, 1,

2) is the same as premultiplying A by the permutation

matrix:

P =

Let us perform the reduction on A and PA

simultaneously and compare the results. The multipliers

used in the reduction process were 3, 2, and −4. These

will be stored in the places of the terms eliminated and

enclosed in boxes to distinguish them from the other

entries of the matrix.

7.5-7 Full Alternative Text

If the rows of the reduced form of A are reordered, the

resulting reduced matrices will be the same. The reduced

form of PA now contains the information necessary to

determine its triangular factorization. Indeed,

PA = LU

⎡⎢⎣ 0 0 1

1 0 0

0 1 0

⎤⎥⎦
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where

On the computer, it is not necessary to actually

interchange the rows of A. We simply treat row p(k) as

the kth row and use ap(k)j in place of akj.

Algorithm 7.3.1 Gaussian Elimination with Interchanges

U =L = and
⎡⎢⎣ 1 0 0

3 1 0

2 −4 1

⎤⎥⎦ ⎡⎢⎣ 2 −1 1

0 −1 −1

0 0 −5

⎤⎥⎦



7.5-8 Full Alternative Text

Remarks

1. The multiplier lp(k)i is stored in the position of the element ap(k)i

being eliminated.

2. The vector p can be used to form a permutation matrix P whose

ith row is the p(i)th row of the identity matrix.

3. The matrix PA can be factored into a product LU, where

4. Since P is nonsingular, the system Ax = b is equivalent to the

system PAx = Pb. Let c = Pb. Since PA = LU , it follows

that the system is equivalent to

LUx = c

5. If PA = LU , then A = P −1LU = P T LU .

It follows from Remarks 4 and 5 that if A = P T LU ,

then the system Ax = b can be solved in three steps:

1. Step 1. Reordering. Reorder the entries of b to form c = Pb.

2. Step 2. Forward substitution. Solve the system Ly = c for y.

3. Step 3. Back substitution. Solve Ux = y.

Example 2

uki = {lki = and

⎧⎪⎨⎪ lp(k)i if k > i

1 if k = i

0 if k < i

ap(k)i if k ≤ i

0 if k > i
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Solve the system

SOLUTION

The coefficient matrix of this system is the matrix A from

Example 1. P, L, and U have already been determined,

and they can be used to solve the system as follows:

1. Step 1. c = Pb = (−1, −2, 4)
T

2. Step 2. 

3. Step 3. 

The solution of the system is x = (1, 1, −2)T
.

It is possible to do Gaussian elimination without row

interchanges if the diagonal entries a
(i)
ii  are nonzero at

each step. However, in finite-precision arithmetic, pivots 

a
(i)
ii

 that are near 0 can cause problems.

Example 3
Consider the system

The exact solution of the system is

x = (
2

1.9999
,

3.9997

1.9999
)

T

Rounded off to four decimal places, the solution is 

(1.0001, 1.9999)T
. Let us solve the system using three-

6x1 − 4x2 + 2x3 = −2

4x1 + 2x2 + x3 = 4

2x1 − x2 + x3 = −1

y1 = −1 y1 = −1

3y1 + y2 = −2 y2 = −2 + 3 = 1

2y1 − 4y2 + y3 = 4 y3 = 4 + 2 + 4 = 10

1 − x2 + x3 = −1 x1 = 1

−x2 − x3 = 1 x2 = 1

−5x3 = 10 x3 = −2

2x

0.0001x1+ 2x2 = 4

x1+ x2 = 3



digit decimal floating-point arithmetic.

[ ] → [ ]

The computed solution is x′ = (0, 2)T
. There is a 100

percent error in the x1 coordinate. However, if we

interchange rows to avoid the small pivot, then three-

digit decimal arithmetic gives

[ ] → [ ]

In this case, the computed solution is x′ = (1, 2)T
.

If the pivot a
(i)
ii  is small in absolute value, the multipliers

lki = a
(i)
ki

/a
(i)
ii

 may be large in absolute value. If there is

an error in the computed value of a
(i)
ij

, it will be

multiplied by lki. In general, large multipliers contribute

to the propagation of error. In contrast, multipliers that

are less than 1 in absolute value generally retard the

growth of error. By careful selection of the pivot

elements, we can try to avoid small pivots and at the

same time keep the multipliers less than or equal to 1 in

absolute value. The most commonly used strategy for

doing this is called partial pivoting.

Partial Pivoting
At the ith step of the reduction process, there are 

n − i + 1 candidates for the pivot element:

ap(i)i,ap(i+1)i, … , ap(n)i

Choose the candidate ap(j)i with the maximum absolute

value

ap(j)i = max
i≤k≤n

ap(k)i

0.0001 2

1 1∣43 0.0001 2

0 −0.200 × 105∣ 4

−0.400 × 105

1 1

0.0001 2∣34 1 1

0 2.00∣ 3

4.00∣ ∣ ∣ ∣



and interchange the ith and jth entries of p. The pivot

element ap(i)i has the property

ap(i)i ≥ ap(k)i

for k = i + 1, … , n. Thus, the multipliers will all

satisfy

lp(k)i =
ap(k)i

ap(i)i

≤ 1

We could always carry things one step further and do

complete pivoting. In complete pivoting, the pivot

element is chosen to be the element of maximum

absolute value among all the elements in the remaining

rows and columns. In this case, we must keep track of

both the rows and columns. At the ith step, the element 

ap(j)q(k) is chosen so that

ap(j)q(k) = max
i≤s≤n
i≤t≤n

ap(x)q(t)

The ith and jth entries of p are interchanged, and the ith

and kth entries of q are interchanged. The new pivot

element is ap(i)q(i). The major drawback to complete

pivoting is that at each step we must search for a pivot

element among (n − i + 1)2
 elements of A. Doing this

may be too costly in terms of computer time. Although

Gaussian elimination is numerically stable when carried

out with either partial or complete pivoting, it is more

efficient to use partial pivoting. As a consequence, the

partial pivoting strategy is the method of choice for all of

the standard numerical software packages.∣ ∣ ∣ ∣∣ ∣ ∣ ∣∣ ∣ ∣ ∣



Section 7.3 Exercises

1. Let

1. Reorder the rows of (A|b) in the order (2, 3, 1) and then

solve the reordered system.

2. Factor A into a product P T LU , where P is the

permutation matrix corresponding to the reordering in

part (a).

2. Let A be the matrix in Exercise 1. Use the factorization P T LU  to

solve Ax = c for each of the following choices of c:

1. (8, 1, 20)
T

2. (−9, −2, −7)T

3. (4, 1, 11)T

3. Let

Solve the system Ax = b using partial pivoting. If P is the

permutation matrix corresponding to the pivoting strategy, factor

PA into a product LU.

4. Let

Solve the system Ax = b using complete pivoting. Let P be the

permutation matrix determined by the pivot rows and Q the

permutation matrix determined by the pivot columns. Factor PAQ

into a product LU.

5. Let A be the matrix in Exercise 4 and let c = (6, −4)T
. Solve the

system Ax = c in two steps:

1. Set z = QT
x and solve LUz = Pc for z.

2. Calculate x = Qz.

b =A = and
⎡⎢⎣ 0 3 1

1 2 −2

2 5 4

⎤⎥⎦ ⎡⎢⎣ −1

1

7
⎤⎥⎦b =A = and

⎡⎢⎣ 1 8 6

−1 −4 5

2 4 −6

⎤⎥⎦ ⎡⎢⎣ 4

8

1
⎤⎥⎦b = [ ]A = [ ] and

3 2

2 4

5

−2



6. Let

1. Use complete pivoting to solve the system Ax = b.

2. Let P be the permutation matrix determined by the pivot

rows, and let Q be the permutation matrix determined by

the pivot columns. Factor PAQ into a product LU.

3. Use the LU factorization from part (b) to solve the

system Ax = c.

7. The exact solution of the system

is x = (5, 1)
T

. Suppose that the calculated value of x2 is 

x′
2 = 1 + e. Use this value in the first equation and solve for x1.

What will the error be? Calculate the relative error in x1 if 

e = 0.001.

8. Solve the system in Exercise 7 using four-digit decimal floating-

point arithmetic and Gaussian elimination with partial pivoting.

9. Solve the system in Exercise 7 using four-digit decimal floating-

point arithmetic and Gaussian elimination with complete pivoting.

10. Use four-digit decimal floating-point arithmetic, and scale the

system in Exercise 7 by multiplying the first equation through by

1/2000 and the second equation through by 1/0.4010. Solve the

scaled system using partial pivoting.

A = ,
⎡⎢⎣ 5 4 7

2 −4 3

2 8 6

⎤⎥⎦c =b = ,
⎡⎢⎣ 2

−5

4

⎤⎥⎦ ⎡⎢⎣ 5

−4

2

⎤⎥⎦0.6000x1 + 2000x2 = 2003

0.3076x1 − 0.4010x2 = 1.137



7.4 Matrix Norms and

Condition Numbers
In this section, we are concerned with the accuracy of

computed solutions of linear systems. How accurate can

we expect the computed solutions to be, and how can we

test their accuracy? The answer to these questions

depends largely on how sensitive the coefficient matrix of

the system is to small changes. The sensitivity of the

matrix can be measured in terms of its condition

number. The condition number of a nonsingular matrix

is defined in terms of its norm and the norm of its

inverse. Before discussing condition numbers, it is

necessary to establish some important results regarding

the standard types of matrix norms.

Matrix Norms
Just as vector norms are used to measure the size of

vectors, matrix norms can be used to measure the size of

matrices. In Section 5.4, we introduced a norm on Rm×n

that was induced by an inner product on Rm×n
. This

norm was referred to as the Frobenius norm and was

denoted by || ⋅ ||F . We showed that the Frobenius norm

of a matrix A could be computed by taking the square

root of the sum of the squares of all its entries:

||A||F = (
n

Σ
j=1

m

Σ
i=1

a2
ij)

1/2

(1)

Actually, equation (1) defines a family of matrix norms

since it defines a norm on R
m×n

 for any choice of m and

n. The Frobenius norm has a number of important

properties:



1. If aj represents the jth column vector of A, then

||A||F = (
n

Σ
j=1

m

Σ
i=1

a2
ij)

1/2

= (
n

Σ
j=1

||aj||
2
2)

1/2

2. If →ai represents the ith row vector of A, then

||A||F = (
m

Σ
i=1

n

Σ
j=1

a2
ij)

1/2

= (
m

Σ
i=1

→a
T
i

2

2
)

1/2

3. If x ∈ R
n

, then

4. If B = (b1, … , br) is an n × r matrix, it follows from

properties I and III that

There are many other norms that we could use for R
m×n

in addition to the Frobenius norm. Any norm used must

satisfy the three conditions that define norms in general:

1. ||A|| ≥ 0 and ||A|| = 0 if and only if A = O

2. ||αA|| = |α|||A||

3. ||A + B|| ≤ ||A|| + ||B||

The families of matrix norms that turn out to be most

useful also satisfy the additional property

4. ||AB|| ≤ ||A|| ||B||

Consequently, we will consider only families of norms

that have this additional property. One important

consequence of property (iv) is that

||An|| ≤ ||A||n

∣∣ ∣∣2 =

1/2

= [
m

Σ
i=1

(→aix)
2
]

1/2

≤
1/2

(Cauchy—Schwarz)

= F  ||x||2

||Ax|| [
m

Σ
i=1

(
n

Σ
j=1

aijxj)
2

]

[
m

Σ
i=1

∥x∥2
2 →a

T
i

2
2]∥ ∥||A||

F = F

= (
r

Σ
i=1

||Abi||
2
2)

1/2

≤
1/2

= ∥A∥F ∥ B∥F

||AB|| ||(Ab1, Ab2, … , Abr)||

||A||F(
r

Σ
i=1

||bi||
2
2)



In particular, if ||A|| < 1, then ||An|| → 0 as n → ∞.

In general, a matrix norm ||⋅||M  on R
m×n

 and a vector

norm ||⋅||V  on R
n

 are said to be compatible if

||Ax||V ≤ ||A||M ||x||V

for every x ∈ R
n

. In particular, it follows from property

III of the Frobenius norm that the matrix norm || ⋅ ||F
and the vector norm || ⋅ ||2 are compatible. For each of

the standard vector norms, we can define a compatible

matrix norm by using the vector norm to compute an

operator norm for the matrix. The matrix norm defined

in this way is said to be subordinate to the vector norm.

Subordinate Matrix Norms
We can think of each m × n matrix as a linear

transformation from Rn
 to Rm

. For any family of vector

norms, we can define an operator norm by comparing 

||Ax|| and ||x|| for each nonzero x and taking

||A|| = max
x≠0

||Ax||

||x||

(2)

It can be shown that there is a particular x0 in R
n

 that

maximizes ||Ax||/||x||, but the proof is beyond the

scope of this text. Assuming that ||Ax||/||x|| can always

be maximized, we will show that (2) actually does define

a norm on R
m×n

. To do this, we must verify that each of

the three conditions of the definition is satisfied.

1. For each x ≠ 0,

||Ax||

||x||
≥ 0

and, consequently,

||A|| = max
x≠0

||Ax||
||x||

≥ 0



If ||A|| = 0, then Ax = 0 for every x ∈ R
n

. This implies that

and hence A must be the zero matrix.

2. ∥αA∥ = max
x≠0

||αAx||
||x||

= |α|max
x≠0

||Ax||
||x||

= |α| ||A||

3. If x  ≠  0, then

Thus, (2) defines a norm, on R
m×n

. For each family of

vector norms || ⋅ ||, we can then define a family of matrix

norms by (2). The matrix norms defined by (2) are said

to be subordinate to the vector norms || ⋅ ||.

Theorem 7.4.1
If the family of matrix norms || ⋅ ||M  is subordinate to

the family of vector norms || ⋅ ||
V

, then || ⋅ ||
M

 and 

|| ⋅ ||V  are compatible and the matrix norms || ⋅ ||M
satisfy property (iv).

Proof

If x is any nonzero vector in R
n

, then

||Ax||V
||x||V

≤ max
y≠0

||Ay||V
||y||V

= ||A||M

and hence

||Ax||V ≤ ||A||M ||x||V

Since this last inequality is also valid if x = 0, it follows

that ||⋅||M  and ||⋅||V  are compatible. If B is an n × r

j = 1, … , naj = Aej = 0 for

||A + B|| = max
x≠0

||(A + B)x||
||x||

≤ max
x≠0

||Ax|| + ||Bx||
||x||

≤ max
x≠0

||Ax||
||x||

+ max
x≠0

||Bx||
||x||

= ||A|| + ||B||



matrix, then, since ||⋅||M  and ||⋅||V  are compatible, we

have

||ABx||V ≤ ||A||M ||Bx||V ≤ ||A||M ||B||M ||x||V

Thus, for all x ≠ 0,

||ABx||V
||x||V

≤ ||A||M ||B||M

and hence

||AB||M = max
x≠0

||ABx||V
||x||V

≤ ||A||M ||B||M

∎

It is a simple matter to compute the Frobenius norm of a

matrix. For example, if

A = [ ]

then

||A||F = (42 + 02 + 22 + 42)
1/2

= 6

On the other hand, it is not so obvious how to compute

||A|| if ||·|| is a subordinate matrix norm. It turns out,

however, that the matrix norms

||Ax||∞
||x||∞

are simple to calculate.

Theorem 7.4.2
If A is an m × n matrix, then

||A||1 = max
1≤j≤n

(
m

Σ
i=1

|aij|)

and

4 2
0 4

∞ = max
x≠0

1 = max
x≠0

||Ax||1
||x||1

and||A|| ||A||



||A||∞ = max
1≤i≤m

(
n

Σ
j=1

|aij|)

Proof

We will prove that

||A||1 = max
1≤j≤n

(
m

Σ
i=1

|aij|)

and leave the proof of the second statement as an

exercise. Let

α = max
1≤j≤n

 
m

Σ
i=1

 |aij| =
m

Σ
i=1

 |aik|

That is, k is the index of the column in which the

maximum occurs. Let x be an arbitrary vector in R
n

;

then

Ax = (
n

Σ
j=1

a1jxj,
n

Σ
j=1

a2jxj, … ,
n

Σ
j=1

amjxj)
T

and it follows that

Thus, for any nonzero x in Rn
,

||Ax||1
||x||1

≤ α

and hence

||A||1 = max
x≠0

||Ax||1
||x||1

≤ α

(3)

On the other hand,

|| || || ||

1 =
m

i=1

n

Σ
j=1

aijxj

≤
m

Σ
i=1

n

Σ
j=1

|aijxj|

=
n

Σ
j=1

( xj

m

Σ
i=1

|aij|)

≤ α
n

Σ
j=1

|xj|

= α||x||1

||Ax|| Σ ∣ ∣∣ ∣



||Aek||1 = ||ak||1 = α

Since ||ek||1 = 1, it follows that

||A||1 = max
x≠0

||Ax||1
||x||1

≥
||Aek||1
||ek||1

= α

(4)

Together, (3) and (4) imply that ||A||1 = α.

∎

Example 1
Let

A =

Then

||A||1 = |4| + | − 3| + | − 6| + |1| = 14

and

||A||∞ = |5| + | − 2| + | − 3| + |5| = 15

The 2-norm of a matrix is more difficult to compute since

it depends on the singular values of the matrix. In fact,

the 2-norm of a matrix is its largest singular value.

Theorem 7.4.3

If A is an m × n matrix with singular value

decomposition UΣV T
, then

Proof

⎡⎢⎣−3 2 4 −3
5 −2 −3 5
2 1 −6 4
1 1 1 1

⎤⎥⎦||A||2 = σ1 (the largest singular value)



Since U and V are orthogonal,

UΣV T
2

= ||Σ||2

(See Exercise 42.) Now,

However, if we choose x = e1, then

||Σx||2
||x||2

= σ1

and hence it follows that

||A||2 = ||Σ||2 = σ1

∎

Corollary 7.4.4
If A = UΣV T

 is a nonsingular n × n matrix, then

A−1
2

=
1

σn

Proof

The singular values of A−1 = V Σ−1U T
, arranged in

decreasing order, are

1
σn

≥
1

σn−1
≥ ⋅ ⋅ ⋅ ≥

1
σ1

Therefore,

A−1
2 =

1
σn

||A||2 =∣∣ ∣∣||Σ||2 = max
x≠0

||Σx||2
||x||2

= max
x≠0

(
n

Σ
i=1

(σixi)
2)

1/2

(
n

Σ
i=1

x2
i)

1/2

≤ σ1∥ ∥∣∣ ∣∣



∎

Condition Numbers
Matrix norms can be used to estimate the sensitivity of

linear systems to small changes in the coefficient matrix.

Consider the following example.

Example 2
Solve the following system:

(5)

If we use five-digit decimal floating-point arithmetic, the

computed solution will be the exact solution 

x = (1, 2)T
. Suppose, however, that we are forced to

use four-digit decimal floating-point numbers. Thus, in

place of (5), we have

(6)

The computed solution of system (6) is the exact solution

x′ = (2, 1)T
.

The systems (5) and (6) agree except for the coefficient 

a22. The relative error in this coefficient is

a′
22 − a22

a22
≈ 0.00025

However, the relative errors in the coordinates of the

solutions x and x′ are

2.0000x1 + 2.0000x2 = 6.0000
2.0000x1 + 2.0005x2 = 6.0010

2.000x1 + 2.000x2 = 6.000
2.000x1 + 2.001x2 = 6.001

x′
2 − x2

x2
= −0.5x′

1 − x1
x1

= 1.0 and



Definition
A matrix A is said to be ill conditioned if relatively

small changes in the entries of A can cause relatively

large changes in the solutions to Ax = b. A is said to be

well conditioned if relatively small changes in the

entries of A result in relatively small changes in the

solutions to Ax = b.

If the matrix A is ill conditioned, the computed solution

of Ax = b generally will not be accurate. Even if the

entries of A can be represented exactly as floating-point

numbers, small rounding errors occurring in the

reduction process may have a drastic effect on the

computed solution. If, however, the matrix is well

conditioned and the proper pivoting strategy is used, we

should be able to compute solutions quite accurately. In

general, the accuracy of the solution depends on the

conditioning of the matrix. If we could measure the

conditioning of A, this measure could be used to derive a

bound for the relative error in the computed solution.

Let A be an n × n nonsingular matrix and consider the

system Ax = b. If x is the exact solution of the system

and x′ is the calculated solution, then the error can be

represented by the vector e = x − x′. If ||·|| is a norm

on R
n

, then ||e|| is a measure of the absolute error and

||e||/||x|| is a measure of the relative error. In general,

we have no way of determining the exact values of ||e||

and ||e||/||x||. One possible way of testing the accuracy

of x′ is to put it back into the original system and see

how close b′ = Ax′ comes to b. The vector

r = b − b′ = b − Ax′

is called the residual and can be easily calculated. The

quantity

||b − Ax′||
||b||

=
||r||
||b||



is called the relative residual. Is the relative residual a

good estimate of the relative error? The answer to this

question depends on the conditioning of A. In Example

2, the residual for the computed solution x′ = (2, 1)T
 is

r = b − Ax′ = (0, 0.0005)T

The relative residual in terms of the ∞-norm is

||r||∞
||b||∞

=
0.0005
6.0010

≈ 0.000083

and the relative error is given by

||e||∞
||x||∞

= 0.5

The relative error is more than 6000 times the relative

residual! In general, we will show that if A is ill

conditioned, then the relative residual may be much

smaller than the relative error. For well-conditioned

matrices, however, the relative residual and the relative

error are quite close. To show this, we need to make use

of matrix norms. Recall that if ||·|| is a compatible

matrix norm on R
n×n

, then, for any n × n matrix C and

any vector y ∈ R
n

, we have

||Cy|| ≤ ||C|| ||y||

(7)

Now,

r = b − Ax′ = Ax − Ax′ = Ae

and consequently,

e = A−1r

It follows from property (7) that

||e|| ≤ A−1  ||r||

and

||r|| = ||Ae|| ≤ ||A|| ||e||∣∣ ∣∣



Therefore,

||r||

||A||
≤ ||e|| ≤ A−1  ||r||

(8)

Now x is the exact solution to Ax = b, and hence 

x = A−1b. By the same reasoning used to derive (8),

we have

||b||

||A||
≤ ||x|| ≤ A−1  ||b||

(9)

It follows from (8) and (9) that

1
||A|| ||A−1||

||r||

||b||
≤

||e||

||x||
≤ ||A||  A−1 ||r||

||b||

The number A   A−1
 is called the condition

number of A and will be denoted by cond(A). Thus,

1
cond(A)

||r||

||b||
≤

||e||

||x||
≤ cond(A)

||r||

||b||

(10)

Inequality (10) relates the size of the relative error

||e||/||x|| to the relative residual ||r||/||b||. If the

condition number is close to 1, the relative error and the

relative residual will be close. If the condition number is

large, the relative error could be many times as large as

the relative residual.

Example 3

Let

A = [ ]

Then

∣∣ ∣∣∣∣ ∣∣ ∣∣ ∣∣∣∣ ∣∣ ∣∣ ∣∣ 3 3
4 5



A−1 =
1
3
[ ]

||A||∞ = 9 and A−1
∞ = 8

3 . (We use || ⋅ ||∞
because it is easy to calculate.) Thus,

cond∞(A) = 9 ⋅
8
3

= 24

Theoretically, the relative error in the calculated solution

of the system Ax = b could be as much as 24 times the

relative residual.

Example 4

Suppose that x′ = (2.0, 0.1)T
 is the calculated solution

of

Determine the residual r and the relative residual 

||r||∞/||b||∞.

SOLUTION

We can see by inspection that the actual solution of the

system in Example 4 is x = [ ]. The error e is given by

e = x − x′ = [ ]

The relative error is given by

∥e∥∞

∥x∥∞
=

1.0
1

= 1

5 −3
−4 3∣∣ ∣∣3x1 + 3x2 = 6

4x1 + 5x2 = 9

r = [ ] − [ ][ ] = [ ]

∥r∥∞
∥b∥∞

= 0.5
9 = 1

18

6
9

3 3
4 5

2.0
0.1

−0.3
0.5

1
1

−1.0
0.9



The relative error is 18 times the relative residual. This is

not surprising, since cond(A) = 24. The results are

similar if we use ‖⋅∥1. In this case,

=
19
20

The condition number of a nonsingular matrix actually

gives us valuable information about the conditioning of

A. Let A′ be a new matrix formed by altering the entries

of A slightly. Let E = A′ − A. Thus, A′ = A + E,

where the entries of E are small relative to the entries of

A. The matrix A will be ill conditioned if, for some such

E, the solutions to A′x = b and Ax = b vary greatly.

Let x′ be the solution of A′x = b and x be the solution

of Ax = b. The condition number allows us to compare

the change in solution relative to x′ to the relative change

in the matrix A.

x = A−1b = A−1A′x′ = A−1(A + E)x′ = x′ + A−1Ex′

Hence,

x − x′ = A−1Ex′

Using inequality (7), we see that

‖x − x′‖ ≤ ‖A−1‖‖E‖‖x′‖

or

‖x − x′‖

‖x′‖
≤ ‖A−1‖ ‖E‖ = cond(A)

‖E‖

‖A‖

(11)

Let us return to Example 2 and see how inequality (11)

applies. Let A and A′ be the two coefficient matrices in

Example 2:

E = A′ − A = [ ]

and

‖r∥1
‖b‖1

= 0.8
15 = 4

75 and
‖e∥1
‖x∥1

= 1.9
2

0 0
0 0.0005



A−1 = [ ]

In terms of the ∞-norm, the relative error in A is

‖E‖∞

‖A‖∞
=

0.0005
4.0005

≈ 0.0001

and the condition number is

cond(A) = ‖A‖∞‖A−1‖∞ = (4.0005)(4000.5) ≈ 16, 004

The bound on the relative error given in (11) is then

cond(A)
‖E‖

‖A‖
= ‖A−1‖‖E‖ = (4000.5)(0.0005) ≈ 2

The actual relative error for the systems in Example 2 is

‖x − x′‖∞

‖x′‖∞
=

1
2

If A is a nonsingular n × n matrix and we compute its

condition number using the 2-norm, then we have

cond2(A) = ‖A‖2‖A−1‖2 =
σ1

σn

If σn is small relative to σ1, then cond2(A) will be

large. The smallest singular value, σn, is a measure of

how close the matrix is to being singular. Thus, the closer

the matrix is to being singular, the more ill conditioned it

is. If the coefficient matrix of a linear system is close to

being singular, then small changes in the matrix due to

roundoff errors could result in drastic changes to the

solution of the system. To illustrate the relation between

conditioning and nearness to singularity, let us look

again at an example from Chapter 6.

Example 5
In Section 6.5, we saw that the nonsingular 100 × 100
matrix

   2000.5 −2000
−2000 2000



A =

is actually very close to being singular, and to make it

singular, we need only change the value of the (100, 1)

entry of A from 0 to − 1
298 . It follows from Theorem

6.5.3 that

≤
1

298

so cond2(A) must be very large. It is even easier to see

that A is extremely ill- conditioned if we use the infinity

norm. The inverse of A is given by

A−1 =

The infinity norms of A and A−1
 are both determined by

the entries in the first row of the matrix.

cond∞A = ‖A‖∞‖A−1‖∞ = 100 × 299 ≈ 6.34 × 1031

⎡⎢⎣1 −1 −1 ⋅ ⋅ ⋅ −1 −1
0 1 −1 ⋅ ⋅ ⋅ −1 −1
0 0 1 ⋅ ⋅ ⋅ −1 −1

⋮
0 0 0 ⋅ ⋅ ⋅ 1 −1
0 0 0 ⋅ ⋅ ⋅ 0 1

⎤⎥⎦σn = min
X singular

‖A − X‖F

⎡⎢⎣1 1 2 4 ⋅ ⋅ ⋅ 298

0 1 1 2 ⋅ ⋅ ⋅ 297

⋮
0 0 0 0 ⋅ ⋅ ⋅ 21

0 0 0 0 ⋅ ⋅ ⋅ 20

0 0 0 0 ⋅ ⋅ ⋅ 1

⎤⎥⎦



Section 7.4 Exercises

1. Determine ‖⋅∥F , ‖⋅∥∞, and ‖⋅∥1 for each of the following

matrices:

1. [ ]

2. [ ]

3. 

4. 

5. 

2. Let

and set

f(x1,x2) = ‖Ax‖2/∥x∥2

Determine the value of ‖A‖2 by finding the maximum value of f

for all (x1,x2) ≠ (0, 0).

3. Let

A = [ ]

Use the method of Exercise 2 to determine the value of ‖A‖2

4. Let

D =

1. Compute the singular value decomposition of D.

1 0
0 1

1 4
−2 2

⎡⎢⎣ 1
2

1
2

1
2

1
2

⎤⎥⎦⎡⎢⎣0 5 1
2 3 1
1 2 2

⎤⎥⎦⎡⎢⎣5 0 5
4 1 0
3 2 1

⎤⎥⎦A = [ ] and x = [ ]
2 0
0 −2

x1

x2

1 0
0 0

⎡⎢⎣3 0 0 0
0 −5 0 0
0 0 −2 0
0 0 0 4

⎤⎥⎦



2. Find the value of ‖D‖2.

5. Show that if D is an n × n diagonal matrix, then

‖D‖2 = max
1≤i≤n

(|dii|)

6. If D is an n × n diagonal matrix, how do the values of ‖D‖1, 

‖D‖2, and ‖D‖∞ compare? Explain your answers.

7. Let I denote the n × n identity matrix. Determine the values of 

‖I‖1, ‖I‖∞, and ‖I‖F .

8. Let ∥ ⋅ ∥M  denote a matrix norm on R
n×n

, ∥ ⋅ ∥V  denote a vector

norm on R
n

, and I be the n × n identity matrix. Show that

1. if ‖⋅∥M  and ‖⋅∥V  are compatible, then ‖I‖M ≥ 1.

2. if ‖⋅∥M  is subordinate to ‖⋅∥V , then ‖I‖M = 1.

9. A vector x in R
n

 can also be viewed as an n × 1 matrix X:

x = X =

1. How do the matrix norm ‖X‖∞ and the vector norm 

∥x∥∞ compare? Explain.

2. How do the matrix norm ‖X‖1 and the vector norm 

∥x∥1 compare? Explain.

10. A vector y in R
n

 can also be viewed as an n × 1 matrix Y = (y).

Show that

1. ‖Y‖2 = ‖y‖2

2. ‖Y T‖2 = ∥y∥2

11. Let A = wyT
, where w ∈ R

m
 and y ∈ R

n
. Show that

1. 
‖Ax‖2
‖x∥2

≤ ∥y∥2∥w∥2 for all x ≠ 0 in Rn
.

2. ‖A‖2 = ‖y∥2‖w∥2

12. Let

A =

1. Determine ‖A‖∞.

⎡⎢⎣x1

x2

⋮
xn

⎤⎥⎦⎡⎢⎣ 3 −1 −2
−1 2 −7

4 1 4

⎤⎥⎦



2. Find a vector x whose coordinates are each ±1 such that

‖Ax‖∞ = ‖A‖∞. (Note that ∥x∥∞ = 1, so 

‖A‖∞ = ‖Ax‖∞/∥x∥∞.)

13. Theorem 7.4.2 states that

‖A‖∞ = max
1≤i≤m

(
n

Σ
j=1

|aij|)

Prove this in two steps.

1. Show first that

‖A‖∞ ≤ max
1≤i≤m

(
n

Σ
j=1

|aij|)

2. Construct a vector x whose coordinates are each ±1
such that

‖Ax‖∞

∥x∥∞
= ‖Ax‖∞ = max

1≤i≤m
(

n

Σ
j=1

|aij|)

14. Show that ‖A‖F = ‖AT‖F .

15. Let A be a symmetric n × n matrix. Show that ‖A‖∞ = ‖A‖1
.

16. Let A be a 5 × 4 matrix with singular values σ1 = 5, σ2 = 3, and

σ3 = σ4 = 1. Determine the values of ‖A‖2 and ‖A‖F .

17. Let A be an m × n matrix.

1. Show that ‖A‖2 ≤ ‖A‖F .

2. Under what circumstances will ‖A‖2 = ‖A‖F ?

18. Let ∥ ⋅ ∥ denote a family of vector norms and let ∥ ⋅ ∥M  be a

subordinate matrix norm. Show that

‖A‖M = max
∥x∥=1

‖Ax‖

19. Let A be an m × n matrix and let ‖⋅∥V  and ‖⋅∥W  be vector

norms on R
n

 and R
m

, respectively. Show that

‖A‖(v, w) = max
x≠0

‖Ax‖w

∥x∥v

defines a matrix norm on R
m×n

.

20. Let A be an m × n matrix. The (1,2)-norm of A is given by

‖A‖(1,2) = max
x≠0

‖Ax‖2

∥x∥1

(See Exercise 19.) Show that



‖A‖(1,2) = max(∥a1‖2, ∥a2‖2, . . . , ∥an‖2)

21. Let A be an m × n matrix. Show that ‖A‖(1,2) ≤ ‖A‖2.

22. Let A ∈ R
m×n

 and B ∈ R
n×r

. Show that

1. ‖Ax‖2 ≤ ‖A‖(1,2)∥x∥1 for all x in R
n

.

2. ‖AB‖(1,2) ≤ ‖A‖2‖B‖(1,2)

3. ‖AB‖(1,2) ≤ ‖A‖(1,2)‖B‖1

23. Let A be an n × n matrix and let ∥ ⋅ ∥M  be a matrix norm that is

compatible with some vector norm on R
n

. Show that if λ is an

eigenvalue of A, then |λ| ≤ ‖A‖M .

24. Use the result from Exercise 23 to show that if λ is an eigenvalue

of a stochastic matrix, then |λ| ≤ 1.

25. Sudoku is a popular puzzle involving matrices. In this puzzle, one

is given some of the entries of a 9 × 9 matrix A and asked to fill in

the missing entries. The matrix A has a block structure

A =

where each submatrix Aij is 3 × 3. The rules of the puzzle are

that each row, each column, and each of the submatrices of A must

be made up of all of the integers 1 through 9. We will refer to such

a matrix as a sudoku matrix. Show that if A is a sudoku matrix,

then λ = 45 is its dominant eigenvalue.

26. Let Aij be a submatrix of a sudoku matrix A (see Exercise 25).

Show that if λ is an eigenvalue of Aij, then |λ| ≤ 22.

27. Let A be an n × n matrix and x ∈ R
n

. Prove:

1. ‖Ax‖∞ ≤ n1/2‖A‖2‖x∥∞

2. ‖Ax‖2 ≤ n1/2‖A‖∞‖x∥2

3. n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2

28. Let A be a symmetric n × n matrix with eigenvalues λ1, . . .,λn
and orthonormal eigenvectors u1, . . . , un. Let x ∈ R

n
 and let 

ci = uT
i x for i = 1, 2, . . . , n. Show that

1. ‖Ax‖2
2 =

n

Σ
i=1

(λici)
2

2. if x ≠ 0, then

min
1≤i≤n

|λi| ≤
‖Ax‖2

∥x∥2
≤ max

1≤i≤n
|λi|

⎡⎢⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎦



3. ‖A‖2 = max
1≤i≤n

|λi|

29. Let

A = [ ]

Find A−1
 and cond∞(A).

30. Solve the given two systems and compare the solutions. Are the

coefficient matrices well conditioned? Ill conditioned? Explain.

31. Let

A =

Calculate cond∞(A) = ‖A‖∞‖A−1‖∞.

32. Let A be a nonsingular n × n matrix, and let ∥ ⋅ ∥M  denote a

matrix norm that is compatible with some vector norm on R
n

.

Show that

condM(A) ≥ 1

33. Let

An = [ ]

for each positive integer n. Calculate

1. A−1
n

2. cond∞(An)

3. lim
n→∞

 cond∞(An)

34. If A is a 5 × 3 matrix with ‖A‖2 = 8, cond2(A) = 2, and 

‖A‖F = 12, determine the singular values of A.

35. Given

if two-digit decimal floating-point arithmetic is used to solve the

system Ax = b, the computed solution will be x = (1.1, 0.88)T

.

1
−1

−0.99
1

1 + 2.0x2 = 1 + 2.011x2 = 1.120

1 + 3.9x2 = 1 + 3.982x2 = 2.160
1.0x 1.12   1.000x
2.0x 2.16   2.000x

⎡⎢⎣1 0 1
2 2 3
1 1 2

⎤⎥⎦1 1

1 1 − 1
n

A = [ ] and b = [ ]
3 2
1 1

5
2



1. Determine the residual vector r and the value of the

relative residual ∥r∥∞/‖b‖∞.

2. Find the value of cond∞(A).

3. Without computing the exact solution, use the results

from parts (a) and (b) to obtain bounds for the relative

error in the computed solution.

4. Compute the exact solution x and determine the actual

relative error. Compare this to the bounds derived in

part (c).

36. Let

A =

Calculate cond1(A) = ‖A‖1‖A−1‖1.

37. Let A be the matrix in Exercise 36 and let

A′ =

Let x and x′ be the solutions of Ax = b and A′x = b,

respectively, for some b ∈ R
3

. Find a bound for the relative error 

(‖x − x′‖1)/‖x′‖1.

38. Let

An approximate solution of Ax = b is calculated by rounding the

entries of b to the nearest integer and then solving the rounded

system with integer arithmetic. The calculated solution is 

x′ = (12, 4, 2, 1)T . Let r denote the residual vector.

1. Determine the values of ∥r∥∞ and cond∞(A).

2. Use your answer to part (a) to find an upper bound for

the relative error in the solution.

3. Compute the exact solution x and determine the relative

error 
‖x − x′‖∞

∥x∥∞
.

39. Let A and B be nonsingular n × n matrices. Show that

cond(AB) ≤ cond(A)cond(B)

⎡⎢⎣−0.50 0.75 −0.25
−0.50 0.25 0.25

1.00 −0.50 0.50

⎤⎥⎦⎡⎢⎣−0.5 0.8 −0.3
−0.5 0.3 0.3

1.0 −0.5 0.5

⎤⎥⎦A = , b =

⎡⎢⎣1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

⎤⎥⎦ ⎡⎢⎣5.00
1.02
1.04
1.10

⎤⎥⎦



40. Let D be a nonsingular n × n diagonal matrix and let

1. Show that

cond1(D) = cond∞(D) =
dmax

dmin

2. Show that

cond2(D) =
dmax

dmin

41. Let Q be an n × n orthogonal matrix. Show that

1. ‖Q‖2 = 1

2. cond2(Q) = 1

3. for any b ∈ R
n

, the relative error in the solution of 

Qx = b is equal to the relative residual, that is,

∥e∥2

∥x∥2
=

∥r∥2

‖b‖2

42. Let A be an n × n matrix and let Q and V be n × n orthogonal

matrices. Show that

1. ‖QA‖2 = ‖A‖2

2. ‖AV‖2 = ‖A‖2

3. ‖QAV‖2 = ‖A‖2

43. Let A be an m × n matrix and let σ1 be the largest singular value

of A. Show that if x and y are nonzero vectors in R
n

, then each of

the following holds:

1. 

xTAy

‖x∥2‖y∥2
≤ σ1

[Hint: Make use of the Cauchy–Schwarz inequality.]

2. max
x≠0,y≠0

xTAy

‖x‖∥y∥
= σ1

44. Let A be an m × n matrix with singular value decomposition 

UΣV T
. Show that

min
x≠0

‖Ax‖2

∥x∥2
= σn

45. Let A be an m × n matrix with singular value decomposition 

UΣV T
. Show that, for any vector x   ∈   Rn

,

∥ ∥ ∥ ∥

dmax = max
1≤i≤n

|dii| and dmin = min
1≤i≤n

|dii|∣ ∣∣ ∣



σn∥x∥2 ≤ ‖Ax‖2 ≤ σ1∥x∥2

46. Let A be a nonsingular n × n matrix and let Q be an n × n

orthogonal matrix. Show that

1. cond2(QA) = cond2(AQ) = cond2(A)

2. if B = QTAQ, then cond2(B) = cond2(A).

47. Let A be a symmetric nonsingular n × n matrix with eigenvalues 

λ1, . . . ,λn. Show that

cond2(A) =
max
1≤i≤n

|λi|

min
1≤i≤n

|λi|



7.5 Orthogonal

Transformations
Orthogonal transformations are one of the most

important tools in numerical linear algebra. The types of

orthogonal transformations that will be introduced in

this section are easy to work with and do not require

much storage. Most important, processes that involve

orthogonal transformations are inherently stable. For

example, let x ∈ R
n

 and x′ = x+e be an

approximation to x: If Q is an orthogonal matrix, then

Qx′ = Qx+Qe

The error in Qx′
 is Qe. With respect to the 2-norm, the

vector Qe is the same size as e;

‖Qe‖2 = ∥e∥2

Similarly, if A′ = A + E, then

QA′ = QA + QE

and

‖QE‖2 = ‖E‖2

When an orthogonal transformation is applied to a

vector or matrix, the error will not grow with respect to

the 2-norm.

Elementary Orthogonal

Transformations
By an elementary orthogonal matrix, we mean a matrix

of the form

T



Q = I − 2uuT

where u ∈ Rn
 and ‖u∥2 = 1. To see that Q is

orthogonal, note that

QT = (I − 2uuT)
T

= I − 2uuT = Q

and

Thus, if Q is an elementary orthogonal matrix, then

QT = Q−1 = Q

The matrix Q = I − 2uuT
 is completely determined by

the unit vector u. Rather than store all n2
 entries of Q,

we need store only the vector u. To compute Qx, note

that

Qx = (I − 2uuT)x = x − 2αu

where α = uT x.

The matrix product QA is computed as

QA = (Qa1, Qa2, . . . , Qan)

where

Elementary orthogonal transformations can be used to

obtain a QR factorization of A, and this, in turn, can be

used to solve a linear system Ax = b. As with Gaussian

elimination, the elementary matrices are chosen so as to

produce zeros in the coefficient matrix. To see how this is

done, let us consider the problem of finding a unit vector

u such that

(I − 2uuT)x = (α, 0, . . . , 0)T = αe1

for a given vector x ∈ Rn
.

QT Q = Q2 = (I − 2uuT)(I − 2uuT)

= I − 4uuT + 4u(uT u)uT

= I

Qai = ai − 2αiu αi = uT ai



Householder Transformations
Let H = I − 2uuT

. If Hx = αe1, then, since H is

orthogonal, it follows that

|α| = ‖αe1∥2 = ‖Hx‖2 = ∥x∥2

If we take α = ‖x∥2 or α = −∥x∥2, then since 

Hx = αe1, and H is its own inverse, we have

x = H(αe1) = α(e1 − (2u1)u)

(1)

Thus,

Solving for the ui’s, we get

If we let

then

−2αu1 = [2α(α − x1)]1/2 = (2β)1/2

It follows that

If we set v = (x1 − α, x2,  . . . , xn)T
, then

∥v∥2
2 = (x1 − α)2 +

n

Σ
i=2

x2
i = 2α(α − x1)

x1 = α(1 − 2u2
1)

x2 = −2αu1u2

⋮
xn = −2αu1u2

u1 = ±( α − x1
2α

)
1/2

ui = for i = 2, . . . , n
−xi

2αu1

u1 = −( α − x1
2α

)
1/2

and set β = α(α − x1),

u = (− 1
2αu1

)(−2αu2
1, x2, . . . ,xn)

T

= 1
√2β

(x1 − α, x2, . . . , xn)T



and hence

∥v∥2 = √2β

Thus,

u =
1

√2β
v =

1
‖v∥2

v

and

H = I − 2uuT = I −
1
β

vvT

(2)

In theory, equation (2) will be valid if α = ±∥x∥2;

however, in finite-precision arithmetic, it does matter

how the sign is chosen. Since the first entry of v is 

v1 = x1 − α, one could possibly lose significant digits

of accuracy if x1 and α are nearly equal and have the

same sign. To avoid this situation, the scalar α should be

defined by

α = {

(3)

In summation, given a vector x ∈ Rn
, if we define α as

in equation (3) and set

and

H = I − 2uuT = I −
1
β

vvT

then

Hx=αe1

The matrix H formed in this way is called a Householder

transformation. The matrix H is determined by the

−∥x∥2 if x1 > 0
∥x∥2 if x1 ≤ 0

β = α(α − x1)

v = T

u = 1
∥v∥2

v = 1
√2β

v

(x1 − α, x2,  . . . , xn)



vector v and the scalar β. For any vector y ∈ R
n

,

Hy = (1 −
1
β

vvT)y = y − (
vT y

β
)v

Rather than store all n2
 entries of H, we need store only

v and β.

Example 1

Given the vector x = (1, 2, 2)T
, find a Householder

matrix that will zero out the last two entries of x.

SOLUTION

Since x1 = 1 > 0, set α = −‖x∥2 = −3 and then set

The Householder matrix is given by

The reader may verify that

Hx = −3e1

Suppose now that we wish to zero out only the last n − k

components of a vector 

x = (x1, . . . , xk, xk+1, . . . , xn)T
. To do this, we let 

x(1) = (x1, . . . , xk−1)T
 and 

x(2) = (xk, xk+1, . . . , xn)T
. Let I (1)

 and I (2)
 denote

the (k − 1) × (k − 1) and 

(n − k + 1) × (n − k + 1) identity matrices,

respectively. By the methods just described, we can

construct a Householder matrix 

H
(2)
k

= I (2) − (1/βk)vkvT
k

 such that

( ) ( )

β = α(α − x1) = 12

v = T = (4, 2, 2)T(x1 − α, x2, x3)

H = I − 1
12 vvT

= 1
3

⎡⎢⎣−1 −2 −2
−2 2 −1
−2 −1 2

⎤⎥⎦



H
(2)
k

x(2) = αe
(2)
1

where α = ±‖x(2)‖2 and e
(2)
1  is the first column

vector of the (n − k + 1) × (n − k + 1) identity

matrix. Let

Hk = [ ]

(4)

It follows that

Hkx = [ ][ ] = [ ] = [ ]

Remarks
1. The Householder matrix Hk defined in equation (4) is an

elementary orthogonal matrix. If we let

then

Hk = I −
1
βk

vvT = I − 2uuT

2. Hk acts like the identity matrix on the first k − 1 coordinates of

any vector y ∈ R
n

. If y = (y1, . . . , yk−1, yk, . . . , yn)T
, 

y(1) = (y1, . . . , yk−1)T
 and y(2) = (yk, . . . , yn)T

, then

Hky = [ ][ ] = [ ]

In particular, if y(2) = 0, then Hky = y.

3. It is generally not necessary to store the entire matrix Hk. It

suffices to store the vector vk and the scalar βk.

Example 2
Find a Householder matrix that zeroes out the last two

entries of y = (3, 1, 2, 2)T
 while leaving the first entry

I (1) O

O H
(2)
k

I (1) O

O H
(2)
k

x(1)

x(2)

(1)
x(1)

H
(2)
k x(2)

I x(1)

αe
(2)
1

v = [ ] and u = (1/∥v∥)v
0

vk

I (1) O

O H
(2)
k

y(1)

y(2)

y(1)

H
(2)
k

y(2)



unchanged.

SOLUTION

The Householder matrix will change only the last three

entries of y. These entries correspond to the vector 

x = (1, 2, 2)T
 in R

3
. But this is the vector whose last

two entries were zeroed out in Example 1. The 3 × 3
Householder matrix from Example 1 can be used to form

a 4 × 4 matrix

H =

which will have the desired effect on y. We leave it to the

reader to verify that Hy = (3, −3, 0, 0)T
.

We are now ready to apply Householder transformations

to solve linear systems. If A is a nonsingular n × n

matrix, we can use Householder transformations to

reduce A to strict triangular form. To begin with, we can

find a Householder transformation 

H1 = I − (1/β1)v1vT
1  that, when applied to the first

column of A, will give a multiple of e1. Thus, H1A will

be of the form

We can then find a Householder transformation H2 that

will zero out the last n − 2 elements in the second

column of H1A while leaving the first element in that

column unchanged. It follows from remark 2 that H2

will have no effect on the first column of H1A, so

multiplication by H2 yields a matrix of the form

⎡⎢⎣1 0 0 0

0 − 1
3 − 2

3 − 2
3

0 − 2
3

2
3 − 1

3
0 − 2

3 − 1
3

2
3

⎤⎥⎦⎡⎢⎣× × ⋅ ⋅ ⋅ ×
0 × ⋅ ⋅ ⋅ ×
0 × ⋅ ⋅ ⋅ ×

⋮
0 × ⋅ ⋅ ⋅ ×

⎤⎥⎦



H2H1A =

We can continue to apply Householder transformations

in this fashion until we end up with an upper triangular

matrix, which we will denote by R. Thus,

Hn−1  ⋅ ⋅ ⋅ H2H1A = R

It follows that

Let Q = H1H2 ⋅ ⋅ ⋅ Hn−1. The matrix Q is orthogonal

and A can be factored into the product of an orthogonal

matrix times an upper triangular matrix:

A = QR

After A has been factored into a product QR, the system 

Ax = b is easily solved. Indeed, if we multiply through

by QT
, we end up with the upper triangular system 

Rx = c, where c = QT b. Since Q is a product of

Householder matrices, it is not necessary to perform the

matrix multiplications to compute Q explicitly. Instead,

we can calculate c directly by performing a sequence of

Householder transformations on b:

c = Hn−1 ⋅ ⋅ ⋅ H2H1b

(5)

The system Rx = c can then be solved using back

substitution.

Operation Count
In solving an n × n system by means of Householder

transformations, most of the work is done in reducing A

⎡⎢⎣× × × ⋅ ⋅ ⋅ ×
0 × × ⋅ ⋅ ⋅ ×
0 0 × ⋅ ⋅ ⋅ ×

⋮
0 0 × ⋅ ⋅ ⋅ ×

⎤⎥⎦A = H −1
1 H −1

2 ⋅ ⋅ ⋅ H −1
n−1R

= H1H2  ⋅ ⋅ ⋅  Hn−1R



to triangular form. The number of operations required is

approximately 
2
3 n3

 multiplications, 
2
3 n3

 additions,

and n − 1 square roots.

Rotations and Reflections
Often, it will be desirable to have a transformation that

zeroes out only a single entry of a vector. In this case, it is

convenient to use either a rotation or a reflection. Let us

consider first the two-dimensional case.

Let

and let

x = [ ] = [ ]

be a vector in R2
. Then

[ ]

R represents a rotation in the plane by an angle θ. The

matrix G has the effect of reflecting x about the line 

x2 = [tan(θ/2)]x1 (see Figure 7.5.1). If we set 

cos θ = x1/r and sin θ = −x2/r, then

Rx = [ ] = [ ]

Figure 7.5.1.

R = [ ] and G = [ ]
cos θ − sin θ

sin θ cos θ
cos θ sin θ

sin θ −cos θ

x1

x2

r cos α
r sin α

Rx = [ ] and Gx =
r cos (θ + α)
r sin(θ + α)

r cos (θ − α)
r sin(θ − α)

x1 cos θ − x2 sin θ
x1 sin θ + x2  cos θ

r

0



Figure 7.5.1. Full Alternative Text

If we set cos θ = x1/r and θ = x2/r, then

Gx = [ ] = [ ]

Both R and G are orthogonal matrices. The matrix G is

also symmetric. Indeed, G is an elementary orthogonal

x1 cos θ + x2 sin θ
x1 sin θ − x2  cos θ

r

0

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig07-05-001.xhtml#la_fig07-05-001


matrix. If we let u = (sin θ/2, −cos θ/2)T
, then 

G = I − 2uuT
.

Example 3

Let x = (−3, 4)T
. To find a rotation matrix R that

zeroes out the second coordinate of x, set

and set

R = [ ] =

The reader may verify that Rx = 5e1.

To find a reflection matrix G that zeroes out the second

coordinate of x, compute r and cos θ in the same way as

for the rotation matrix, but set

sin θ =
x2

r
=

4
5

and

G = [ ] =

The reader may verify that Gx = 5e1.

Let us now consider the n-dimensional case. Let R and G

be n × n matrices with

and rst = gst = δst for all other entries of R and G.

Thus, R and G resemble the identity matrix, except for

r = √(−3)2 + 42 = 5

cos θ = x1
r = − 3

5
sin θ = − x2

r = − 4
5

cos θ − sin θ

sin θ cos θ

⎡⎢⎣− 3
5

4
5

− 4
5

− 3
5

⎤⎥⎦cos θ sin θ

sin θ −cos θ

⎡⎢⎣− 3
5

4
5

4
5

3
5

⎤⎥⎦rii = rjj = cos θ gii = cos θ, gjj = −cos θ
rji = sin θ, rij = − sin θ gji = gij = sin θ



the (i, i), (i, j), (j, j), and (j, i) positions. Let c = cos θ
and s = sin θ. If x ∈ R

n
, then

Rx = (x1, . . . , xi−1, xic − xjs, xi+1, . . . , xj−1, xis + xjc, xj+1, . . . , xn)T

and

Gx = (x1, . . . , xi−1, xic + xjs, xi+1, . . . , xj−1, xis − xjc, xj+1, . . . , xn)T

The transformations R and G alter only the ith and jth

components of a vector; they have no effect on the other

coordinates. We will refer to R as a plane rotation and to

G as a Givens transformation or a Givens reflection. If

we set

then the jth component of Rx will be 0. If we set

then the jth component of Gx will be 0.

Example 4

Let x = (5, 8, 12)T
. Find a rotation matrix R that

zeroes out the third entry of x but leaves the second entry

of x unchanged.

SOLUTION

Since R will act only on x1 and x3, set

and set

s = −
xj

rc = xi
r and (r = √x2

i + x2
j)

s =
xj
rc = xi

r and

r = √x2
1 + x2

3 = 13

c = x1
r = 5

13
s = −

x3
r = − 12

13



R = =

The reader may verify that Rx = (13, 8, 0)T
.

Given a nonsingular n × n matrix A, we can use either

plane rotations or Givens transformations to obtain a QR

factorization of A. Let G21 be the Givens transformation

acting on the first and second coordinates, which when

applied to A results in a zero in the (2, 1) position. We

can apply another Givens transformation, G31, to G21A

to obtain a zero in the (3, 1) position. This process can be

continued until the last n − 1 entries in the first column

have been eliminated:

Gn1 ⋅ ⋅ ⋅ G31G21A =

At the next step, Givens transformations 

G32, G42, . . . , Gn2 are used to eliminate the last n − 2
entries in the second column. The process is continued

until all elements below the diagonal have been

eliminated.

If we let 

,

then A = QR and the system Ax = b is equivalent to

the system

Rx = QT b

This system can be solved by back substitution.

Operation Count

⎡⎢⎣c 0 −s

0 1 0
s 0 c

⎤⎥⎦ ⎡⎢⎣ 5
13 0 12

13
0 1 0

− 12
13 0 5

13

⎤⎥⎦⎡⎢⎣× × ⋅ ⋅ ⋅ ×
0 × ⋅ ⋅ ⋅ ×
0 × ⋅ ⋅ ⋅ ×

⋮
0 × ⋅ ⋅ ⋅ ×

⎤⎥⎦(Gn,n−1) ⋅ ⋅ ⋅ (Gn2 ⋅ ⋅ ⋅ G32)(Gn1 ⋅ ⋅ ⋅ G21)A = R (R upper triangular)

QT = (Gn,n−1) ⋅ ⋅ ⋅ (Gn2 ⋅ ⋅ ⋅ G32)(Gn1 ⋅ ⋅ ⋅ G21)



The QR factorization of A by means of Givens

transformations or plane rotations requires roughly 
4
3 n3

multiplications, 
2
3 n3

 additions, and 
1
2 n2

 square roots.

The QR Factorization for

Solving General Linear

Systems
Given a linear system Ax = b consisting of n equations

in n unknowns, one can use either Householder

matrices, rotations, or Givens transformations to

compute a QR factorization of A. The linear system can

then be solved by setting c = QT b and using back

substitution to solve Rx = c. If Householder matrices

are used to compute the QR factorization, the operation

count is approximately 
2
3 n3

 multiplications and 
2
3 n3

additions, and it is double that amount if either rotations

or Givens transformations are used. However, solving

the same system using Gaussian elimination would only

involve roughly 
1
3 n3

 multiplications and 
1
3 n3

 additions.

So solving the system using Gaussian elimination is twice

as fast as solving it using a Householder QR factorization

and 4 times as fast as solving the system using a QR

factorization based on either plane rotations or Givens

transformations.

For an overdetermined system Ax = b, one needs to

find a least squares solution. In this case, one could form

the normal equations and then solve using Gaussian

elimination; however, there are problems with this

approach when the computations are carried out in

finite-precision arithmetic. Alternatively, if the

coefficient matrix A is m × n with rank n, then one can

use Householder matrices to obtain a QR factorization of

A and this, in turn, can be used to solve the least squares

problem. The numerical methods for solving least



squares problems will be discussed in greater detail in

Section 7.7.



Section 7.5 Exercises

1. For each of the following vectors x, find a rotation matrix R such

that Rx = ||x||2e1:

1. x = (1, 1)T

2. x = (√3, −1)
T

3. x = (−4, 3)T

2. Given x ∈ R
3

, define

For each of the following, determine a Givens transformation Gij

such that the ith and jth coordinates of Gijx are rij and 0,

respectively:

1. x = (3, 1, 4)T , i = 1, j = 3

2. x = (1, −1, 2)T , i = 1, j = 2

3. x = (4, 1, √3)
T

, i = 2, j = 3

4. x = (4, 1, √3)
T

, i = 3, j = 2

3. For each of the given vectors x, find a Householder transformation

that zeroes out the last two entries of the vector.

1. x = (−1, 8, −4)T

2. x = (3, 6, 2)T

3. x = (0, −3, 4)T

4. For each of the following, find a Householder transformation that

zeroes out the last two coordinates of the vector:

1. x = (5, 1, 4, 8)T

2. x = (4, −3, −2, −1, 2)T

5. Let

rij = (x2
i + x2

j)
1/2

i, j = 1, 2, 3



A =

1. Determine the scalar β and vector v for the Householder

matrix H = I − (1/β)vvT
 that zeroes out the last

three entries of a1.

2. Without explicitly forming the matrix H, compute the

product HA.

6. Let

1. Use Householder transformations to transform A into an

upper triangular matrix R. Also, transform the vector b;

that is, compute c = H2H1b.

2. Solve Rx = c for x and check your answer by

computing the residual r = b − Ax.

7. For each of the following systems, use a Givens reflection to

transform the system to upper triangular form and then solve the

upper triangular system:

1. 

2. 

3. 

8. Suppose that you wish to eliminate the last coordinate of a vector

x and leave the first n − 2 coordinates unchanged. How many

operations are necessary if this is to be done by a Givens

transformation G? A Householder transformation H? If A is an 

n × n matrix, how many operations are required to compute GA

and HA?

9. Let Hk = I − 2uuT
 be a Householder transformation with

u = (0, … , 0, uk, uk+1, … , un)T

Let b ∈ R
n

 and let A be an n × n matrix. How many additions

and multiplications are necessary to compute

⎡⎢⎣1 3 −2

1 1 1

1 −5 1

1 −1 2

⎤⎥⎦b =A = and
⎡⎢⎣−1 3

2
1
2

2 8 8

−2 −7 1

⎤⎥⎦ ⎡⎢⎣ 11
2

0

1

⎤⎥⎦3x1 + 8x2 = 5

4x1 − x2 = −5

x1 + 4x2 = 5

x1 + 2x2 = 1

4x1 − 4x2 + x3 = 2

x2 + 3x3 = 2

−3x1 + 3x2 − 2x3 = 1



1. Hkb?

2. HkA?

10. Let QT = Gn−k … G2G1, where each Gi is a Givens

transformation. Let b ∈ R
n

 and let A be an n × n matrix. How

many additions and multiplications are necessary to compute

1. QT b?

2. QT A?

11. Let R1 and R2 be two 2 × 2 rotation matrices, and let G1 and G2

be two 2 × 2 Givens transformations. What type of

transformations are each of the following?

1. R1R2

2. G1G2

3. R1G1

4. G1R1

12. Let x and y be distinct vectors in R
n

 with ||x||2 = ||y||2. Define

Show that

1. ||x − y||22 = 2(x − y)T
x

2. Qx = y

13. Let u be a unit vector in R
n

 and let

Q = I − 2uuT

1. Show that u is an eigenvector of Q. What is the

corresponding eigenvalue?

2. Let z be a nonzero vector in R
n

 that is orthogonal to u.

Show that z is an eigenvector of Q belonging to the

eigenvalue λ = 1.

3. Show that the eigenvalue λ = 1 must have multiplicity 

n − 1. What is the value of det(Q)?

14. Let R be an n × n plane rotation. What is the value of det(R)?

Show that R is not an elementary orthogonal matrix.

15. Let A = Q1R1 = Q2R2, where Q1 and Q2 are orthogonal and 

R1 and R2 are both upper triangular and nonsingular.

1. Show that QT
1 Q2 is diagonal.

Q = I − 2uuTu = 1
||x − y||2

(x − y) and



2. How do R1 and R2 compare? Explain.

16. Let A = xyT
, where x ∈ R

m
, y ∈ R

n
, and both x and y are

nonzero vectors. Show that A has a singular value decomposition

of the form H1ΣH2, where H1 and H2 are Householder

transformations and

17. Let

R = [ ]

Show that if θ is not an integer multiple of π, then R can be

factored into a product R = ULU , where

This type of factorization of a rotation matrix arises in applications

involving wavelets and filter bases.

σ1 = ||x|| ||y||, σ2 = σ3 = … = σn = 0

cos θ − sin θ

sin θ cos θ

L = [ ]U = [ ] and
1 cos θ−1

sin θ

0 1

1 0

sin θ 1



7.6 The Eigenvalue Problem
In this section, we are concerned with numerical

methods for computing the eigenvalues and eigenvectors

of an n × n matrix A. The first method we study is called

the power method. The power method is an iterative

method for finding the dominant eigenvalue of a matrix

and a corresponding eigenvector. By the dominant

eigenvalue, we mean an eigenvalue λ1 satisfying 

|λ1| > |λi| for i = 2, …, n. If the eigenvalues of A

satisfy

|λ1| > |λ2| > ⋅ ⋅ ⋅ > |λn|

then the power method can be used to compute the

eigenvalues one at a time. The second method, the QR

algorithm, is an iterative method involving orthogonal

similarity transformations. It has many advantages over

the power method. It will converge whether or not A has

a dominant eigenvalue, and it calculates all the

eigenvalues at the same time.

In the examples in Chapter 6, the eigenvalues were

determined by forming the characteristic polynomial and

finding its roots. However, this procedure is generally

not recommended for numerical computations. The

difficulty is that often a small change in one or more of

the coefficients of the characteristic polynomial can

result in a relatively large change in the computed zeros

of the polynomial. For example, consider the polynomial 

p(x) = x10
. The lead coefficient is 1 and the remaining

coefficients are all 0. If the constant term is altered by

adding −10−10
, we obtain the polynomial 

q(x) = x10 − 10−10
. Although the coefficients of p(x)

and q(x) differ only by 10−10
, the roots of q(x) all have

absolute value 
1
10 , whereas the roots of p(x) are all 0.

Thus, even when the coefficients of the characteristic



polynomial have been determined accurately, the

computed eigenvalues may involve significant error. For

this reason, the methods presented in this section do not

involve the characteristic polynomial. To see that there is

some advantage to working directly with the matrix A,

we must determine the effect that small changes in the

entries of A have on the eigenvalues. This is done in the

next theorem.

Theorem 7.6.1
Let A be an n × n matrix with n linearly independent

eigenvectors, and let X be a matrix that diagonalizes A.

That is,

X−1 AX = D =

If A′ = A + E and λ’ is an eigenvalue of A’, then

min
1≤i≤n

  λ′ − λi ≤ cond2(X)||E||2

(1)

Proof

We may assume that λ′ is unequal to any of the λi′s
(otherwise, there is nothing to prove). Thus, if we set 

D1 = D − λ′I, then D1 is a nonsingular diagonal

matrix. Since λ′ is an eigenvalue of A′, it is also an

eigenvalue of X−1A′X. Therefore, X−1A′X − λ′I  is

singular, and hence D−1
1 (X−1A′X − λ′I) is also

singular. But

Therefore, −1 is an eigenvalue of D−1
1 X−1 EX. It

follows that

1 1 1

⎡⎢⎣λ1

λ2

⋱
λn

⎤⎥⎦∣ ∣D−1
1 (X−1A′X − λ′I) = D−1

1 X−1(A + E − λ′I)X

= D−1
1 X−1 EX + I



|−1| ≤ D−1
1 X−1 EX 2 ≤ D−1

1 2 cond2(X)‖E‖2

The 2-norm of D−1
1  is given by

D−1
1 2 = max

1≤i≤n
|λ′ − λi|

−1

The index i that maximizes |λ′ − λi|
−1

 is the same

index that minimizes |λ′ − λi|. Thus,

min
1≤i≤n

|λ′ − λi| ≤ cond2(X)‖E‖2

∎

If the matrix A is symmetric, we can choose an

orthogonal diagonalizing matrix. In general, if Q is any

orthogonal matrix, then

cond2(Q) = ‖Q‖2‖Q−1‖2 = 1

Hence, (1) simplifies to

min
1≤i≤n

|λ′ − λi| ≤ ‖E‖2

Thus, if A is symmetric and ‖E‖2 is small, the

eigenvalues of A′ will be close to the eigenvalues of A.

We are now ready to talk about some of the methods for

calculating the eigenvalues and eigenvectors of an n × n

matrix A. The first method we will present computes an

eigenvector x of A by successively applying A to a given

vector in R
n

. To see the idea behind the method, let us

assume that A has n linearly independent eigenvectors 

x1, …, xn and that the corresponding eigenvalues

satisfy

|λ1| > |λ2| ≥ ⋅ ⋅ ⋅ ≥ |λn|

(2)

Given an arbitrary vector v0 in R
n

, we can write

∥ ∥ ∥ ∥∥ ∥
v0 = α1x1 + ⋅ ⋅ ⋅ + αnxn

Av0 = α1λ1x1 + α2λ2x2 + ⋅ ⋅ ⋅ + αnλnxn

A2
v0 = α1λ2

1x1 + α2λ2
2x2 + ⋅ ⋅ ⋅ + αnλ2

nxn



and, in general,

Ak
v0 = α1λk

1x1 + α2λk
2x2 + ⋅ ⋅ ⋅ + αnλk

nxn

If we define

then

1

λk
1

vk = α1x1 + α2(
λ2

λ1
)

k

  x2 + ⋅ ⋅ ⋅ + αn(
λn

λ1
)

k

 xn

(3)

Since

it follows that

Thus, if α1 ≠ 0, then the sequence {(1/λk
1)vk}

converges to an eigenvector α1x1 of A. There are some

obvious difficulties with the method as it has been

presented so far. The main difficulty is that we cannot

compute (1/λk
1)vk, since λ1 is unknown. But even if λ1

were known, there would be difficulties because of λk
1

approaching 0 or ±∞. Fortunately, however, we do not

have to scale the sequence {vk} using 1/λk
1. If the vk′s

are scaled so that we obtain unit vectors at each step, the

sequence will converge to a unit vector in the direction of

x1. The eigenvalue λ1 can be computed at the same

time. This method of computing the eigenvalue of largest

magnitude and the corresponding eigenvector is called

the power method.

The Power Method
In this method, two sequences {vk} and {uk} are

defined recursively. To start, u0 can be any nonzero

vk = Ak
v0 k = 1, 2, …

λi

λ1
< 1 for i = 2, 3, …, n∣ ∣1

λk
1

vk → α1x1 as k → ∞



vector in R
n

. Once uk has been determined, the vectors 

vk+1 and uk+1 are calculated as follows:

1. Set vk+1 = Auk.

2. Find the coordinate jk+1 of vk+1 that has the maximum absolute

value.

3. Set uk+1 = (1/vjk+1)vk+1.

The sequence {uk} has the property that, for k ≥ 1, 

∥uk∥∞ = ujk = 1. If the eigenvalues of A satisfy (2)

and u0 can be written as a linear combination of

eigenvectors α1x1 + ⋅ ⋅ ⋅ + αnxn with α1 ≠ 0, the

sequence {uk} will converge to an eigenvector y of λ1. If

k is large, then uk will be a good approximation to y and 

vk+1 = Auk will be a good approximation to λ1y.

Since the jkth coordinate of uk is 1, it follows that the jk

th coordinate of vk+1 will be a good approximation to λ1

.

In view of (3), we can expect that the uk’s will converge

to y at the same rate at which (λ2/λ1)k
 is converging to

0. Thus, if |λ2| is nearly as large as |λ1|, the convergence

will be slow.

Example 1
Let

A = [ ]

It is an easy matter to determine the exact eigenvalues of

A. These turn out to be λ1 = 3 and λ2 = 1, with

corresponding eigenvectors x1 = (1, 1)T
 and 

x2 = (1, −1)T
. To illustrate how the vectors generated

by the power method converge, we will apply the method

with u0 = (2, 1)T
:

2 1
1 2



If u3 = (1.00, 0.98)T
 is taken as an approximate

eigenvector, then 2.98 is the approximate value of λ1.

Thus, with only a few iterations, the approximation for 

λ1 involves an error of only 0.02.

The power method is particularly useful in applications

where only a few of the dominant eigenvalues and

eigenvectors are needed. For example, in the analytic

hierarchy process (AHP), only the eigenvectors

belonging to the dominant eigenvalues are needed to

determine the weight vectors for the decision process

(see Section 6.8).

Application 1 Computation of

AHP Weight Vectorse
In Application 4 of Section 6.8 we considered an example

in which a search committee at a college makes a hiring

choice using AHP. In the example, the committee

decided that teaching was twice as important as research

and 8 times as important as professional activities. They

also decided that research should be 3 times as

important as professional activities. The comparison

matrix for this problem is

C =

v1 = Au0 = [ ], u1 = 1
5 v1[ ]

v2 = Au1 = [ ], u2 = 1
2.8 v2 = [ ] ≈ [ ]

v3 = Au2 = 1
14 [ ], u3 = 14

41 v3 = [ ] ≈ [ ]

v4 = Au3 ≈ [ ]

5
4

1.0
0.8

2.8
2.6

1
13
14

1.00
0.93

41
40

1
40
41

1.00
0.98

2.98
2.95

⎡⎢⎣ 1 2 8
1
2 1 3
1
8

1
3 1

⎤⎥⎦



The eigenvector belonging to the dominant eigenvalue

can be computed using the power method. Since the

dominant eigenvalue is close to 3 and the remaining

eigenvalues are close to 0, the power method should

converge rapidly. In this case, we use u0 = (1, 1, 1)T
 as

our starting vector and normalize at each step so that the

entries of uk = (k ≥ 1) all add up to 1. Using this

process, we end up with the following sequence of

vectors:

where all entries are displayed to four digits of accuracy.

For k ≥ 3, the computed vectors uk will all agree to three

digits of accuracy. Thus, if we take w = u4 as our

weight vector, it should be accurate to three digits.

For an n × n comparison matrix C, the power method

algorithm for computing AHP weights can be

summarized as follows:

1. Set u0 = e, where e is a vector in R
n

 whose entries are all equal

to 1.

2. For k = 1, 2, … ,

The iterations should be terminated when uk and uk+1 agree to

the desired digits of accuracy. We then use the computed

eigenvector uk+1 as an AHP weight vector.

The power method can be used to compute the

eigenvalue λ1 of largest magnitude and a corresponding

eigenvector y1. What about finding additional

eigenvalues and eigenvectors? If we could reduce the

problem of finding additional eigenvalues of A to that of

finding the eigenvalues of some (n − 1) × (n − 1)
matrix A1, then the power method could be applied to 

u1 = , u2 = , u3 = , u4 =
⎡⎢⎣0.6486

0.2654
0.0860

⎤⎥⎦ ⎡⎢⎣0.6286
0.2854
0.0860

⎤⎥⎦ ⎡⎢⎣0.6281
0.2854
0.0864

⎤⎥⎦ ⎡⎢⎣0.6282
0.2854
0.0864

⎤⎥⎦Set v = Auk

s =
n

Σ
i=1

 vi

uk+1 = 1
s

v



A1. This can actually be done by a process called

deflation.

Deflation
The idea behind deflation is to find a nonsingular matrix

H such that HAH−1
 is a matrix of the form

Since A and NAH−1
 are similar, they have the same

characteristic polynomials. Thus, if NAH−1
 is of the

form (4), then

det(A − λI) = det(HAH−1 − λI) = (λ1 − λ)det(A1 − λI)

and it follows that the remaining n − 1 eigenvalues of A

are the eigenvalues of A1. The question remains: How do

we find such a matrix H? Note that the form (4) requires

that the first column of NAH−1
 be λ1e1. The first

column of NAH−1
 is NAH−1

e1. Thus,

HAH−1
e1 = λ1e1

or, equivalently,

A(H −1
e1) = λ1(H −1

e1)

So H −1e1 is in the eigenspace corresponding to λ1.

Thus, for some eigenvector x1 belonging to λ1,

1



We must find a matrix H such that  for some

eigenvector x  belonging to λ1. This can be done by

means of a Householder transformation. If y1 is the

computed eigenvector belonging to λ1, set

x1 =
1

∥y1∥2
y1

Since ∥x1∥2 = 1, we can find a Householder

transformation H such that

Hx1 = e1

Because H is a Householder transformation, it follows

that H −1 = H, and hence HAH is the desired similarity

transformation.

Reduction to Hessenberg

Form
The standard methods for finding eigenvalues are all

iterative. The amount of work required in each iteration

is often prohibitively high unless, initially, A is in some

special form that is easier to work with. If this is not the

case, the standard procedure is to reduce A to a simpler

form by means of similarity transformations. Generally,

Householder matrices are used to transform A into a

matrix of the form

A matrix in this form is said to be in upper Hessenberg

form. Thus, B is in upper Hessenberg form if and only if 

H −1
e1 = x1 or Hx1 = e1

Hx1 = e1

1

⎡⎢⎣× × … × × ×
× × … × × ×
0 × … × × ×
0 0 … × × ×

⋮
0 0 … × × ×
0 0 … 0 × ×

⎤⎥⎦



bij = 0 whenever i ≥ j + 2.

A matrix A can be transformed into upper Hessenberg

form in the following manner: First, choose a

Householder matrix H1 so that H1A is of the form

The matrix H1 will be of the form

and hence postmultiplication of H1A by H1 will leave

the first column unchanged. If A(1) = H1AH1, then 

A(1)
 is a matrix of the form

Since H1 is a Householder matrix, it follows that 

H −1
1 = H1, and hence A(1)

 is similar to A. Next, a

Householder matrix H2 is chosen so that

H2(a
(1)
12 , a

(1)
22 , … , a

(1)
n2 )

T

= (a
(1)
12 , a

(1)
22 , ×, 0,…, 0)

T

The matrix H2 will be of the form

⎡⎢⎣a11 a12 … a1n

× × … ×
0 × … ×

⋮
0 × … ×

⎤⎥⎦⎡⎢⎣1 0 … 0
0 × … ×

⋮
0 × … ×

⎤⎥⎦⎡⎢⎣a
(1)
11 a

(1)
12 ⋯ a

(1)
1n

a
(1)
21 a

(1)
22 ⋯ a

(1)
2n

0 a
(1)
32 ⋯ a

(1)
3n

⋮

0 a
(1)
n2 ⋯ a

(1)
nm

⎤⎥⎦



Multiplication of A(1)
 on the left by H2 will leave the

first two rows and the first column unchanged:

H2A(1) =

Postmultiplication of H2A(1)
 by H2 will leave the first

two columns unchanged. Thus, A(2) = H2A(1)H2 is of

the form

This process may be continued until we end up with an

upper Hessenberg matrix

H = A(n−2) = Hn−2 … H2H1AH1H2 … Hn−2

which is similar to A.

If, in particular, A is symmetric, then, since

⎡⎢⎣a
(1)
11 a

(1)
12 a

(1)
13 ⋯ a

(1)
1n

a
(1)
21 a

(1)
22 a

(1)
23 ⋯ a

(1)
2n

0 × × ⋯ ×
0 0 × ⋯ ×

⋮
0 0 × ⋯ ×

⎤⎥⎦⎡⎢⎣× × × ⋯ ×
× × × ⋯ ×
0 × × ⋯ ×
0 0 × ⋯ ×

⋮
0 0 × ⋯ ×

⎤⎥⎦T T T T T T T T



it follows that H is tridiagonal. Thus, any n × n matrix A

can be reduced to upper Hessenberg form by similarity

transformations. If A is symmetric, the reduction will

yield a symmetric tridiagonal matrix.

We close this section by outlining one of the best

methods available for computing the eigenvalues of a

matrix. The method is called the QR algorithm and was

developed by John G. F. Francis in 1961.

QR Algorithm
Given an n × n matrix A, factor it into a product Q1R1,

where Q1 is orthogonal and R is upper triangular.

Define

A1 = A = Q1R1

and

A2 = QT
1 AQ1 = R1Q1

Factor A2 into a product Q2R2, where Q2 is orthogonal

and R2 is upper triangular. Define

A3 = QT
2 A2Q2 = R2Q2

Note that A2 = QT
1 AQ1 and 

A3 = (Q1Q2)T A(Q1Q2) are both similar to A. We can

continue in this manner and obtain a sequence of similar

matrices. In general, if

Ak = QkRk

then Ak+1 is defined to be RkQk. It can be shown that,

under very general conditions, the sequence of matrices

defined in this way converges to a matrix T of the form

H T = H T
n−2 … H T

2 H T
1 AT H T

1 H T
2 … H T

n−2

= Hn−2 … H2H1AH1H2 … Hn−2

= H

1 



T =

where the Bi′s are either 1 × 1 or 2 × 2 diagonal

blocks. The matrix T is the real Schur form of A. (See

Theorem 6.4.6.) Each 2 × 2 diagonal block of T will

correspond to a pair of complex conjugate eigenvalues of

A. The eigenvalues of A will be eigenvalues of theBi′s. In

the case where A is symmetric, each of the Ak′s will also

be symmetric and the sequence will converge to a

diagonal matrix.

Example 2
Let A1 be the matrix from Example 1. The QR

factorization of A1 requires only a single Givens

transformation:

G1 =
1

√5
 [ ]

Thus,

A2 = G1AG1 =
1
5
[ ][ ][ ] = [ ]

The QR factorization of A2 can be accomplished with the

Givens transformation

G2 =
1

√8.2
 [ ]

It follows that

A3 = G2A2G2 ≈ [ ]

The off-diagonal elements are getting closer to 0 after

each iteration, and the diagonal elements are

approaching the eigenvalues λ1 = 3 and λ2 = 1.

⎡⎢⎣B1 × ⋯ ×
B2 ×

O ⋱
Bs

⎤⎥⎦2 1
1 −2

2 1
1 −2

2 1
1 2

2 1
1 −2

2.8 −0.6
−0.6 1.2

2.8 −0.6
−0.6 −2.8

2.98 0.22
0.22 1.02



Remarks

1. Because of the amount of work required at each iteration of the

QR algorithm, it is important that the starting matrix A be in

either Hessenberg or symmetric tridiagonal form. If this is not the

case, we should perform similarity transformations on A to obtain

a matrix A1 that is in one of these forms.

2. If Ak is in upper Hessenberg form, the QR factorization can be

carried out with n − 1 Givens transformations.

Gn,n−1 … G32G21Ak = Rk

Setting

QT
k = Gn,n−1 … G32G21

we have

Ak = QkRk

and

Ak+1 = QT
k AkQk

To compute Ak+1, it is not necessary to determine Qk explicitly.

We need only keep track of the n − 1 Givens transformations.

When Rk is postmultiplied by G21, the resulting matrix will have

the (2, 1) entry filled in. The other entries below the diagonals will

all still be zero. Postmultiplying RkG21 by G32 will have the effect

of filling in the (3, 2) position. Postmultiplication of RkG21G32 by

G43 will fill in the (4, 3) position, and so on. Thus, the resulting

matrix Ak+1 = RkG21G32 … Gn,n−1 will be in upper

Hessenberg form. If A1 is a symmetric tridiagonal matrix, then

each succeeding Ai will be upper Hessenberg and symmetric.

Hence, A2, A3, … will all be tridiagonal.

3. As in the power method, convergence may be slow when some of

the eigenvalues are close together. To speed up convergence, it is

customary to introduce origin shifts. At the kth step, a scalar αk is

chosen and Ak − αkI  (rather than Ak) is decomposed into a

product QkRk. The matrix Ak+1 is defined by

Ak+1 = RkQk + αkI

Note that

QT
k AkQk = QT

k (QkRk + αkI)Qk = RkQk + αkI = Ak+1

so Ak and Ak+1 are similar. With the proper choice of shifts αk,

the convergence can be greatly accelerated.

4. In our brief discussion, we have presented only an outline of the

method. Many of the details, such as how to choose the origin

shifts, have been omitted. For a more thorough discussion and a

proof of convergence, see Wilkinson [39].





Section 7.6 Exercises

1. Let

A = [ ]

1. Apply one iteration of the power method to A with any

nonzero starting vector.

2. Apply one iteration of the QR algorithm to A.

3. Determine the exact eigenvalues of A by solving the

characteristic equation, and determine the eigen-space

corresponding to the largest eigenvalue. Compare your

answers with those to parts (a) and (b).

2. Let

1. Apply the power method to A to compute v1, u1, v2, u2,

and v3. (Round off to two decimal places.)

2. Determine an approximation λ′
1 to the largest eigenvalue

of A from the coordinates of v3. Determine the exact

value of λ1 and compare it with λ′
1. What is the relative

error?

3. Let

1. Compute u1, u2,u3, and u4, using the power method.

2. Explain why the power method will fail to converge in

this case.

4. Let

A = A1 = [ ]

Compute A2 and A3, using the QR algorithm. Compute the exact

eigenvalues of A and compare them with the diagonal elements of 

A3. To how many decimal places do they agree?

1 1

1 1

A = and u0 =
⎡⎢⎣ 2 1 0

1 3 1

0 1 2

⎤⎥⎦ ⎡⎢⎣ 1

1

1

⎤⎥⎦A = [ ] and u0 = [ ]
1 2

−1 −1

1

1

1 1

1 3



5. Let

A =

1. Verify that λ1 = 4 is an eigenvalue of A and 

y1 = (2, −2, 1)T
 is an eigenvector belonging to λ1.

2. Find a Householder transformation H such that HAH is

of the form

3. Compute HAH and find the remaining eigenvalues of A.

6. Let A be an n × n matrix with distinct real eigenvalues 

λ1, λ2, … , λn. Let λ be a scalar that is not an eigenvalue of A

and let B = (A − λI)−1
. Show that

1. the scalars μj = 1/(λj − λ), j = 1, … , n are the

eigenvalues of B.

2. if xj is an eigenvector of B belonging to μj, then xj is an

eigenvector of A belonging to λj.

3. if the power method is applied to B, then the sequence of

vectors will converge to an eigenvector of A belonging to

the eigenvalue that is closest to λ. [The convergence will

be rapid if λ is much closer to one λi than to any of the

others. This method of computing eigenvectors by using

powers of (A − λI)−1
 is called the inverse power

method.]

7. Let x = (x1, … , xn)T
 be an eigenvector of A belonging to λ.

Show that if |xi| = ∥x∥∞, then

1. 

n

Σ
j=1

 aijxj = λxi

2. 

8. Let λ be an eigenvalue of an n × n matrix A. Show that for some

index j,

9. Let A be a matrix with eigenvalues λ1, … , λn and let λ be an

eigenvalue of A + E. Let X be a matrix that diagonalizes A and let

⎡⎢⎣ 5 2 2

−2 1 −2

−3 −4 2

⎤⎥⎦⎡⎢⎣ 4 × ×

0 × ×

0 × ×

⎤⎥⎦|λ − aii| ≤
n

Σ
j=1
j≠i

|aij| (Gerschgorin’s theorem)

|λ − ajj| ≤
n

Σ
i=1
i≠j

|aij| (column version of Gerschgorin’s theorem)



C = X−1EX. Prove the following:

1. For some i,

|λ − λi| ≤
n

Σ
j=1

 |Cij|

[Hint: λ is an eigenvalue of X−1(A + E)X. Apply

Gerschgorin’s theorem from Exercise 7.]

2. min
1≤j≤n

|λ − λj| ≤ cond∞(X)‖E‖∞

10. Let Ak = QkRk, k = 1, 2, … be the sequence of matrices

derived from A = A1 by applying the QR algorithm. For each

positive integer k, define

Show that

PkAk+1 = AP k

for all k ≥ 1.

11. Let Pk and Uk be defined as in Exercise 10. Show that

1. Uk+1Uk+1 = PkAk+1Uk = AP kUk

2. P kUk = Ak
, and hence

(Q1, Q2 … Qk)(Rk … R2R1)

is the QR factorization of Ak
.

12. Let Rk be a k × k upper triangular matrix and suppose that

RkUk = UkDk

where Uk is an upper triangular matrix with 1’s on the diagonal

and Dk is a diagonal matrix. Let Rk+1 be an upper triangular

matrix of the form

[ ]

where  is not an eigenvalue of Rk. Determine 

(k + 1) × (k + 1) matrices Uk+1 and Dk+1 of the form

such that

Rk+1Uk+1 = Uk+1Dk+1

13. Let R be an n × n upper triangular matrix whose diagonal entries

are all distinct. Let Rk denote the leading principal submatrix of R

Pk = Q1Q2 … Qk and Uk = Rk … R2R1

Rk bk

0T βk

βk

Uk+1 = [ ], Dk+1 = [ ]
Uk xk

0T 1

Dk 0

0T β



of order k and set U1 = (1).

1. Use the result from Exercise 12 to derive an algorithm

for finding the eigenvectors of R. The matrix U of

eigenvectors should be upper triangular with 1’s on the

diagonal.

2. Show that the algorithm requires approximately 
n3

6
floating-point multiplications/divisions.



7.7 Least Squares Problems
In this section, we study computational methods for

finding least squares solutions of overdetermined

systems. Let A be an m × n matrix with m ≥ n and let 

b ∈ R
m

. We consider some methods for computing a

vector x that minimizes ‖b − Ax‖2
2.

Normal Equations
We saw in Chapter 5 that if x̂ satisfies the normal

equations

AT Ax = AT b

then x̂ is a solution to the least squares problem. If A is

of full rank (rank n), then AT A is nonsingular and hence

the system will have a unique solution. Thus, if AT A is

invertible, one possible method for solving the least

squares problem is to form the normal equations and

then solve them by Gaussian elimination. An algorithm

for doing this would have two main parts.

1. Compute B = AT A and c = AT b.

2. Solve Bx = c.

Note that forming the normal equations requires roughly

mn2/2 multiplications. Since AT A is nonsingular, the

matrix B is positive definite. For positive definite

matrices, there are reduction algorithms that require

only half the usual number of multiplications. Thus, the

solution of Bx = c requires roughly n3/6
multiplications. Most of the work then occurs in forming

the normal equations, rather than solving them.

However, the main difficulty with this method is that, in

forming the normal equations, we may well end up



transforming the problem into an ill-conditioned one.

Recall from Section 7.4 that if x′ is the computed

solution of Bx = c and x is the exact solution, then the

inequality

1
cond(B)

∥r∥
∥c∥

≤
∥x − x′∥

∥x∥
≤ cond(B)

∥r∥
∥c∥

shows how the relative error compares to the relative

residual. If A has singular values 

σ1 ≥ σ2 ≥ … ≥ σn > 0, then cond2(A) = σ1/σn.

The singular values of B are σ2
1, σ2

2, … , σ2
n. Thus,

cond2(B) =
σ2

1

σ2
n

= [cond2(A)]2

If, for example, cond2(A) = 104
, the relative error in

the computed solution of the normal equations could be 

108
 times as large as the relative residual. By forming the

normal equations, one could possibly end up doubling

the number of digits of accuracy that are lost in

computing a least squares solution to the system. For

this reason, we should be very careful about using the

normal equations to compute least squares solutions.

Modified Gram–Schmidt

Method for Solving Least

Squares Problems
If A is an m × n matrix (m > n) with rank n, we can

use the Gram–Schmidt process to obtain a factorization, 

A = QR, where Q is an m × n matrix with

orthonormal columns and R is an n × n upper

triangular whose diagonal entries are all positive. In

theory, one could then find a least squares solution to a

system Ax = b in two steps:

1. Set c = QT b.



2. Use back substitution to solve the upper triangular system 

Rx = c for x.

Unfortunately, if the classical Gram–Schmidt method is

used, then because of cancellation of significant digits,

the computed column vectors of Q may fail to be

orthogonal and, as a result, the computed solution x in

step (ii) may not be very accurate. Indeed, if the classical

Gram–Schmidt process is used, it is possible to have

catastrophic cancellation and to end up with a computed

solution x that doesn’t have any digits of accuracy.

Alternatively, one can use the modified Gram–Schmidt

algorithm to compute the QR factorization of A. There

will still be some loss of orthogonality in the computed

column vectors of Q; however, the loss will generally be

much less in this case. Even though there is some loss of

orthogonality, it has been shown that if one uses the

modified Gram–Schmidt QR factorization and computes

the vector c in step (i) by successively modifying the

vector b, then the algorithm will be numerically stable.

Thus rather than computing ck = qk
T b, we set 

ck = qk
T bk, where bk is a modified version of b. We

will not prove numerical stability as the analysis turns

out to be quite involved. The modified Gram–Schmidt

method for computing the least squares solution to an

overdetermined system Ax = b is summarized in the

following algorithm.

Algorithm 7.7.1 Modified

Gram—Schmidt Process for

Least Squares
Given A is a m × n matrix with rank n and b is a vector

in R
m

.

Use Algorithm 5.6.1 to compute the factors Q and R of the

modified Gram–Schmidt QR factorization of A.



Set b1 = b

For k = 1, 2, … , n set

ck = qT
k bk

bk+1 = bk − ckqk

End for loop

Use back substitution to solve Rx = c for x.

The Householder QR

Factorization
For the Gram–Schmidt solution of least squares

problems, we make use of a QR factorization A = QR,

where Q is an m × n matrix with orthonormal columns

and R is an n × n upper triangular matrix. Another

common method for solving least squares problems uses

a different type of QR factorization. The factorization is

obtained by applying a sequence of Householder

transformations to A. In this case, Q will be an m × m

orthogonal matrix and R will be an m × n matrix whose

subdiagonal entries are all 0.

Given an m × n matrix A of full rank, we can apply n

Householder transformations to zero out all the entries

below the diagonal. Thus,

HnHn−1 … H1A = R

where R is of the form

[ ] =

with nonzero diagonal entries. Let

R1

O

⎡⎢⎣× × × … ×
× × … ×

× … ×

⋱ ⋮
×

⎤⎥⎦



QT = Hn … H1 = [ ]

where QT
1  is an n × m matrix consisting of the first n

rows of QT
. Since QT A = R, it follows that

A = QR = ( )[ ] = Q1R1

Let

c = QT b = [ ] = [ ]

The normal equations can be written in the form

RT
1 QT

1 Q1R1x = RT
1 QT

1 b

Since QT
1 Q1 = I  and RT

1  is nonsingular, this equation

simplifies to

R1x = c1

This system can be solved by back substitution. The

solution x = R−1
1 c1 will be the unique solution to the

least squares problem. To compute the residual, note

that

QT r = [ ] − [ ]x = [ ]

so that

In summation, if A is an m × n matrix with full rank,

the least squares problem can be solved as follows:

1. Use Householder transformations to compute

where R is an m × n upper triangular matrix.

2. Partition R and c into block form:

QT
1
T
2Q

Q1 Q2
R1

O

QT
1 b

QT
2 b

c1

c2

c1

c2

R1

O

0

c2

r = Q[ ] and ∥r∥2 = ∥c2∥2
0

c2

R = Hn … H2H1A and c = Hn … H2H1b



where R1 and c1 each have n rows.

3. Use back substitution to solve R1x = c1.

The Pseudoinverse
Now consider the case where the matrix A has rank 

r < n. The singular value decomposition provides the

key to solving the least squares problem in this case. It

can be used to construct a generalized inverse of A. In

the case where A is a nonsingular n × n matrix with

singular value decomposition UΣV T
, the inverse is

given by

A−1 = V Σ−1U T

More generally, if A = UΣV T
 is an m × n matrix of

rank r, then the matrix ∑ will be an m × n matrix of the

form

and we can define

A+ = V Σ+U T

(1)

R = [ ] c = [ ]
R1

O

c1

c2



where Σ+
 is the n × m matrix

Equation (1) gives a natural generalization of the inverse

of a matrix. The matrix A+
 defined by (1) is called the

pseudoinverse of A.

It is also possible to define A+
 by its algebraic

properties, given in the following four conditions.

The Penrose Conditions

1. AXA = A

2. XAX = X

3. (AX)T = AX

4. (XA)T = XA

We claim that if A is an m × n matrix, then there is a

unique n × m matrix X that satisfies these conditions.

Indeed, if we choose X = A+ = V Σ+U T
, then it is

easily verified that X satisfies all four conditions. We

leave this as an exercise for the reader. To show



uniqueness, suppose that Y also satisfies the Penrose

conditions. Then, by successively applying these

conditions, we can argue as follows:

Therefore, X = Y . Thus, A+
 is the unique matrix

satisfying the four Penrose conditions. These conditions

are often used to define the pseudoinverse, and A+
 is

often referred to as the Moore–Penrose pseudoinverse.

To see how the pseudoinverse can be used in solving

least squares problems, let us first consider the case

where A is an m × n matrix of rank n. Then ∑ is of the

form

Σ = [ ]

where  is a nonsingular n × n diagonal matrix. The

matrix AT A is nonsingular and

(AT A)
−1

= V (ΣT Σ)
−1

V T

The solution of the normal equations is given by

Thus, if A has full rank, A+b is the solution to the least

squares problem. Now, what about the case where A has

rank r < n? In this case, there are infinitely many

solutions to the least squares problem. The next theorem

shows that not only is A+b a solution, but it is also the

minimal solution with respect to the 2-norm.

X = XAX (2) Y = Y AY (2)
= AT XT X = Y Y T AT (3)

= T
XT X = Y Y T (AXA)T

= (AT Y T)(AT XT)X = Y (Y T AT)(XT AT)

= Y AXAX (4) = Y AY AX (3)
= Y AX (1) = Y AX (1)

(4)

(AY A) (1) (1)

Σ1

O

Σ1

x =
−1

AT b

= V (ΣT Σ−1)
−1

V T V ΣT U T b

= V (ΣT Σ)
−1

ΣT U T b

= V Σ+U T b

= A+b

(AT A)



Theorem 7.7.1
If A is an m × n matrix of rank r < n with singular

value decomposition UΣV T
, then the vector

x = A+b = V Σ+U T b

minimizes ‖b − Ax‖2
2. Moreover, if z is any other

vector that minimizes ‖b − Ax‖2
2, then 

∥z∥2 > ∥x∥2.

Proof

Let x be a vector in R
n

 and define

where c1 and y1 are vectors in Rr
. Since U T

 is

orthogonal, it follows that

Since c2 is independent of x, it follows that 

‖b − Ax‖2
 will be minimal if and only if

‖c1 − Σ1y1‖ = 0

Thus, x is a solution to the least squares problem if and

only if x = V y, where y is a vector of the form

[ ]

In particular,

c = U T b = [ ] and y = V T x = [ ]
c1

c2

y1

y2

‖ ‖2
2 =

2
2

= ‖ ‖2
2

= [ ] − [ ][ ]
2

2

=
2

2

= ‖ ‖2
2 + ∥c2∥2

2

b − Ax ∥U T b − Σ(V T x)∥c − Σy∥ c1

c2

Σ1 O

O O

y1

y2 ∥∥[ ]
c1 − Σ1y1

c2 ∥c1 − Σ1y1

Σ−1
1 c1

y2

1



is a solution. If z is any other solution, z must be of the

form

z = V y = V [ ]

where ≠ 0. It then follows that

∥z∥2 = ∥y∥2 = Σ−1
1 c1

2
+ ∥y2∥2 > Σ−1

1 c1
2

= ∥x∥2

∎

If the singular value decomposition UΣV T
 of A is

known, it is a simple matter to compute the solution to

the least squares problem. If U = (u1, … , um) and 

V = (v1, … , vn), then, defining y = Σ+U T b, we

have

and hence

Thus, the solution x = A+b can be computed in two

steps:

1. Set yi = (1/σi)uT
i b for i = 1, … , r.

2. Let x = y1v1 + … + yrvr.

We conclude this section by outlining a method for

computing the singular values of a matrix. We saw in the

x = V [ ]

= V [ ][ ]

= V Σ+U T b

= A+b

Σ−1
1 c1

0

Σ−1
1 O

O O

c1

c2

Σ−1
1 c1

y2

y2 ∥ ∥ ∥ ∥yi = 1
σi

uT
i b i = 1, … , r

yi = 0 i = r + 1, … , n

(r = rank of A)

A+b = V y =

= y1v1 + y2v2 + … + yrvr

⎡⎢⎣v11y1 + v12y2 + … + v1ryr

v21y1 + v22y2 + … + v2ryr

⋮
vn1y1 + vn2y2 + … + vnryr

⎤⎥⎦



last section that the eigenvalues of a symmetric matrix

are relatively insensitive to perturbations in the matrix.

The same is true for the singular values of an m × n

matrix. If two matrices A and B are close, their singular

values must also be close. More precisely, if A has the

singular values σ1 ≥ σ2 ≥ … ≥ σn and B has the

singular values ω1 ≥ ω2 ≥ … ≥ ωn, then

(see Datta [23]). Thus, in computing the singular values

of a matrix A, we need not worry that small changes in

the entries of A will cause drastic changes in the

computed singular values.

The problem of computing singular values can be

simplified using orthogonal transformations. If A has

singular value decomposition UΣV T
 and B = HAP T

,

where H is an m × m orthogonal matrix and P is an 

n × n orthogonal matrix, then B has singular value

decomposition (HU)Σ(PV )T
. The matrices A and B

will have the same singular values, and if B has a much

simpler structure than A, it should be easier to compute

its singular values. Indeed, Gene H. Golub and William

Kahan have shown that A can be reduced to upper

bidiagonal form and the reduction can be carried out

using Householder transformations.

Bidiagonalization
Let H1 be a Householder transformation that zeroes out

all the elements below the diagonal in the first column of

A. Let P1 be a Householder transformation such that

postmultiplication of H1A by P1 zeroes out the last 

n − 2 entries of the first row of H1A while leaving the

first column unchanged; that is,

|σi − ωi| ≤ ‖A − B‖2 i = i, … , n



H1AP1 =

The next step is to apply a Householder transformation 

H2 that zeroes out the elements below the diagonal in

the second column of H1AP1 while leaving the first row

and column unchanged:

H2H1AP1 =

H2H1AP1 is then postmultiplied by a Householder

transformation P2 that zeroes out the last n − 3
elements in the second row while leaving the first two

columns and the first row unchanged:

H2H1AP1P2 =

We continue in this manner until we obtain a matrix

B = Hn … H1AP1 … Pn−2

of the form

Since H = Hn … H1 and P T = P1 … Pn−2 are

orthogonal, it follows that B has the same singular values

as A.

⎡⎢⎣× × 0 … 0
0 × × … ×

⋮
0 × × … ×

⎤⎥⎦⎡⎢⎣× × 0 … 0
0 × × … ×
0 0 × …

⋮
0 0 × … ×

⎤⎥⎦⎡⎢⎣× × 0 0 … 0
0 × × 0 … 0
0 0 × × … ×

⋮

0 0 × × … ×

⎤⎥⎦⎡⎢⎣× ×
× ×

⋱ ⋱
× ×

×

⎤⎥⎦



The problem has now been simplified to that of finding

the singular values of an upper bidiagonal matrix B. We

could at this point form the symmetric tridiagonal matrix

BT B and then compute its eigenvalues using the QR

algorithm. The problem with this approach is that, in

forming BT B, we would still be squaring the condition

number, and consequently our computed solution would

be much less reliable. The method we outline produces a

sequence of bidiagonal matrices B1, B2, … that

converges to a diagonal matrix ∑. The method involves

applying a sequence of Givens transformations to B

alternately on the right- and left-hand sides.

The Golub–Reinsch Algorithm
Let

Rk =

and

Lk =

The 2 × 2 matrices G(θk) and G(φk) are given by

for some angles θk and φk. The matrix B = B1 is first

multiplied on the right by R1. This will have the effect of

filling in the (2, 1) position.

B1R1 =

⎡⎢⎣Ik−1 O O

O G(θk) O

O O In−k−1

⎤⎥⎦⎡⎢⎣Ik−1 O O

O G(φk) O

O O In−k−1

⎤⎥⎦G(θk) = [ ] and G(φk) = [ ]
cos θk sin θk

sin θk −cos θk

cos φk sin φk

sin φk − cos φk

⎡⎢⎣× ×
× × ×

×

⋱ ×
×

⎤⎥⎦



Next, L1 is chosen so as to zero out the element filled in

by R1. It will also have the effect of filling in the (1, 3)

position. Thus,

L1B1R1 =

R2 is chosen so as to zero out the (1, 3) entry. It will fill

in the (3, 2) entry of L1B1R1. Next, L2 zeroes out the

(3, 2) entry and fills in the (2, 4) entry, and so on.

We continue this process until we end up with a new

bidiagonal matrix:

B2 = Ln−1 … L1B1R1 … Rn−1

Why should we be any better off with B2 than B1? It can

be shown that if the first transformation R1 is chosen

correctly, BT
2 B2 will be the matrix obtained from BT

1 B1

by applying one iteration of the QR algorithm with shift.

The same process can now be applied to B2 to obtain a

new bidiagonal matrix B3 such that BT
3 B3 would be the

matrix obtained by applying two iterations of the QR

algorithm with shifts to BT
1 B1. Even though the BT

i Bi’s

are never computed, we know that, with the proper

choice of shifts, these matrices will converge rapidly to a

diagonal matrix. The Bi’s then must also converge to a

diagonal matrix ∑. Since each of the Bi’s has the same

singular values as B, the diagonal elements of ∑ will be

the singular values of B. The matrices U and V T
 can be

⎡⎢⎣× × ×
× ×

⋱
×
×

⎤⎥⎦,

L1B1R1R2 L2L1B1R1R2

⎡⎢⎣× ×
× ×
× × ×

⋱
×
×

⎤⎥⎦ ⎡⎢⎣× ×
× × ×

× ×

⋱
×
×

⎤⎥⎦



determined by keeping track of all the orthogonal

transformations.

Only a brief sketch of the algorithm has been given. To

include more would be beyond the scope of this text. For

complete details of the algorithm, see the paper by Golub

and Reinsch in [37], p. 135.



Section 7.7 Exercises

1. Find the solution x to the least squares problem, given that 

A = QR in each of the following:

1. 

2. 

3. 

Q = ,

=

⎡⎢⎣ 1
√2

1
√2

1
√2

− 1
√2

0 0

⎤⎥⎦bR = [ ],
1 1
0 1

⎡⎢⎣ 1
1
1

⎤⎥⎦Q = ,

=

⎡⎢⎣ 1 0 0

0 1
√2

− 1
√2

0 1
√2

1
√2

0 0 0

⎤⎥⎦bR = ,
⎡⎢⎣ 1 1 0

0 1 1
0 0 1

⎤⎥⎦ ⎡⎢⎣ 1
3
1
2

⎤⎥⎦Q = ,

=

⎡⎢⎣ 1 0 0

0 1
√2

− 1
√2

0 1
√2

1
√2

⎤⎥⎦bR = ,
⎡⎢⎣ 1 1

0 1
0 0

⎤⎥⎦ ⎡⎢⎣ −√2

1
√2

⎤⎥⎦



4. 

2. Let

A = [ ] −

and

b =

Use the normal equations to find the solution x to the least

squares problem.

3. Let

=

1. Use Householder transformations to reduce A to the

form

=

Q = ,

=

⎡⎢⎣ 2
1

√2
0 2

2 0 1
√2

− 2

2 0 − 1
√2

− 2

2 − 1
√2

0 2

1 1

1 1

1 1

1 1

⎤⎥⎦bR = ,

⎡⎢⎣ 1 1 0
0 1 1
0 0 1
0 0 0

⎤⎥⎦ ⎡⎢⎣ 2
−2

0
2

⎤⎥⎦D

E

⎡⎢⎣ d1

d1

⋱
dn

e1

e1

⋱
en

⎤⎥⎦⎡⎢⎣ b1

b2

⋮
b2n

⎤⎥⎦bA = ,

⎡⎢⎣ 1 0
1 3
1 3
1 0

⎤⎥⎦ ⎡⎢⎣ −4
2
2
2

⎤⎥⎦⎡⎢⎣ R1

O

⎤⎥⎦ ⎡⎢⎣ × ×
0 ×
0 0
0 0

⎤⎥⎦



and apply the same transformations to b.

2. Use the results from part (a) to find the least squares

solution of Ax = b.

4. Given

=

1. Use Algorithm 5.6.1 to compute the factors Q and R of

the modified Gram–Schmidt QR factorization of A.

2. Use Algorithm 7.7.1 to compute the least squares

solution to the linear system Ax = b.

5. Let

A =

where ρ is a small scalar.

1. Determine the singular values of A exactly.

2. Suppose that ρ is small enough so that 
2

 is less than the

machine epsilon. Determine the eigenvalues of the

calculated ATA and compare the square roots of these

eigenvalues with your answers in part (a).

6. Show that the pseudoinverse A+
 satisfies the four Penrose

conditions.

7. Let B be any matrix that satisfies Penrose conditions 1 and 3, and

let x = Bb. Show that x is a solution to the normal equations 

ATAx = ATb.

8. If x ∈ R
m

, we can think of x as an m × 1 matrix. If x ≠ 0 we

can then define a 1 × m matrix X by

X =
1

∥x∥2
2

x
T

Show that X and x satisfy the four Penrose conditions and,

consequently, that

x
+ = X =

1

∥x∥2
2

x
T

9. Show that if A is a m × n matrix of rank n, then 

A+ = (ATA)−1
AT

.

bA = and

⎡⎢⎣ 1 5
1 3
1 11
1 5

⎤⎥⎦ ⎡⎢⎣ 1
−1

3
5

⎤⎥⎦⎡⎢⎣ 1 1
ρ 0
0 ρ

⎤⎥⎦ ρ



10. Let A be an m × n matrix and let b ∈ R
m

. Show that b ∈ R(A)
if and only if

b = AA+
b

11. Let A be an m × n matrix with singular value decomposition 

UΣV T
, and suppose that A has rank r, where r < n. Let 

b ∈ R
m

. Show that a vector x ∈ R
n

 minimizes ∥b − Ax∥2 if

and only if

x = A+
b + cr+1vr+1 + … + cnvn

where cr+1, … , cn are scalars.

12. Let

A =

Determine A+
 and verify that A and A+

 satisfy the four Penrose

conditions (see Example 1 of Section 6.5).

13. Let

1. Compute the singular value decomposition of A and use

it to determine A+
.

2. Use A+
 to find a least squares solution to the system 

Ax = b.

3. Find all solutions to the least squares problem Ax = b.

14. Show each of the following:

1. (A+)+ = A

2. (AA+)
2

= AA+

3. (A+A)2 = A+A

15. Let A1 = UΣ1V
T

 and A2 = UΣ2V
T

, where

Σ1 =

and

⎡⎢⎣ 1 1
1 1
0 0

⎤⎥⎦ b = [ ]A = [ ] and
1 2

−1 −2
6

−4

⎡⎢⎣ σ1

⋱
σr−1

0

⋱
0

⎤⎥⎦



Σ2 =

and = ρ > 0. What are the values of ∥A1 − A2∥F  and 

A+
1 − A+

2 F ? What happens to these values as we let ρ → 0?

16. Let A = XY T
, where X is an m × r matrix, Y T

 is an r × n

matrix, and XTX and Y TY  are both nonsingular. Show that the

matrix

B = Y (Y TY )
−1

(XTX)XT

satisfies the Penrose conditions and hence must equal A+
. Thus, 

A+
 can be determined from any factorization of this form.

⎡⎢⎣ σ1

⋱
σr−1

σr

0

⋱
0

⎤⎥⎦σr∥ ∥



7.8 Iterative Methods
In this section, we study iterative methods for solving a

linear system Ax = b. Iterative methods start out with

an initial approximation x(0)
 to the solution and go

through a fixed procedure to obtain a better

approximation, x(1)
. The same procedure is then

repeated on x(1)
 to obtain an improved approximation, 

x(2)
, and so on. The iterations terminate when a desired

accuracy has been achieved.

Iterative methods are most useful in solving large sparse

systems. Such systems occur, for example, in the solution

of boundary value problems for partial differential

equations. The number of flops necessary to solve an 

n × n linear system using iterative methods is

proportional to n2
, whereas the amount necessary using

Gaussian elimination is proportional to n3
. Thus for

large values of n, iterative methods provide the only

practical way of solving the system. Furthermore, the

amount of memory required for a sparse coefficient

matrix A is proportional to n, whereas Gaussian

elimination and the other direct methods studied in

earlier chapters usually tend to fill in the zeros of A and

hence require an amount of storage proportional to n2
.

This can present a problem when n is very large.

The iterative methods we will describe only require that

in each iteration we can multiply A times a vector in Rn
.

If A is sparse, this can usually be accomplished in a

systematic way so that only a small proportion of the

entries of A need be accessed. The one disadvantage of

iterative methods is that after solving Ax = b1, one

must start over again from the beginning in order to

solve Ax = b2.



Matrix Splittings
Given a system Ax = b, we write the coefficient matrix

A in the form A = C − M , where C is a nonsingular

matrix which is in some form that is easily invertible

(e.g., diagonal or triangular). The representation 

A = C − M  is referred to as a matrix splitting. The

system can then be rewritten in the form

If we set

= C−1b

then

x = Bx + c

(1)

To solve the system, we start out with an initial guess 

x(0)
, which may be any vector in Rn

. We then set

and, in general,

Let x be a solution of the linear system. If ∥⋅∥ denotes

some vector norm on Rn
 and the corresponding matrix

norm of B is less than 1, we claim that x(k) − x → 0
as k → ∞. Indeed,

and so on. In general,

x(k) − x = Bk(x(0) − x)

(2)

Cx = Mx + b

x = C−1Mx + C−1b

cB = C−1M = I − C−1A and

x(1) = Bx(0) + c

x(2) = Bx(1) + c

x(k+1) = Bx(k) + c ∥ ∥x(1) − x = (Bx(0) + c) − (Bx + c) = B(x(0) − x)

x(2) − x = (Bx(1) + c) − (Bx + c) = B(x(1) − x) = B2(x(0) − x)



and hence

Thus, if ∥B ∥< 1, then x(k) − x → 0 as k → ∞.

The foregoing result holds for any standard norm on Rn
,

although in practice it is simplest to use the ∥⋅∥∞ or the 

∥⋅∥1. Essentially, then, we require that the matrix C be

easily invertible and that C−1
 be a good enough

approximation to A−1
 so that

I − C−1A ∥=∥ B ∥< 1

This last condition implies that all the eigenvalues of B

are less than 1 in the modulus.

Definition
Let λ1, … , λn be the eigenvalues of B and let 

ρ(B) = max
1≤i≤n

|λi|. The constant ρ(B) is called the

spectral radius of B.

Theorem 7.8.1

Let x(0)
 be an arbitrary vector in Rn

 and define 

x(i+1) = Bx(i) + c for i = 0, 1, …. If x is the solution

to (1), then a necessary and sufficient condition for 

x(k) → x is that ρ(B) < 1.

Proof

We will prove the theorem only in the case where B has n

linearly independent eigenvectors. The case where B is

not diagonalizable is beyond the scope of this text. If 

x(k) − x = Bk(x(0) − x)

≤ Bk ∥∥ x(0) − x

≤ B ∥K∥ x(0) − x∥ ∥ ∥ ∥∥ ∥∥ ∥∥ ∥∥



x1, … , xn are n linearly independent eigenvectors of B,

we can write

x(0) − x = α1x1 + … + αnxn

and it follows from (2) that

Thus,

→ 0

if and only if |λi| < 1 for i = 1, … , n. Thus, 

x(k) → x if and only if ρ(β) < 1.

∎

The simplest choice of C is to let C be a diagonal matrix

whose diagonal elements are the diagonal elements of A.

The iteration scheme with this choice of C is called

Jacobi iteration.

Jacobi Iteration
Let

C =

and

M = −

and set B = C−1M  and c = C−1b. Thus,

x(k) − x = Bk(α1x1 + … + αnxn)
= α1λk

1x1 + … + αnλk
nxn

x(k) − x

⎡⎢⎣ a11 0 … 0
0 a22

⋮ ⋱
0 0 ann

⎤⎥⎦⎡⎢⎣ 0 a12 … a1n

a21 0 a2n

⋮ ⋱
an1 an2 0

⎤⎥⎦



=

At the (i + 1)st iteration, the vector x(i+1)
 is calculated

by

(3)

The vector x(i)
 is used in calculating x(i+1)

.

Consequently, these two vectors must be stored

separately.

If the diagonal elements of A are much larger than the

off-diagonal elements, the entries of B should all be small

and the Jacobi iteration should converge. We say that A

is diagonally dominant if

If A is diagonally dominant, the matrix B of the Jacobi

iteration will have the property

Thus,

∥B∥∞ = max
1≤i≤n

(
n

Σ
j=1

|bij|) < 1

It follows, then, that if A is diagonally dominant, the

Jacobi iteration will converge to the solution of Ax = b.

An alternative to the Jacobi iteration is to take C to be

the lower triangular part of A (i.e., cij = aij if i ≥ j and 

cB = and

⎡⎢⎣ 0 a11
… a11

a22
0 … a22

⋮

ann ann
… 0

−a12 −a1n

−a21 −a2n

−an1 −an2

⎤⎥⎦ ⎡⎢⎣ b1
a11

a22

⋮
bn

ann

b2

⎤⎥⎦x
(i+1)
j = 1

ajj
−

n

Σ ajkx
(i)
k

+ bj j = i, … , n

⎛⎜⎝ k=1
k≠j

⎞⎟⎠|aii| >
n

Σ |aij|
j=1
j≠i

i = 1, … , nfor

n

Σ
j=1

|bij| =
n

Σ
|aij|

|aii|
< 1

j=1
j≠i

i = 1, … , nfor



cij = 0 if i < j). Since C is a better approximation to A

than the diagonal matrix in the Jacobi iteration, we

would expect that C−1
 is a better approximation to A−1

,

and hopefully B will have a smaller norm. The iteration

scheme with this choice of C is called Gauss–Seidel

iteration. It usually converges faster than Jacobi

iteration.

Gauss–Seidel Iteration
Let

and

Set C = D − L and M = U . Let x(0)
 be an arbitrary

nonzero vector in Rn
. We have

We can solve this last equation for x(i+1)
 one coordinate

at a time. The first coordinate of x(i+1)
 is given by

L = −

D =

⎡⎢⎣ 0 0 … 0 0
a21 0 … 0 0

⋮
an−1,1 an−1,2 0 0
an1 an2 … an,n−1 0

⎤⎥⎦⎡⎢⎣ a11 0 … 0
0 a22 … 0

⋮
0 0 … ann

⎤⎥⎦U = −

⎡⎢⎣ 0 a12 … a1,n−1 a1n

0 0 … a2,n−1 a2n

⋮
0 0 0 an−1,n

0 0 0 0

⎤⎥⎦Cx(i+1) = Mx(i) + b

(D − L)x(i+1) = Ux(i) + b

Dx(i+1) = Lx(i+1) + Ux(i) + b



x
(i+1)
1 =

1
a11

(−
n

Σ
k=2

a1kx
(i)
k + b1)

The second coordinate of X(i+1)
 can be solved for in

terms of the first coordinate and the last n − 2
coordinates of x(i)

.

x
(i+1)
2 =

1
a22

(−a21x
(i+1)
1 −

n

Σ
k=3

a2kx
(i)
k + b2)

In general,

x
(i+1)
j =

1
ajj

(−
j−1
Σ

k=1
ajkx

(i+1)
k −

n

Σ
k=j+1

ajkx
(i)
k + bj)

(4)

It is interesting to compare (3) and (4). The difference

between the Jacobi and Gauss– Seidel iterations is that

in the latter case, one is using the coordinates of X(i+1)

as soon as they are calculated rather than in the next

iteration. The program for the Gauss–Seidel iteration is

actually simpler than the program for the Jacobi

iteration. The vectors X(i)
 and X(i+1)

 are both stored in

the same vector, x. As a coordinate of X(i+1)
 is

calculated, it replaces the corresponding coordinate of 

X(i)
.

Theorem 7.8.2
If A is diagonally dominant, then the Gauss–Seidel

iteration converges to a solution of Ax = b.

Proof

For j = 1, ⋯ , n, let

Since A is diagonally dominant, it follows that

|ajj| > αj + βj

Mj =
βj

( ajj −αj)
andαj =

j−1
Σ

i=1
|aji|, βj =

n

Σ
i=j+1

|aji|, ∣ ∣



and, consequently, Mj < 1 for j = 1, … , n. Thus,

M = max
1≤j≤n

Mj < 1

We will show that

||B||∞ = max
X≠0

||BX||∞
||X||∞

≤ M < 1

Let x be a nonzero vector in Rn
 and let y = BX.

Choose k so that

||y||∞ = max
1≤i≤n

|yi| = |yk|

It follows from the definition of B that

y = Bx = (D − L)−1UX

and hence

y = D−1(Ly + UX)

Comparing the kth coordinates of each side, we see that

yk =
1

akk
(−

k−1
Σ

i=1
akiyi −

n

Σ
i=k+1

akixi)

and hence

||y||∞ = |yk| ≤
1

|akk|
(αk||y||∞ + βk||x||∞)

(5)

It follows from (5) that

||Bx||∞
||x||∞

=
||y||∞
||x||∞

≤ Mk ≤ M

Thus,

||B||∞ = max
X≠0

||Bx||∞
||x||∞

≤ M < 1

and hence the iteration will converge to the solution of 

Ax = b.

∎





Section 7.8 Exercises

1. Let

Use Jacobi iteration to compute x
(1)

 and x
(2)

. [The exact solution

is x = (1, 1)T .]

2. Let

Use Jacobi iteration to compute x
(1)

, x
(2)

, x
(3)

, and x
(4)

.

3. Repeat Exercise 1 using Gauss–Seidel iteration.

4. Let

1. Calculate x
(1)

 using Jacobi iteration.

2. Calculate x
(1)

 using Gauss–Seidel iteration.

3. Compare your answers to (a) and (b) with the correct

solution x = (1, 1, 1)T
. Which is closer?

5. For which of the following matrices, will the iteration scheme

x
(k+1) = Bx

(k) + c

converge to a solution of x = Bx + c? Explain.

1. B =

2. B =

3. B =

A= [ ], b = [ ],
10 1

2 10

11

12
and x

(0) = [ ]
0

0

A= , b = ,
⎡⎢⎣ 1 1 1

0 1 1

0 0 1

⎤⎥⎦ ⎡⎢⎣ 132⎤⎥⎦ and x
(0) =

⎡⎢⎣ 100⎤⎥⎦A= , b = ,
⎡⎢⎣ 10 1 1

1 10 1

1 1 10

⎤⎥⎦ ⎡⎢⎣ 121212⎤⎥⎦ and x(0) =
⎡⎢⎣ 100⎤⎥⎦⎡⎢⎣ 1 1 1

0 1 1

0 0 1

⎤⎥⎦⎡⎢⎣ 0.9 1 1

0 0.9 1

0 0 0.9

⎤⎥⎦⎡⎢⎣ 1
2

10 100

0 1
2

10

0 0 1
2

⎤⎥⎦



4. B =

5. B =

6. Let x be the solution of x = Bx + c. Let x
(0)

 be an arbitrary

vector in Rn
 and define

x
(k+1) = Bx

(k) + c

for k = 0, 1,…. prove that if B  is the zero matrix, then 

x
(m) = x.

7. Let A be a nonsingular upper triangular matrix. Show that if the

Jacobi iteration is carried out using exact arithmetic, it will

produce the exact solution to Ax = b after n iterations.

8. For an iterative method based on the splitting A = C − M , C

nonsingular, show that

x
(k+1) = x

(k) + C
−1

r
(k)

where r
(k)

 denotes the residual b − Ax
(k).

9. Let A = D − L − U , where D, L, and U are defined as in Gauss–

Seidel iteration and let ω be a nonzero scalar. The system 

ωAx = ωb can be solved iteratively by splitting ωA into C − M ,

where C = D − ωL. Determine the B and c corresponding to

this splitting. (The constant ω is called a relaxation parameter.

The case ω = 1 corresponds to Gauss–Seidel iteration.)

10. Let x be the solution to x = Bx + c. Let x
(0)

 be an arbitrary

vector in Rn
 and define

for i = 0, 1,….If ||B|| = α < 1, show that

⎡⎢⎣ 1
4

1
4

1
4

1
4

1
2

1
8

1
2

1
4

1
8

⎤⎥⎦⎡⎢⎣ 1
3

1
3

1
3

1
2

1
3

1
6

0 1
6

1
3

⎤⎥⎦x
(i+1) = Bx

(i) + c

x(k) − x ≤ α

1−α
x(k) − x(k−1)∣∣ ∣∣ ∣∣ ∣∣m



Chapter 7 Exercises

MATLAB Exercises

Sensitivity of Linear Systems
In these exercises, we are concerned with the numerical

solution of linear systems of equations. The entries of

the coefficient matrix A and the right-hand side b may

often contain small errors due to limitations in the

accuracy of the data. Even if there are no errors in

either A or b, rounding errors will occur when their

entries are translated into the finite-precision number

system of the computer. Thus, we generally expect that

the coefficient matrix and the right-hand side will

involve small errors. The system that the computer

solves is then a slightly perturbed version of the original

system. If the original system is very sensitive, its

solution could differ greatly from the solution of the

perturbed system.

Generally, a problem is well conditioned if the

perturbations in the solutions are on the same order as

the perturbations in the data. A problem is ill

conditioned if the changes in the solutions are much

greater than the changes in the data. How well or ill

conditioned a problem is depends on how the size of the

perturbations in the solution compares with the size of

the perturbations in the data. For linear systems, this, in

turn, depends on how close the coefficient matrix is to a

matrix of lower rank. The conditioning of a system can

be measured using the condition number of the matrix,

which can be computed with the MATLAB function



cond. MATLAB computations are carried out to 16

significant digits of accuracy. You will lose digits of

accuracy depending on how sensitive the system is. If

the condition number is expressed using exponential

notation, then the greater the exponent, the more digits

of accuracy you may lose.

1. Set

The solution of the linear system Ax = b is clearly s. Solve the

system using the MATLAB \ operation. Compute the error x − s.

(Since s consists entirely of 1’s, this is the same as x − 1.) Now

perturb the system slightly. Set

and set

Solve the perturbed system Mz = c for z. Compare the solution

z to the solution of the original system by computing z − 1. How

does the size of the perturbation in the solution compare with the

size of the perturbations in A and b? Repeat the perturbation

analysis with t = 1.0e − 04 and t = 1.0e − 02. Is the system 

Ax = b well conditioned? Explain. Use MATLAB to compute the

condition number of A.

2. If a vector y ∈ R
n

 is used to construct an n × n Vandermonde

matrix V, then V will be nonsingular, provided that y1, y2 … , yn
are all distinct.

1. Construct a Vandermonde system by setting

Generate vectors b and s in R
6

 by setting

If V and b had been computed in exact arithmetic, then

the exact solution of V x = b would be s. Why? Explain.

Solve V x = b using the \ operation. Compare the

computed solution x with the exact solution s using the

MATLAB format long. How many significant digits

were lost? Determine the condition number of V.

A = round(10 * rand(6))

s = ones(6, 1)

b = A * s

t = 1.0e − 12,

E = rand(6) − 0.5,

r = rand(6, 1) − 0.5

M = A + t * E, c = b + t * r

y = rand(6, 1) and V = vabder(y)

b = sum(V ′)′ and s = ones(6, 1)



2. The Vandermonde matrices become increasingly ill

conditioned as the dimension n increases. Even for small

values of n, we can make the matrix ill conditioned by

taking two of the points close together. Set

x(2) = x(1) + 1.0e − 12

and use the new value of x(2) to recompute V. For the

new matrix V, set b = sum(V ′)′ and solve the system 

V z = b. How many digits of accuracy were lost?

Compute the condition number of V.

3. Construct a matrix C as follows: Set

1. The matrix C is a nice matrix in that it is a symmetric

matrix with integer entries and its determinant is equal

to 1. Use MATLAB to verify these claims. Why do we

know ahead of time that the determinant will equal 1? In

theory, the entries of the exact inverse should all be

integers. Why? Explain. Does this happen

computationally? Compute D = inv(C) and check its

entries using format long. Compute C ∗ D and

compare it with eye(4).

2. Set

In exact arithmetic, the solution to the system Cx = b

should be r. Compute the solution by using \ and display

the answer in format long. How many digits of

accuracy were lost? We can perturb the system slightly

by taking e to be a small scalar, such as 1.0e−12, and then

replacing the right-hand side of the system by

b1 = b + e * [1, −1, 1, −1]′

Solve the perturbed system first for the case 

e = 1.0e − 12 and then for the case e = 10e − 06. In

each case, compare your solution x with the original

solution by displaying x − 1. Compute cond(C). Is C ill

conditioned? Explain.

4. The n × n Hilbert matrix H is defined by

It can be generated with the MATLAB function hilb. The Hilbert

matrix is notoriously ill conditioned. It is often used in examples

to illustrate the dangers of matrix computations. The MATLAB

A = round(100 * rand(4))

L = tril(A, −1) + eye(4)

C = L * L′

r = ones(4, 1) b = sum(C′)′and

h(i, j) = 1/(i + j − 1) i, j = 1, 2, … ,n



function invhilb gives the exact inverse of the Hilbert matrix.

For the cases n = 6, 8, 10, 12, construct H and b so that 

Hx = b is a Hilbert system whose solution in exact arithmetic

should be ones(n, 1). In each case, determine the solution x of the

system by using invhilb and examine x with format long.

How many digits of accuracy were lost in each case? Compute the

condition number of each Hilbert matrix. How does the condition

number change as n increases?

Sensitivity of Eigenvalues
If A is an n × n matrix and X is a matrix that

diagonalizes A, then the sensitivity of the eigenvalues of

A depends on the condition number of X. If A is

defective, the condition number for the eigenvalue

problem will be infinite. For more on the sensitivity of

eigenvalues, see Wilkinson [39], Chapter 2.

1. Use MATLAB to compute the eigenvalues and eigenvectors of a

random 6 × 6 matrix B. Compute the condition number of the

matrix of eigenvectors. Is the eigenvalue problem well

conditioned? Perturb B slightly by setting

B1 = B + 1.0e − 04 * rand(6)

Compute the eigenvalues and compare them with the eigenvalues

of B.

2. Set

Compute cond(X) and XTX. What type of matrix is X? Is the

eigenvalue problem well conditioned? Explain. Perturb A by

setting

A1 = A + 1.0e − 06 * rand(5)

Calculate the eigenvalues of A1 and compare them with the

eigenvalues of A.

3. Set A = magic(4) and t = trace(A). The scalar t should be an

eigenvalue of A and the remaining eigenvalues should add up to

zero. Why? Explain. Use MATLAB to verify that A − tI  is

singular. Compute the eigenvalues

of A and a matrix X of eigenvectors. Determine the condition

numbers of A and X. Is the eigenvalue problem well conditioned?

Explain. Perturb A by setting

* ( )

A = round(10 * rand(5));A = A + A′

[X,D] = eig(A)



A1 = A + 1.0e − 04 * rand(4)

How do the eigenvalues of A1 compare to those of A?

4. Set

Compute the condition number of X. Is the eigenvalue problem

well conditioned? Ill conditioned? Explain. Perturb A by setting

Compute the eigenvalues of A1 and compare them to the

eigenvalues of A.

5. Construct a matrix A as follows:

1. Compute the eigenvalues of A and the value of the

determinant of A. Use the MATLAB function prod to

compute the product of the eigenvalues. How does the

value of the product compare with the determinant?

2. Compute the eigenvectors of A and the condition

number for the eigenvalue problem. Is the problem well

conditioned? Ill conditioned? Explain.

3. Set

A1 = A + 1.0e − 04 * rand(size(A))

Compute the eigenvalues of A1. Compare them to the

eigenvalues of A by computing

sort(eig(A1)) − sort(eig(A))

and displaying the result in format long.

Householder Transformations
A Householder matrix is an n × n orthogonal matrix of

the form I − 1
b

vvT
. For any given nonzero vector 

x ∈ R
n

, it is possible to choose b and v so that Hx will

be a multiple of e1.

1. 1. In MATLAB, the simplest way to compute a Householder

matrix that zeroes out entries of a given vector x, is to

A = diag(10 : −1 : 1) + 10 * diag(ones(1, 9), 1)

[X,D] = eig(A)

A1 = A; A1(10, 1) = 0.1

end

for j = 0 : 11

A = A + diag(12 − j : −1 : 1, j);

A = diag(11 : −1 : 1, −1);



compute the QR factorization of x. Thus, if we are given

a vector x ∈ R
n

, then the MATLAB command

[H,R] = qr(x)

will compute the desired Householder matrix H.

Compute a Householder matrix H that zeroes out the last

three entries of e = ones(4, 1). Set

C = [e, rand(4, 3)]

Compute H * e and H * C.

2. We can also compute the vector v and the scalar b that

determine the Householder transformation that zeroes

out entries of a given vector. To do this for a given vector

x, we would set

Construct v and b in this way for the vector e from part

(a). If K = 1 − 1
b

vvT
, then

Ke = e − (
vTe

b
)v

Compute both of these quantities with MATLAB and

verify that they are equal. How does Ke compare to He

from part (a)? Compute also K * C and 

C − v * ((v′ * C)/b) and verify that the two are equal.

2. Set

Construct a Householder matrix of the form

H = [ ]

where K is a 5 × 5 Householder matrix that zeroes out the last four

entries of x2. Compute the product Hx.

Rotations and Reflections

1. To plot y = sin(x), we must define vectors of x and y values and

then use the plot command. This can be done as follows:

a = ((x(1) <= 0) − (x(1) > 0)) * norm(x)

v = x; v(1) = v(1) − a

b = a * (a − x(1))

x1 = (1 : 5)′; x = [x1; x2]x2 = [1, 3, 4, 5, 9]′;

I O

O K

plot(x, y)

x = 0 : 0.1 : 6.3 : y = sin(x)



1. Let us define a rotation matrix and use it to rotate the

graph of y = sin(x). Set

To find the rotated coordinates, set

Z = R * [x, y]; x1 = Z(1, :); y1 = z(2, :);

The vectors x1 and y1 contain the coordinates for the

rotated curve. Set

and plot x1 and y1, using the MATLAB command

plot(x1, y1, w, w)

By what angles has the graph been rotated and in what

direction?

2. Keep all your variables from part (a) and set

G = [c, s; s, −c]

The matrix G represents a Givens reflection. To

determine the reflected coordinates, set

Plot the reflected curve, using the MATLAB command

plot(x2, y2, w, w)

The curve y = sin(x) has been reflected about a line

through the origin making an angle of π/8 with the x-

axis. To see this, set

and plot the new axis and both curves with the MATLAB

command

plot(x, y, x2, y2, w1, z1)

3. Use the rotation matrix R from part (a) to rotate the

curve y = − sin(x). Plot the rotated curve. How does

the graph compare to that of the curve from part (b)?

Explain.

Singular Value Decomposition

t = pi /4;  c = cos(t);  s = sin(t);

R = [c, −s : s, c]

w = [0, 5]; axis square

Z = G * [x; y];

x2 = Z(1, ; );  y2 = Z(2, ; );

w1 = [0, 6.3 * cos(t/2)];

z1 = [0, 6.3 * sin(t/2)];



1. Let

A =

Enter the matrix A in MATLAB and compute its singular values by

setting s = svd(A).

1. How can the entries of s be used to determine the values 

||A||2 and ||A||F ? Compute these norms by setting

and compare your results with s(1) and norm(s).

2. To obtain the full singular value decomposition of A, set

[U ,D,V ] = svd(A)

Compute the closest matrix of rank 1 to A by setting

B = s(1) * U(:, 1) * V (:, 1)′

How are the row vectors of B related to the two distinct

row vectors of A?

3. The matrices A and B should have the same 2-norm.

Why? Explain. Use MATLAB to compute ||B||2 and 

||B||F . In general, for a rank 1 matrix, the 2-norm and

the Frobenius norm should be equal. Why? Explain.

2. Set

A = round(10 * rand(10, 5)) and s = svd(A)

1. Use MATLAB to compute ||A||2, ||A||F ,, and 

cond2(A) and compare your results with s(1), norm(s),

s(1)/s(5), respectively.

2. Set

The matrix B should be the closest matrix of rank 4 to A

(where distance is measured in terms of the Frobenius

norm). Compute ||A||2 and ||B||2. How do these values

compare? Compute and compare the Frobenius norms of

the two matrices. Compute also ||A − B||F  and

compare the result with s(5). Set r = norm(s(1 : 4))

and compare the result to ||B||F .

⎡⎢⎣ 4 5 2

4 5 2

0 3 6

0 3 6

⎤⎥⎦p = norm(A) and q = norm(A, ′fro′)

[U ,D,V ] = svd(A);

D(5, 5) = 0;

B = U * D * V ′



3. Use MATLAB to construct a matrix C that is the closest

matrix of rank 3 to A with respect to the Frobenius norm.

Compute ||C||2 and ||C||F . How do these values

compare with the computed values for ||A||2 and ||A||F
respectively? Set

p = norm(s(1 : 3))

and

q = norm(s(4 : 5))

Compute ||C||F  and ||A − C||F  and compare your

results with p and q, respectively.

3. Set

1. What is the rank of A? Use the column vectors of V to

generate two matrices V1and V2 whose columns form

orthonormal bases for R(AT) and N(A), respectively.

Set

If r and w had been computed in exact arithmetic, they

would be orthogonal. Why? Explain. Use MATLAB to

compute rTw.

2. Use the column vectors of U to generate two matrices

U1and U2 whose column vectors form orthonormal

bases for R(A) and N(AT), respectively. Set

Explain why y and z would be orthogonal if all

computations were done in exact arithmetic. Use

MATLAB to compute yTz.

3. Set X = pinv(A). Use MATLAB to verify the four

Penrose conditions:

1. (i) AXA = A

2. (ii) XAX = X

3. (iii) (AX)T = AX

4. (iv) (XA)T = XA

A = rand(8, 4) * rand(4, 6),

[U ,D,V ] = svd(A)

P = V 2 * V 2′,

r = P * rand(6, 1),

w = A′ * rand(8, 1)

Q = U2 * U2′,

y = Q * rand(8, 1),

z = A * rand(6, 1)



4. Compute and compare AX and U1(U1)T . Had all

computations been done in exact arithmetic, the two

matrices would be equal. Why? Explain.

Gerschgorin Circles

1. With each A ∈ R
n×n

, we can associate n closed circular disks in

the complex plane. The ith disk is centered at aii and has radius

ri =
n

Σ
j=1
j≠i

|aij|

Each eigenvalue of A is contained in at least one of the disks (see

Exercise 7 of Section 7.6).

1. Set

A = round(10 * rand(5))

Compute the radii of the Gerschgorin disks of A and

store them in a vector r. To plot the disks, we must

parameterize the circles. This can be done by setting

t = [0 : 0.1 : 6.3]′;

We can then generate two matrices X and Y whose

columns contain the x- and y- coordinates of the circles.

First we initialize X and Y to zero by setting

The matrices can then be generated with the following

commands:

Set e = eig(A) and plot the eigenvalues and the disks

with the command

plot(x, y, real(e), imag(e), ′x′)

If everything is done correctly, all the eigenvalues of A

should lie within the union of the circular disks.

2. If k of the Gerschgorin disks form a connected domain in

the complex plane that is isolated from the other disks,

then exactly k of the eigenvalues of the matrix will lie in

that domain. Set

B = [ ];

X = zeros(length(t), 5; ) Y = X;

for i = 1 : 5

X(:, i) = r(i) * cos(t) + real(A(i, i));

Y (:, i) = r(i) * sin(t) + imag(A(i, i));

end

50222;70.12;3 0.1



1. Use the method described in part (a) to

compute and plot the Gerschgorin disks of B.

2. Since B is symmetric, its eigenvalues are all real

and so must all lie on the real axis. Without

computing the eigenvalues, explain why B must

have exactly one eigenvalue in the interval [46,

54]. Multiply the first two rows of B by 0.1 and

then multiply the first two columns by 10. We

can do this in MATLAB by setting

D = diag([0.1, 0.1, 1])

and

C = D * B/D

The new matrix C should have the same

eigenvalues as B. Why? Explain. Use C to find

intervals containing the other two eigenvalues.

Compute and plot the Gerschgorin disks for C.

3. How are the eigenvalues of CT
 related to the

eigenvalues of B and C? Compute and plot the

Gerschgorin disks for CT
. Use one of the rows

of CT
 to find an interval containing the largest

eigenvalue of CT
.

Distribution of Condition

Numbers and Eigenvalues of

Random Matrices

1. We can generate a random symmetric 10 × 10 matrix by setting

A = rand(10);A = (A + A′)/2

Since A is symmetric, its eigenvalues are all real. The number of

positive eigenvalues can be calculated by setting

y = sum(eig(A) > 0)

1. For j = 1, 2, … , 100, generate a random symmetric

10×10 matrix and determine the number of positive

eigenvalues. Denote the number of positive eigenvalues

of the jth matrix by y(j). Set X = 0 : 10, and

determine the distribution of the y data by setting 

n = hist(y,x).. Determine the mean of the y(j) values,

using the MATLAB command mean(y). Use the

MATLAB command hist(y, x) to generate a plot of the

histogram.



2. We can generate a random symmetric 10 × 10 matrix

whose entries are in the interval [−1, 1] by setting

Repeat part (a), using random matrices generated in this

manner. How does the distribution of the y data

compare to the one obtained in part (a)?

2. A nonsymmetric matrix A may have complex eigenvalues. We can

determine the number of eigenvalues of A that are both real and

positive with the MATLAB commands

Generate 100 random nonsymmetric 10 × 10 matrices. For each

matrix, determine the number of positive real eigenvalues and

store that number as an entry of a vector z. Determine the mean of

the z(j) values, and compare it with the mean computed in part (a)

of Exercise 17. Determine the distribution and plot the histogram.

3. 1. Generate 100 random 5 × 5 matrices and compute the

condition number of each matrix. Determine the mean of

the condition numbers and plot the histogram of the

distribution.

2. Repeat part (a), using 10 × 10 matrices. Compare your

results with those obtained in part (a).

A = 2 * rand(10) − 1; A = (A + A′)/2

e = eig(A)

y = sum(e > 0  &     imag(e)==0)



Chapter Test A True or False
In each of the statements that follow, answer true if the

statement is always true and false otherwise. In the case

of a true statement, explain or prove your answer. In the

case of a false statement, give an example to show that

the statement is not always true.

1. If a, b, and c are floating-point numbers, then

fl(fl(a + b) + c) = fl(a + fl(b + c))

2. The computation of A(BC) requires the same number of floating-

point operations as the computation of (AB)C.

3. If A is a nonsingular matrix and a numerically stable algorithm is

used to compute the solution of a system Ax = b, then the

relative error in the computed solution will always be small.

4. If A is a symmetric matrix and a numerically stable algorithm is

used to compute the eigenvalues of A, then the relative error in the

computed eigenvalues should always be small.

5. If A is a nonsymmetric matrix and a numerically stable algorithm

is used to compute the eigenvalues of A, then the relative error in

the computed eigenvalues should always be small.

6. If both A−1
 and the LU factorization of an n × n matrix A have

already been computed, then it is more efficient to solve a system 

Ax = b by multiplying A−1b, rather than solving LUx = b by

forward and back substitution.

7. If A is a symmetric matrix, then ||A||1 = ||A||∞..

8. If A is an m × n matrix, then ||A||2 = ||A||F ..

9. If the coefficient matrix A in a least squares problem has

dimensions m × n and rank n, then the methods of solution

discussed in Section 7.7, namely, the normal equations, the Gram–

Schmidt and Householder QR factorizations, and the singular

value decomposition, will all compute highly accurate solutions.

10. If two m × n matrices A and B are close in the sense that 

||A − B||2 < e for some small positive number e, then their

pseudoinverses will also be close; that is, ||A+ − B+||2 < δ, for

some small positive number δ.



Chapter Test B

1. Let A and B be n × n matrices and let x be a vector in R
n

. How

many scalar additions and multiplications are required to compute

(AB)x and how many are necessary to compute A(Bx)? Which

computation is more efficient?

2. Let

1. Use Gaussian elimination with partial pivoting to solve 

Ax = b.

2. Write the permutation matrix P that corresponds to the

pivoting strategy in part (a) and determine the LU

factorization of PA.

3. Use P, L, and U to solve the system Ax = c..

3. Show that if Q is any 4 × 4 orthogonal matrix, then ||Q||2 = 1

and ||Q||F = 2.

4. Let

1. Determine the values of ||H||1 and H−1
1.

2. When the system Hx = b is solved using MATLAB and

the computed solution X′ is used to compute a residual

vector r = b − Hx′, it turns out that 

||r||1 = 0.36 × 10−11
. Use this information to

determine a bound on the relative error

||x − x′||1

||x||1

where x is the exact solution of the system.

5. Let A be a 10 × 10 matrix with cond∞(A) = 5 × 106
. Suppose

that the solution of a system Ax = b is computed in 15-digit

decimal arithmetic and the relative residual, ||r||∞/||b||∞, turns

A =
⎡⎢⎣ 2 3 6

4 4 8

1 3 4

⎤⎥⎦ c =b =
⎡⎢⎣ 4

3

0
⎤⎥⎦ ⎡⎢⎣ 2

1

8
⎤⎥⎦H = ,

H−1 =

⎡⎢⎣ 1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎤⎥⎦⎡⎢⎣ 16 −120 240 −140

−120 1200 −2700 1680

240 −2700 6480 −4200

−140 1680 −4200 2800

⎤⎥⎦∣∣ ∣∣



out to be approximately twice the machine epsilon. How many

digits of accuracy would you expect to have in your computed

solution? Explain.

6. Let x = (1, 2, −2)T .

1. Find a Householder matrix H such that Hx is a vector of

the form (r, 0, 0)T .

2. Find a Givens transformation G such that Gx is a vector

of the form (1, s, 0)
T

.

7. Let Q be an n × n orthogonal matrix and let R be an n × n upper

triangular matrix. If A = QR and B = RQ, how are the

eigenvalues and eigenvectors of A and B related? Explain.

8. Let

A = [ ]

Estimate the largest eigenvalue of A and a corresponding

eigenvector by doing five iterations of the power method. You may

start with any nonzero vector u0.

9. Let

The singular value decomposition of A is given by

Use the singular value decomposition to find the least squares

solution of the system Ax = b that has the smallest 2-norm.

10. Let

1. Use Householder matrices to transform A into a 4 × 2
upper triangular matrix R.

2. Apply the same Householder transformations to b, and

then compute the least squares solution of the system 

1 2

4 3

A =

⎡⎢⎣ 5 2 4

5 2 4

3 6 0

3 6 0

⎤⎥⎦ and b =

⎡⎢⎣ 5

1

−1

9

⎤⎥⎦⎡⎢⎣ 1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

− 1
2

1
2

1
2

− 1
2

1
2

− 1
2

⎤⎥⎦ ⎡⎢⎣ 12 0 0

0 6 0

0 0 0

0 0 0

⎤⎥⎦ ⎡⎢⎣ 2
3

2
3

1
3

1
3

− 2
3

2
3

− 2
3

− 1
3

2
3

⎤⎥⎦A = , b =

⎡⎢⎣ 1 5

1 5

1 6

1 2

⎤⎥⎦ ⎡⎢⎣ 3

5

2

4
⎤⎥⎦



Ax = b.



Chapter 8 Canonical Forms

8.1 Nilpotent Operators
If a linear transformation L mapping an n-dimensional

complex vector space into itself has n linearly

independent eigenvectors, then the matrix representing

L with respect to the basis of eigenvectors will be a

diagonal matrix. In this chapter, we turn our attention to

the case where L does not have enough linearly

independent eigenvectors to span V. In this case, we

would like to choose an ordered basis of V for which the

corresponding matrix representation of L will be as

nearly diagonal as possible. To simplify matters, in this

first section, we will restrict ourselves to operators

having a single eigenvalue λ of multiplicity n. It will be

shown that such an operator can be represented by a

bidiagonal matrix whose diagonal elements are all equal

to λ and whose superdiagonal elements are all 0’s and

1’s. To do this, we require some preliminary definitions

and theorems.

Recall from Section 5.2 that a vector space V is a direct

sum of subspaces S1 and S2 if and only if each v ∈ V

can be written uniquely in the form x1 + x2, where 

x1 ∈ S1 and x2 ∈ S2. This direct sum is denoted by 

S1 ⊕ S2.

Lemma 8.1.1
Let B1 = {x1, … , xr} and B2 = {y1, … , yk} be

disjoint sets that are bases for subspaces S1 and S2,



respectively, of a vector space V. Then V = S1 ⊕ S2 if

and only if B = B1 ∪ B2 is a basis for V.

Proof Exercise

∎

Definition

Let L be a linear operator mapping a vector space V into

itself. A subspace S of V is said to be invariant under L

if L(x) ∈ S for each x ∈ S.

For example, if L has an eigenvalue λ and Sλ is the

eigenspace corresponding to λ, then Sλ is invariant

under L. This follows since L(x) = λ x ∈ Sλ for each 

x ∈ Sλ.

If S is an invariant subspace of L, then the restriction of L

to S that we will denote L[S] is a linear operator mapping

S into itself.

Lemma 8.1.2
Let L be a linear operator mapping a vector space V

into itself and let S1 and S2 be invariant subspaces of L

with S1 ∩ S2 = {0}. If S = S1 ⊕ S2, then S is

invariant under L. Furthermore, if A = (aij) is the

matrix representing L[S1] with respect to the ordered

basis [x1, … , xr] of S1 B = (bij) is the matrix

representing L[S2] with respect to the ordered basis 

[y1, … , yk] of S2, then the matrix C representing L[S]

with respect to [x1, … , xr, y1, … , yk] is given by



(1)

Proof

Note first that since S1 ∩ S2 = {0}, it follows that 

x1, … , xr, y1, … , yk are linearly independent and

hence form a basis for a subspace S of V. By Lemma

8.1.1, S = S1 ⊕ S2 so that it makes sense to speak of a

direct sum of S1 and S2. If s ∈ S, then there exist 

x ∈ S1 and y ∈ S2 such that s = x + y. Since 

L(x) ∈ S1 and L(y) ∈ S2, it follows that

L(s) = L(x) + L(y)

is an element of S1 ⊕ S2 = S. Therefore, S is invariant

under L.

Let s(1)
i

= L(xi) for i = 1, … , r and s
(2)
j

= L(yj) for

j = 1, … , k. Since each si
(1)

 is in S1 and each s
(2)
j

 is in

S2, it follows that

and hence the ith column of the matrix C representing 

L[S] will be

ci = (a1i, a2i, … , ari, 0, … , 0)T

Similarly,

and hence cj+r is given by

T

C =

=

[ ]
A 0
0 B

⎡⎢⎣ a11 … a1r 0 0

⋮
ar1 … arr 0 0
0 0 b11 … b1k

⋮
0 0 bk1 bkk

⎤⎥⎦L[S](xi) = s
(1)
i + 0

= a1ix1 + a2ix2 + ⋯ + arixr + 0y1 + ⋯ + 0yk

L[S](yj) = 0 + s
(2)
j

= 0x1 + ⋯ + 0xr + b1jy + ⋯ + bkjyk



cj+r = (0, … , 0, b1j, … , bkj)
T

Thus, the matrix C representing L[S] with respect to 

[x1, … , xr, y1, … , yk] will be of the form (1).

∎

It is possible to have a direct sum of more than two

matrices. In general, if S1, S2, … , Sr are subspaces of a

vector space V, then V = S1 ⊕ ⋯ ⊕ Sr if and only if

each v ∈ V  can be written uniquely as a sum 

s1 + ⋯ + sr, where si ∈ Si for i = 1, … , r.

Using mathematical induction, one can generalize both

of the lemmas to direct sums of more than two

subspaces. Thus, if each subspace Si has a basis Bi and

the Bi’s are all disjoint, then V = S1 ⊕ ⋯ ⊕ Sr if and

only if B = B1 ∪ B2 ∪ ⋯ ∪ Br is a basis for V. If 

S1, … , Sr are invariant under a linear transformation L

and S = S1 ⊕ ⋯ ⊕ Sr, then S is invariant under L and

L[S] can be represented by a block diagonal matrix

(2)

Let L be a linear operator mapping an n-dimensional

vector space V into itself. If V can be expressed as a

direct sum of invariant subspaces of L, then it is possible

to represent L as a block diagonal matrix A of the form

(2).

The simplest such representation occurs in the case that

L is diagonalizable. This occurs when the dimensions of

the eigenspaces are equal to the multiplicities of the

eigenvalues. In this case, we can choose A so that each

diagonal block Ai is a diagonal matrix and hence the

matrix A is also diagonal.

A =

⎡⎢⎣ A1

A2

⋱
Ar

⎤⎥⎦



If, however, there are any eigenvalues for which the

dimension of the eigenspace is less than the multiplicity

of the eigenvalue, then the subspace Sλ1 ⊕ ⋯ ⊕ Sλr

will have dimension less than n and hence will be a

proper subspace of V. In this case, what we would like to

do is somehow enlarge the deficient Sλi
’s and obtain a

direct sum representation of V of the form 

S1 ⊕ ⋯ ⊕ Sr, where each Si is invariant under L.

Furthermore, we would like the corresponding block

representation of L to be as close to a diagonal

representation as possible. Indeed, we will show that it is

possible to find invariant subspaces Si so that each L[Si]

can be represented by a bidiagonal matrix of a certain

form.

As a simple example, consider the case where the matrix

A representing L is a 3 × 3 matrix with a triple

eigenvalue λ and the eigenspace Sλ has dimension 1. In

this case, we would like to show that L can be

represented by a 3 × 3 matrix

J =

If such a representation is possible, then A would have to

be similar to J, that is, AX = XJ  for some nonsingular

matrix X. If we let x1, x2, x3 denote the column vectors

of X, this would say that

and hence

or equivalently,

⎡⎢⎣ λ 1 0
0 λ 1
0 0 λ

⎤⎥⎦A(x1, x2, x3) = (x1, x2, x3)J

Ax1 = λx1

Ax2 = x1 + λx2

Ax3 = x2 + λx3

(A − λI)x1 = 0

(A − λI)x2 = x1

(A − λI)x3 = x2



These equations imply that

(3)

Thus, if we can find a vector x such that

(4)

then we can set

(5)

The equations given in (4) really provide the key to our

problem. If we can find a vector x satisfying (4), then it is

not difficult to show that the vectors x1,x2, and x3

defined in (5) are linearly independent and hence that 

X = (x1, x2, x3) is invertible. Equation (3) implies

that

(A − λI)3x = 0

for all x ∈ R(X). Note that

(A − λI)2x1 ≠ 0

This type of condition plays an important role in the

theory we are about to develop. We state this condition

for a general linear operator L in the following definition.

Definition
Let L be a linear operator mapping a vector space V into

itself. L is said to be nil-potent of index k on V if 

Lk(v) = 0 for all v ∈ V  and Lk−1(v0) ≠ 0 for some 

v0 ∈ V .

Lemma 8.1.3

(A − λI)3x3 = (A − λI)2
x2 = (A − λI)x1 = 0

(A − λI)3x = 0 and (A − λI)2x ≠ 0

x3 = x, x2 = (A − λI)x, and x1 = (A − λI)2x



Let L be a linear operator mapping a vector space V

into itself and let v ∈ V . If Lk(v) = 0 and 

Lk−1(v) ≠ 0 for some integer k ≥ 1, then the vectors 

v, L(v), L2(v), … , Lk−1(v) are linearly

independent.

Proof

The proof will be by induction. The result clearly holds in

the case k = 1 since

and hence we have only a single nonzero vector v. (Here, 

L0
 is taken to be the identity operator.) Assume now that

we have a value of k such that the result holds for all 

j < k and suppose we have a vector v satisfying

To show linear independence, we consider the equation

(6)

If we let w = L(v) and apply L to both sides of (6), we

get

α1L(v) + α2L2(v) + ⋯ + αk−1Lk−1(v) = 0

or

α1w + α2L(w) + ⋯ + αk−1Lk−2(w) = 0

Since

it follows from our induction hypothesis that

w, L(w), … , Lk−2(w)

are linearly independent and hence that

α1 = α2 = ⋯ = αk−1 = 0

v = L0(v) ≠ 0 and L(v) = 0

Lk−1(v) ≠ 0 and Lk(v) = 0

α1v + α2L(v) + ⋯ + αkLk−1(v) = 0

Lk−2(w) = Lk−1(v) ≠ 0 and Lk−1(w) = Lk(v) = 0



Thus, (6) reduces to

αkLk−1(v) = 0

It follows that αk must also be zero and hence, 

v,  L(v), … , Lk−1(v) are linearly independent.

∎

If Lk−1(v) ≠ 0 and Lk(v) = 0 for some v ∈ V , then

the vectors, v, L(v), … , Lk−1(v) form a basis for a

subspace that we will denote by CL(v). The subspace 

CL(v) is invariant under L since for each

w = α1v + α2L(v) + ⋯ + αkLk−1(v)

in CL(v), we have

L(w) = α1L(v) + α2L2(v) + ⋯ + αk−1Lk−1(v)

and hence L(w) is also in CL(v). We will refer to CL(v)
as the L-cyclic subspace generated by v. In particular, if

L is nilpotent of index k, then for each nonzero vector 

v0 ∈ V , there is an integer k0, 1 ≤ k0 ≤ k such that 

Lk0−1(v0) ≠ 0 and Lk0(v) = 0. Thus, if L is nilpotent

on V, then one can associate an L-cyclic subspace CL(v)
with each nonzero vector v in V. It is easily seen that L-

cyclic subspaces are invariant under L.

Let CL(v) be an L cyclic subspace of V with basis 

{v,L(v,), … , Lk−1(v)}. Let

Then

[y1, y2, … , yk] = [Lk−1(v), Lk−2(v), … , v]

is an ordered basis for CL(v). Since

yi = Lk−i(v) for i = 1, … , k (where L0 = I)

L(y1) = 0
L(yj) = yj−1 for j = 2, … , k



it follows that the matrix representing L[CL(v)] with

respect to [y1, … , yk] is given by

A =

Thus, L[CL(v)] can be represented by a bidiagonal matrix

with 0’s along the main diagonal and 1’s along the

superdiagonal.

Lemma 8.1.4
Let L be a linear operator mapping a vector space V

into itself. If L is nilpotent of index k on V and 

Lk−1(v1), Lk−1(v2), … , Lk−1(vr) are linearly

independent, then the kr vectors

are linearly independent.

Proof

The proof is by induction on k. If k = 1, there is nothing

to prove. Assume the result holds for all indices less than

k and that L is nilpotent of index k. If

(7)

⎡⎢⎣ 0 1 0 … 0 0
0 0 1 … 0 0
0 0 0 … 0 0

0 0 0 … 0 1
0 0 0 … 0 0

⎤⎥⎦v1, L(v1), … , Lk−1(v1)
v2, L(v2), … , Lk−1(v2)

⋮
vr, L(vr), … , Lk−1(vr)

α11v1 + α12L(v1) + ⋯ + α1kLk−1(v1)
+α21v2 + α22L(v2) + ⋯ + α2kLk−1(v2)

⋮
+αr1vr + αr2L(vr) + ⋯ + αrkLk−1(vr)
= 0



then applying L to both sides of (7), we get

(8)

where yi = L(vi) for i = 1, … , r. Since 

Lk−2(yi) = Lk−1(vi) for each i, it follows that 

Lk−2(y1), … , Lk−2(yn) are linearly independent. Let

S be the subspace of V spanned by

y1, L(y1), … , Lk−2(y1), … , yr, L(yr), … , Lk−2(yr)

Since L is nilpotent of index k − 1 1 on S, it follows by

the induction hypothesis that

are linearly independent. Therefore,

αij = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ k − 1

and, consequently, (8) reduces to

α1kLk−1(v1) + α2kLk−2(v2) + ⋯ + αrkLk−1(vr) = 0

Since Lk−1(v1), … , Lk−1(vr) are linearly

independent, it follows that

α1k = α2k = ⋯ = αrk = 0

and hence

are linearly independent.

α11y1 + α12L(y1) + ⋯ + α1,k−1Lk−2(y1)
+α21y2 + α22L(y2) + ⋯ + α2k−1Lk−2(y2)

⋮
+αr1yr + αr2L(yr) + ⋯ + αr,k−1Lk−2(yr)
= 0

y1, L(y1), … , Lk−2(y1)
y2, L(y2), … , Lk−2(y2)

⋮
yr, L(yr), … , Lk−2(yr)

v1, L(v1), … , Lk−1(v1)
v2, L(v2), … , Lk−1(v2)

⋮
vr, L(vr), … , Lk−1(vr)



∎

Theorem 8.1.5
Let L be a linear operator mapping an n-dimensional

vector space V into itself. If L is nilpotent of index k on

V, then V can be decomposed into a direct sum of L-

cyclic subspaces.

Proof

The proof will be by induction on k. If k = 1, then L is

the zero operator on V. Thus, if {v1, … , vn} is any

basis of V, then CL(vi) is the one-dimensional subspace

spanned by vi for each i and hence

V = CL(v1) ⊕ ⋯ ⊕ CL(vn)

Suppose now that we have an integer k > 1 such that

the result holds for all indices less than k and L is

nilpotent of index k. Let {v1, … , vm} be a basis for ker

(Lk−1). This basis can be extended to a basis 

{v1, … , vm, y1, … , yr} of V (where r = n − m).

Since yi ∉ ker(Lk−1) it follows that Lk−1(yi) ≠ 0.

Let

B1 = {y1, L(y1), … , Lk−1(y1), … yr, L(yr), … , Lk−1(yr)}

We claim B1 is a basis for a subspace S1 of V. By Lemma

8.1.4, it suffices to show that 

Lk−1(y1), Lk−1(y2), … , Lk−1(yr) are linearly

independent. If

α1Lk−1(y1) + α2Lk−1(y2) + ⋯ + αrLk−1(yr) = 0

then

Lk−1(α1y1 + ⋯ + αryr) = 0



and hence α1y1 + ⋯ + αryr ∈ ker(Lk−1). But then 

α1 = α2 = ⋯ = αr = 0; otherwise, 

v1, … , vm, y1, … , yr would be dependent. Thus, 

Lk−1(y1), … , Lk−1(yr) are linearly independent and

hence B1 is a basis for a subspace S1 of V. It follows

from Lemma 8.1.1 that

S1 = CL(y1) ⊕ ⋯ ⊕ CL(yr)

If S1 ≠ V , extend B1 to a basis B for V. Let B2 be the

set of additional basis elements (i.e., B = B1 ∪ B2 and 

B1 ∩ B2 = ∅. B2 is a basis for a subspace S2 of V, and

by Lemma 8.1.1, V = S1 ⊕ S2. By construction, S2 is a

subspace of ker(Lk−1). (If s ∈ S2, then it must be of

the form 

s = α1v1 + ⋯ + αmvm + 0y1 + ⋯ + 0yr.) Thus,

L is nilpotent of index k1 < k on S2. By the induction

hypothesis, S2 can be written as a direct sum of L-cyclic

subspaces, and since V = S1 ⊕ S2, it follows that V is a

direct sum of L-cyclic subspaces.

Corollary 8.1.6
If L is a linear operator mapping an n-dimensional

vector space V into itself and L is nilpotent of index k on

V, then L can be represented by a matrix of the form

A =

where each Ji is a a ki × ki bidiagonal matrix (

1 ≤ ki ≤ k and 

s

Σ
i=1

ki = n)with 0’s along the main

diagonal and 1’s along the superdiagonal.

Proof

By Theorem 8.1.5, we can write

( ) ( )

⎡⎢⎣ J1

J2

⋱
Js

⎤⎥⎦



V = CL(v1) ⊕ ⋯ ⊕ CL(vs)

If CL(vi) has dimension ki, then the matrix

representing L[CL(vi)] with respect to 

[Lki−1(vi), … , vi] will be

Ji =

The conclusion follows from Lemma 8.1.2.

∎

It follows from Corollary 8.1.6 that if L is nilpotent on an

n-dimensional vector space V, then all of its eigenvalues

are 0. Conversely, if all of the eigenvalues of L are 0, then

it follows from Theorem 6.4.3 that L can be represented

by a triangular matrix T whose diagonal elements are all

0. Thus for some k, k, T k
 will be the zero matrix and

hence Lk
 will be the zero operator. So, if L is a linear

operator mapping an n-dimensional vector space V into

itself, then L is nilpotent if and only if all of its

eigenvalues are 0.

Corollary 8.1.7
Let L be a linear operator mapping an n-dimensional

vector space V into itself. If L has only one distinct

eigenvalue λ, then L can be represented by a matrix A

of the form

(9)

⎡⎢⎣ 0 1
0 1

⋱ ⋱
0 1

0

⎤⎥⎦A =

⎡⎢⎣ J1(λ)
J2(λ)

⋱
Js(λ)

⎤⎥⎦



where each Ji(λ) is a bidiagonal matrix of the form

(10)

Proof

Let ⌶ denote the identity operator V. The eigenvalues of

the operator L − λ⌶ are all 0 and hence L − λ⌶ is

nilpotent. It follows from Corollary 8.1.6 that with

respect to some ordered basis [v1, … , vn] of V, the

operator L − λ⌶ can be represented by a matrix of the

form

The matrix representing λ⌶ with respect to [v1, … , vn]
is simply λI. Since L = (L − λ⌶) + λ⌶, it follows that

the matrix representing L with respect to [v1, … , vn] is

J + λI =

∎

A matrix of the form (10) is said to be a simple Jordan

matrix. Thus, a simple Jordan matrix is a bidiagonal

matrix whose diagonal elements all have the same value 

λ and whose superdiagonal elements are all 1.

Ji(λ) =

⎡⎢⎣ λ 1
λ 1

⋱ ⋱
λ 1

λ

⎤⎥⎦J = , where Ji(0) =

⎡⎢⎣ J1(0)
J2(0)

⋱
Js(0)

⎤⎥⎦ ⎡⎢⎣ 0 1
0 1

⋱ ⋱
0 1

0

⎤⎥⎦⎡⎢⎣ J1(λ)
J2(λ)

⋱
Js(λ)

⎤⎥⎦



Example 1
Let

A =

We can think of A as representing an operator from R5

into R5
. Since λ = 1 is the only eigenvalue, A is similar

to a block diagonal matrix whose diagonal blocks are

simple Jordan matrices with 1’s along both the diagonal

and the superdiagonal. The eigenspace corresponding to 

λ = 1 is spanned by the vectors x = (1, 0, 0, 0, 0)T

and y = (0, 0, −1, 0, 1)T
. Thus, the bidiagonal matrix

will consist of two simple Jordan blocks, J1(1) and 

J2(1). If we order the blocks so that the first block is the

largest, then the only possibilities for the block diagonal

matrix are

To determine which of these forms is correct, one must

compute powers of A − I.

⎡⎢⎣ 1 2 1 1 1
0 1 1 2 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎦



Thus, A − I  is nilpotent of index 4. The systems

are clearly inconsistent if k and j are greater than 3. We

determine the maximum k and maximum j for which

these systems are consistent. For k = 3, the system

(A − I)3s = x

is consistent and will have infinitely many solutions. We

pick one of these solutions:

x1 = (0, 0, 0,
1
2

, 0)T

To generate the rest of the cyclic subspace, we compute

With respect to the ordered basis [x, x3, x2, x1], the

matrix representing the operator A on this subspace will

be of the form

J1(1) =

The systems

(A − I)js = y

A − I = ( )2 =

( )3 = 4 = O

⎡⎢⎣ 0 2 1 1 1
0 0 1 2 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎦ A − I

⎡⎢⎣ 0 0 2 5 2
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎦A − I

⎡⎢⎣ 0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎦ ( )A − I

(A − I)ks = x and (A − I)js = y

x2 = (A − I) x1 = ( 1
2 , 1, 1

2 , 0, 0)T

x3 = (A − I) x2 = (A − I)2x1 = ( 5
2 , 1

2 , 0, 0, 0)T

⎡⎢⎣ 1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤⎥⎦



are inconsistent for all positive integers j. Thus, the cyclic

subspace containing y has dimension 1. It follows that

the matrix representing A with respect to 

[x, x3, x2, x1, y] is

The reader may verify that if Y is the matrix whose

columns are x, x3, x2, x1, y, respectively, then

Y JY −1 = A

In the next section, we will show that a matrix A with

distinct eigenvalues λ1, … , λm is similar to a matrix J

of the form

J =

where each Bi is of the form (9) with diagonal elements

equal to λi, that is

Bi =

where the Jk(λi)’s are simple Jordan matrices. We say

that J is the Jordan canonical form of A. The Jordan

⎡⎢⎣ B1

B2

⋱
Bm

⎤⎥⎦⎡⎢⎣ J1(λi)
J2(λi)

⋱
Js(λi)

⎤⎥⎦



canonical form is unique except for a reordering of the

blocks.



Section 8.1 Exercises

1. Let L be a linear operator on a vector space V of dimension 5 and

let A be any matrix representing L. If L is nilpotent of index 3, then

what are the possible Jordan canonical forms of A?

2. Let A be a 4 × 4 matrix whose only eigenvalue is λ = 2. What are

the possible Jordan canonical forms of A?

3. Let L be a linear operator on a vector space V of dimension 6 and

let A be a matrix representing L. If L has only one distinct

eigenvalue λ and the eigenspace Sλ has dimension 3, then what

are the possible Jordan canonical forms of A?

4. For each of the following, find a matrix S such that S−1AS is a

simple Jordan matrix:

1. A =

2. A =

5. For each of the following, find a matrix S such that S−1AS is the

Jordan canonical form of A:

1. A =

2. A =

6. Let S1 and S2 be subspaces of a finite dimensional vector space V.

Prove that V = S1 ⊕ S2 if and only if V = S1 + S2 and 

S1 ∩ S2 = {0}.

7. Prove Lemma 8.1.1.

8. Let L be a linear operator mapping a vector space V into itself.

Show that ker(L)and R(L) are invariant subspaces of V under L.

⎡⎢⎣ 1 0 1

1 0 2

1 −1 2

⎤⎥⎦⎡⎢⎣ 1 2 0 0

0 1 2 0

0 0 1 2

0 0 0 1

⎤⎥⎦⎡⎢⎣ −1 1 0 0

−1 1 0 0

−2 2 0 0

0 3 −1 0

⎤⎥⎦⎡⎢⎣ 0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎤⎥⎦



9. Let L be a linear operator on a vector space V. Let Sk[v] denote

the subspace spanned by v, L(v), … , Lk−1(v). Show that 

Sk[v] is invariant under L if and only if Lk(v) ∈ Sk[v].

10. Let L be a linear operator on a vector space V and let S be a

subspace of V. Let ⌶ represent the identity operator and let λ be a

scalar. Show that L is invariant on S if and only if L − λ⌶ is

invariant on S.

11. Let S be the subspace of C[a, b] spanned by x, xex
, and 

xex + x2ex
. Let D be the differentiation operator on S.

1. Find a matrix A representing D with respect to 

[ex, xex, xex + x2ex].

2. Determine the Jordan canonical form of A and the

corresponding basis of S.

12. Let D denote the linear operator on Pn defined by D(p) = p′ for

all p ∈ Pn. Show that D is nilpotent and can be represented by a

simple Jordan matrix.



8.2 The Jordan Canonical

Form
In this section, we will show that any linear operator L on

an n-dimensional vector space V can be represented by a

block diagonal matrix whose diagonal blocks are simple

Jordan matrices. We will apply this result to solving

systems of linear differential equations of the form 

Y ′ = AY , where A is defective.

Let us begin by considering the case where L has more

than one distinct eigenvalue. We wish to show that if L

has distinct eigenvalues λ1, … ,λk, then V can be

decomposed into a direct sum of invariant subspaces 

S1, … ,Sk such that L − λi⌶ is nilpotent on Si for

each i = 1, … , k. To do this, we must first prove the

following lemma and theorem.

Lemma 8.2.1
If L is a linear operator mapping an n-dimensional

vector space V into itself, then there exists a positive

integer k0 such that ker(Lk0) = ker(Lk0+k) for all 

k > 0.

Proof

If i < j, then clearly ker(Li) is a subspace of ker(Lj).

We claim that if ker(Li) = ker(Li+1) for some i, then

ker(Li) = ker(Li+k) for all k ≥ 1. We will prove this

by induction on k. In the case k = 1, there is nothing to

prove. Assume that for some k > 1 the result holds all

indices less than k. If v ∈ ker(Li+k), then



0 = Li+k(v) = Li+k−1(L(v))

Thus, L(v) ∈ ker(Li+k−1). By the induction

hypothesis, ker(Li+k−1) = ker(Li). Therefore, 

L(v) ∈ ker(Li) and hence v ∈ ker(Li+1). Since 

ker(Li+1) = ker(Li), it follows that v ∈ ker(Li)
and hence ker(Li) = ker(Li+k). Thus, if 

ker(Li+1) = ker(Li) for some i, then

ker(Li) = ker(Li+1) = ker(Li+1) = …

Since V is finite dimensional, the dimension of ker(Lk)
cannot keep increasing as k increases. Thus for some k0,

we must have dim(ker(Lk0)) = dim(ker(Lk0+1))
and hence ker(Lk0) and ker(Lk0+1) must be equal. It

follows that

ker(Lk0) = ker(Lk0+1) = ker(Lk0+2) = …

∎

Theorem 8.2.2
If L is a linear transformation on an n-dimensional

vector space V, then there exist invariant subspaces X

and Y such that V = X ⊕ Y , L is nilpotent on X, and 

L[Y ] is invertible.

Proof

Choose k0 to be the smallest positive integer such that 

ker(Lk0) = ker(Lk0+1). It follows from Lemma 8.2.1

that ker(Lk0) = ker(Lk0+j) for all j ≥ 1. Let 

X = ker(Lk0). Clearly, X is invariant under L for if 

x ∈ X, then L(x) ∈ ker(Lk0−1), which is a proper

subspace of ker(Lk0). Let Y = R(Lk0). If 

w ∈ X ∩ Y , then w = Lk0(v) for some v and hence

0 = L
k0(w) = Lk0(Lk0(v)) = L2k0(v)



Thus, v ∈ ker(L2k0) = ker(Lk0) and hence

w = Lk0(v) = 0

Therefore, X ∩ Y = {0}. We claim V = X ⊕ Y . Let 

{x1, … , xr} be a basis for X and let {y1, … , yn−r}
be a basis for Y. By Lemma 8.2.1, it suffices to show that 

x1, … , xr, y1, … , yn−r are linearly independent and

hence form a basis for V. If

(1)

then applying Lk0  to both sides gives

or

Therefore,  and

hence

Since the yi’s are linearly independent, it follows that

β1 = β2 = ⋯ = βn−r = 0

and hence (1) simplifies to

α1x1 + ⋯ + αrxr = 0

Since the xi’s are linearly independent, it follows that

α1 = α2 = ⋯ = αr = 0

Thus, x1, … , xr, y1, … , yn−r are linearly

independent and therefore V = X ⊕ Y . L is invariant

and nilpotent on X. We claim that L is invariant and

invertible on Y. Let y ∈ Y ; then y = Lk0(v) for some 

v ∈ V . Thus,

L(y) = L(Lk0(v)) = Lk0+1(v) = Lk0(L(v))

α1x1 + ⋯ + αrxr + β1y1 + ⋯ + βn−ryn−r = 0

β1L
k0(y1) + ⋯ + βn−rL

k0(yn−r) = 0

Lk0(β1y1 + ⋯ + βn−ryn−r) = 0

β1y1 + ⋯ + βn−ryn−r ∈ X ∩ Y

β1y1 + ⋯ + βn−ryn−r = 0



Therefore, L(y) ∈ Y  and hence Y is invariant under L.

To prove L[Y ] is invertible, it suffices to show that

ker(L[Y ]) = Y ∩ ker(L) = {0}

This, however, follows immediately since ker(L) ⊂ X

and X ∩ Y = {0}.

∎

We are now ready to prove the main result of this

section.

Theorem 8.2.3

Let L be a linear operator mapping a finite dimensional

vector space V into itself. If λ1, … ,λk are the distinct

eigenvalues of L, then V can be decomposed into a direct

sum

X1 ⊕ X2 ⊕ ⋯ ⊕ Xk

such that L − λi⌶ is nilpotent on Xi and the dimension

of Xi equals the multiplicity of λi.

Proof

Let L1 = L − λ1⌶. By Theorem 8.2.2, there exist

subspaces X1 and Y1 that are invariant under L1 such

that V = X1 ⊕ Y1,L1 is nilpotent on X1, and L1[Y ] is

invertible. It follows that X1 and Y1 are also invariant

under L. By Corollary 8.1.2, L[X1] can be represented by

a block diagonal matrix A1, where diagonal blocks are

simple Jordan matrices whose diagonal elements all

equal λ1. Thus,

det(A1 − λI) = (λ1 − λ)m1

where m1 is the dimension of X1. Let B1 be a matrix

representing L[Y1]. Since L1 is invertible on Y1, it follows

that λ1 is not an eigenvalue of B1. Thus,

( ) ( )



det(B1 − λI) = q(λ)

where q(λ1) ≠ 0. It follows from Lemma 8.1.2 that the

operator L on V can be represented by the matrix

A = [ ]

Thus, if each eigenvalue λi of L has multiplicity ri, then

Therefore, r1 = m1 and

q(λ) = (λ2 − λ)r2 … (λk − λ)rk

If we consider the operator L2 = L − λ2⌶ on the vector

space Y1, then we can decompose Y1 into a direct sum 

X2 ⊕ Y2 such that X2 and Y2 are invariant under L,L2

is nilpotent on X2, and L[Y2] is invertible. Indeed, we

can continue this process of decomposing Yi into a direct

sum Xi+1 ⊕ Yi+1 until we obtain a direct sum of the

form

V = X1 ⊕ X2 ⊕ ⋯ ⊕ Xk−1 ⊕ Yk−1

The vector space Yk−1 will be of dimension rk with a

single eigenvalue λk. Thus, if we set Xk = Yk−1, then 

L − λk⌶ will be nilpotent on Xk and we will have the

desired decomposition of V.

∎

It follows from Theorem 8.2.3 that each operator L

mapping an n-dimensional vector space V into itself can

be represented by a block diagonal matrix of the form

J =

A1

B1

(λ1 − λ)r1(λ2 − λ)r2 ⋯ (λk − λ)rk = det(A − λI)
= det(A − λI) det(B1 − λI)
= (λ1 − λ)m1q(λ)

⎡⎢⎣ A1

A2

⋱
Ak

⎤⎥⎦



where each Ai is an ri × ri block diagonal matrix 

(ri = multiplicity of λi) whose blocks consist of

simple Jordan matrices with λi’s along the main

diagonal.

If A is an n × n matrix, then A represents the operator 

LA with respect to the standard basis on Rn
, where LA

is defined by

x ∈ Rn

By the preceding remarks, LA can be represented by a

matrix J of the form just described. It follows that A is

similar to J. Thus, each n × n matrix A with distinct

eigenvalues λ1, … ,λk is similar to a matrix J of the

form

(2)

where Ai is an ri × ri matrix 

(ri = multiplicity of λi) of the form

(3)

with the ’s being simple Jordan matrices. The

matrix J defined by (2) and (3) is called the Jordan

canonical form of A. The Jordan canonical form of a

matrix is unique except for a reordering of the simple

Jordan blocks along the diagonal.

Example 1 1

LA(x) = Ax for each

J =

⎡⎢⎣ A1

A2

⋱
Ak

⎤⎥⎦Ai =

⎡⎢⎣ J1(λi)
J2(λi)

⋱
Js(λi)

⎤⎥⎦J(λi)



Find the Jordan canonical form of the matrix

A =

SOLUTION

The characteristic polynomial of A is

|A − λI| = λ4(1 − λ)

The eigenspace corresponding to λ = 1 is spanned by 

x1 = (1, 1, 1, 1, 2)T  and the eigen-space corresponding

to λ = 0 is spanned by x2 = (1, 1, 0, 1, 1)T  and 

x3 = (0, 0, 1, 0, 0)T . Thus, the Jordan canonical form

of A then will consist of three simple Jordan blocks.

Except for a reordering of the blocks, there are only two

possibilities:

To determine which of these forms is correct, we

compute (A − 0I)2 = A2
.

A2 =

⎡⎢⎣ −3 1 0 1 1
−3 1 0 1 1
−4 1 0 2 1
−3 1 0 1 1
−4 1 0 1 2

⎤⎥⎦
⎡⎢⎣ −1 0 0 0 1

−1 0 0 0 1
−1 0 0 0 1
−1 0 0 0 1
−2 0 0 0 2

⎤⎥⎦



Next we consider the systems

A2x = xi

for i = 2, 3. Since these systems turn out to be

inconsistent, the Jordan canonical form of A cannot have

any 3 × 3 simple Jordan blocks and, consequently, it

must be of the form

To find X, we must solve

Ax = xi

for i = 2, 3. The system Ax = x2 has infinitely many

solutions. We need choose only one of these, say, 

x4 = (1, 3, 0, 0, 1)T . Similarly, Ax = x3 has infinitely

many solutions, one of which is x5 = (1, 0, 0, 2, 1)T .

Let

X = [ ] =

The reader may verify that X−1AX = J .

One of the main applications of the Jordan canonical

form is in solving systems of linear differential equations

x1 x2 x3 x4 x5

⎡⎢⎣ 1 1 0 1 1
1 1 0 3 0
1 0 1 0 0
1 1 0 0 2
2 1 0 1 1

⎤⎥⎦



that have defective coefficient matrices. Given such a

system

Y′(t) = AY(t)

we can simplify it by using the Jordan canonical form of

A. Indeed, if A = XJX−1
, then

Y′ = (XJX−1)Y

Thus, if we set Z = X−1Y, then Y′ = XZ′ and the

system simplifies to

XZ′ = XJZ

Multiplying by X−1
, we get

(4)

Because of the structure of J, this new system is much

easier to solve. Indeed, solving (4) will only involve

solving a number of smaller systems, each of the form

These equations can be solved one at a time starting with

the last. The solution to the last equation is clearly

zk = ceλt

The solution to any equation of the form

z′(t) − λz(t) = u(t)

is given by

z(t) = eλt ∫ e−λtu(t)dt

Thus, we can solve

z′
k−1 − λzk−1 = zk

Z′ = JZ

′
1 = λz1 + z2
′
2 = λz2 + z3

⋮
′
k−1 = λzk−1 + zk

′
k = λzk

z

z

z

z



for zk−1 and then solve

z′
k−2 − λzk−2 = zk−1

for zk−2, etc.

Example 2
Solve the initial value problem

SOLUTION

The coefficient matrix A has two distinct eigenvalues 

λ1 = 0 and λ2 = 2, each of multiplicity 2. The

corresponding eigenspaces are both dimension 1. Using

the methods of this section, A can be factored into a

product XJX−1
, where

J =

The choice of X is not unique. The reader may verify that

the one we have calculated:

X =

does the job. If we now change variable and set 

Z = X−1Y , then we can rewrite the system in the form

Z′ = JZ

=

y1(0) = y2(0) = y3(0) = y4(0) = 2

⎡⎢⎣ y′
1

y′
2

y′
3

y′
4

⎤⎥⎦ ⎡⎢⎣ 1 0 0 −1
0 1 1 0
0 −1 1 2
1 0 2 1

⎤⎥⎦ ⎡⎢⎣ y1

y2

y3

y4

⎤⎥⎦⎡⎢⎣ 0 1 0 0
0 0 0 0
0 0 2 1
0 0 0 2

⎤⎥⎦⎡⎢⎣ 1 1 −1 1
1 1 1 −1

−1 0 1 0
1 0 1 0

⎤⎥⎦



The block structure of J allows us to break up the system

into two simpler systems:

The first system is not difficult to solve.

To solve the second system, we first solve

z′
4 = 2z4

getting

z4 = c3e
2t

Thus,

z′
3 − 2z3 = c3e

2t

and hence

z3 = e2t ∫ e−2t(c3e
2t)dt = e2t(c3t + c4)

Finally, we have

Y = XZ=

If we set t = 0 and use the initial conditions to solve for

the ci’s, we get

Thus, the solution to the initial value problem is

and
= z2

′
2 = 0

z′
1

z

z′
3 = 2z3 + z4

′
4 = 2z4z

z1 = c1t + c2

z2 = c1 (c1 and c2 are  constants)

⎡⎢⎣ (c1t + c2) − c1(c3t + c4)e2t + c3e
2t

(c1t + c2) + c1(c3t + c4)e2t − c3e
2t

−(c1t + c2) + (c3t + c4)e2t

(c1t + c2) + (c3t + c4)e2t

⎤⎥⎦c1 = −1, c2 = c3 = c4 = 1

y1 = −t − te2t

y2 = −t + te2t

y3 = −1 + t + (1 + t)e2t

y4 = 1 − t + (1 + t)e2t



The Jordan canonical form not only provides a nice

representation of an operator, but it also allows us to

solve systems of the form Y′ = AY even when the

coefficient matrix is defective. From a theoretical point of

view, its importance cannot be questioned. As far as

practical applications go, however, it is generally not very

useful.

If n ≥ 5, it is usually necessary to calculate the

eigenvalues of A by some numerical method. The

calculated λi’s are only approximations to the actual

eigenvalues. Thus, we could have calculated values λ′
1

and λ′
2, which are unequal while actually λ1 = λ2. So in

practice, it may be difficult to determine the correct

multiplicity of the eigenvalues. Furthermore, in order to

solve Y′ = AY, we need to find the similarity matrix X

such that A = XJX−1
. However, when A has multiple

eigenvalues, the matrix X may be very sensitive to

perturbations and, in practice, one is not guaranteed that

the entries of the computed similarity matrix will have

any digits of accuracy whatsoever. A recommended

alternative is to compute the matrix exponential eA and

use it to solve the system Y′ = AY.



Section 8.2 Exercises

1. Let A 4 × 4 matrix whose only eigenvalue is λ = 2. What are the

possible Jordan canonical forms for A?

2. Let A be a 5 × 5 matrix. If A2 ≠ 0 and A3 = 0, what are the

possible Jordan canonical forms for A?

3. Find the Jordan canonical form J for each of the following

matrices and determine a matrix X such that X−1AX = J :

1. A =

2. A =

3. A =

4. A =

5. A =

4. Let L be a linear operator on a finite dimensional vector space V.

1. Show that R(Li) ⊂ R(Lj) whenever i > j.

2. If for some k0, R(Lk0) = R(Lk0+1), then 

R(Lk0) = R(Lk0+k) for all k ≥ 1.

5. Let L be as in Exercise 4.

⎡⎢⎣ 1 0 1

1 0 2

1 −1 2

⎤⎥⎦⎡⎢⎣ 0 0 0 1

0 0 0 1

1 2 0 0

0 0 0 −1

⎤⎥⎦⎡⎢⎣ 1 2 0 0

0 1 2 0

0 0 1 2

0 0 0 1

⎤⎥⎦⎡⎢⎣ 1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 0 1

0 0 0 0 0

⎤⎥⎦⎡⎢⎣ 2 1 1 1 1 1

0 2 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

⎤⎥⎦



1. Show that there is a smallest positive integer k0 such

that R(Lk0) = R(Lk0+1).

2. Let k1 be the smallest positive integer such that 

ker(Lk1) = ker(Lk1+1). Show that k1 = k0.

6. Solve the initial value problem

y′
1 = y3

y′
2 = y1 − y2 + 2y3

y′
3 = y1 − y2 + y3

y1(0) = 0, y2(0) = 0, y3(0) = −1



Appendix: Matlab
MATLAB is an interactive program for matrix

computations. The original version of MATLAB, short for

matrix laboratory, was developed by Cleve Moler from

the Linpack and Eispack software libraries. Over the

years MATLAB has undergone a series of expansions and

revisions. Today it is the leading software for scientific

computations. The MATLAB software is distributed by

the MathWorks, Inc. of Natick, Massachusetts. Some

universities have MATLAB licenses that allow student

use. For those that do not, individual student licenses

may be purchased at affordable prices. In addition to

widespread use in industrial and engineering settings,

MATLAB has become a standard instructional tool for

undergraduate linear algebra courses.



The MATLAB Desktop Display
At start-up, MATLAB will display a desktop with three

windows. The window on the right is the command

window, in which MATLAB commands are entered and

executed. The windows on the left display the Current

Folder Browser and the Workspace Browser.

The Workspace Browser allows you to view and make

changes to the contents of the workspace. It is also

possible to plot a data set using the Workspace window.

Just highlight the data set to be plotted and then select

the type of plot desired. MATLAB will display the graph

in a new figure window. The Current Folder Browser

allows you to view MATLAB and other files and to

perform file operations such as opening and editing or

searching for files.

It is also possible to open up a fourth window that

displays the Command History. It allows you view a log

of all the commands that have been entered in the

command window. This window can be accessed from

the Command Window by pressing the up arrow key. To

repeat a previous command, just click on the command

to highlight it. The selected command will now appear on

the current line in the Command Window and may be

edited and executed.

Any of the MATLAB windows can be closed, maximized,

docked, or undocked by clicking on the solid triangle

located in the upper right-hand corner of the window

and choosing the desired option.



Basic Data Elements

The basic elements that MATLAB uses are matrices.

Once the matrices have been entered or generated, the

user can quickly perform sophisticated computations

with a minimal amount of programming.

Entering matrices in MATLAB is easy. To enter the

matrix

type

A = [ ]

or the matrix could be entered one row at a time:

Once a matrix has been entered, you can edit it in two

ways. From the command window, you can redefine any

entry with a MATLAB command. For example, the

command A(1, 3) = 5 will change the third entry in the

first row of A to 5. You can also edit the entries of a

matrix from the Workspace Browser. To change the 

(1, 3) entry of A with the Workspace Browser, we first

locate A in the Name column of the browser and then

click on the array icon to the left of A to open an array

display of the matrix. To change the (1, 3) entry to a 5,

click on the corresponding cell of the array and enter 5.

Row vectors of equally spaced points can be generated

using MATLAB’s: operation. The command x = 2 : 6

⎡⎢⎣ 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎤⎥⎦1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16

A = [1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16]



generates a row vector with integer entries going from 2

to 6.

It is not necessary to use integers or to have a step size of

1. For example, the command x = 1.2 : 0.2 : 2 will

produce

x =

65432

x =

2.00001.80001.60001.2000 1.4000



Submatrices

To refer to a submatrix of the matrix A entered earlier,

use the: to specify the rows and columns. For example,

the submatrix consisting of the entries in the second two

rows of columns 2 through 4 is given by A(2 : 3, 2 : 4).

Thus, the statement

C = A(2 : 3, 2 : 4)

generates

If the colon is used by itself for one of the arguments,

either all the rows or all the columns of the matrix will be

included. For example, A(:, 2 : 3) represents the

submatrix of A consisting of all the elements in the

second and third columns, and A(4, :) denotes the

fourth row vector of A. We can generate a submatrix

using non-adjacent rows or columns by using vector

arguments to specify which rows and columns are to be

included. For example, to generate a matrix whose

entries are those which appear only in the first and third

rows and second and fourth columns of A, set

E = A([1, 3], [2, 4])

The result will be

C =
6 7 8

10 11 12

E =
2 4

10 12



Generating Matrices
We can also generate by matrices using built-in MATLAB

functions. For example, the command

B = rand(4)

will generate a 4 × 4 matrix whose entries are random

numbers between 0 and 1. Other functions that can be

used to generate matrices are eye, zeros, ones, magic,

hilb, pascal, toeplitz, compan, and vander. To

build triangular or diagonal matrices, we can use the

MATLAB functions triu, tril, and diag.

The matrix building commands can be used to generate

blocks of partitioned matrices. For example, the

MATLAB command

E = [ ]

will generate the matrix

eye(2), ones(2, 3); zeros(2), [1 : 3; 3 : −1 : 1]

E =

1 0 1 1 1

0 1 1 1 1

0 0 1 2 3

0 0 3 2 1



Matrix Arithmetic

Addition and Multiplication of

Matrices
Matrix arithmetic in MATLAB is straightforward. We can

multiply our original matrix A times B simply by typing 

A * B. The sum and difference of A and B are given by 

A + B and A − B, respectively. The transpose of the

real matrix A is given by A′. For a matrix C with complex

entries, the′ operation corresponds to conjugate

transpose. Thus, CH
 is given as C ′

 in MATLAB.

Backslash or Matrix Le�

Division

If W is an n × n matrix and b represents a vector in R
n

,

the solution of the system Wx = b can be computed

using MATLAB’s backslash operator by setting

x = W\b

For example, if we set

W = [ ]

and b = [ ], then the command

x = W\b

will yield

1 1 1 1; 1 2 3 4; 3 4 6 2; 2 7 10 5

85;3; 5;



In the case that the n × n coefficient matrix is singular

or has numerical rank less than n, the backslash operator

will still compute a solution, but MATLAB will issue a

warning. For example our original 4 × 4 matrix A is

singular and the command

x = A\b

yields

Warning: Matrix is close to singular or
badly scaled. Results may be inaccurate.
RCOND = 1.387779e-018.

The 1.0e + 015 indicates the exponent for each of the

entries of x. Thus, each of the four entries listed is

multiplied by 1015
. The value of RCOND is an estimate

of the reciprocal of the condition number of the

coefficient matrix. Even if the matrix were nonsingular,

with a condition number on the order of 1018
, one could

expect to lose as much as 18 digits of accuracy in the

decimal representation of the computed solution. Since

the computer keeps track of only 16 decimal digits, this

means that the computed solution may not have any

digits of accuracy.

If the coefficient matrix for a linear system has more

rows than columns, then MATLAB assumes that a least

squares solution of the system is desired. If we set

( )

x =

1.0000

3.0000

−2.0000

1.0000

x =

1.0e + 015*

2.2518

−3.0024

−0.7506

1.5012



C = A(:, 1 : 2)

then C is a 4 × 2 matrix and the command

x = C\b

will compute the least squares solution

If we now set

C = A(:, 1 : 3)

then C will be a 4 × 3 matrix with rank equal to 2.

Although the least squares problem will not have a

unique solution, MATLAB will still compute a solution

and return a warning that the matrix is rank deficient. In

this case, the command

x = C\b

yields

Warning: Rank deficient, rank = 2, tol =
1.7852e-014.

Exponentiation
Powers of matrices are easily generated. The matrix A

5

is computed in MATLAB by typing A
⌃5. We can also

perform operations elementwise by preceding the

operand by a period. For example, if 

V = [ ], then V ⌃2 results in

2.6250

x =

− 2.2500

x =

−0.9375

0

1.3125

432;1



while V .⌃2 will give

ans =

7 10

15 22

ans =

1 4

9 16



MATLAB Functions

To compute the eigenvalues of a square matrix A, we

need only type eig(A). The eigenvectors and eigenvalues

can be computed by setting

[ ] = eig(A)

Similarly, we can compute the determinant, inverse,

condition number, norm, and rank of a matrix with

simple one-word commands. Matrix factorizations such

as the LU, QR, Cholesky, Schur decomposition, and

singular value decomposition can be computed with a

single command. For example, the command

[ ] = qr(A)

will produce an orthogonal (or unitary) matrix Q and an

upper triangular matrix R, with the same dimensions as

A, such that A = QR.

X D

Q R



Programming Features
MATLAB has all the flow control structures that you

would expect in a high-level language, including for
loops, while loops, and if statements. This allows the

user to write his or her own MATLAB programs and to

create additional MATLAB functions. Note that MATLAB

prints out automatically the result of each command,

unless the command line ends in a semicolon. When

using loops, we recommend ending each command with

a semicolon to avoid printing all the results of the

intermediate computations.



M-files
It is possible to extend MATLAB by adding your own

programs. MATLAB programs are all given the extension

.m and are referred to as M-files. There are two basic

types of M-files.

Script Files
Script files are files that contain a series of MATLAB

commands. All the variables used in these commands are

global, and consequently the values of these variables in

your MATLAB session will change every time you run the

script file. For example, if you wanted to determine the

nullity of a matrix, you could create a script file

nullity.m containing the following commands:

Entering the command nullity would cause the two

lines of code in the script file to be executed. The

disadvantage of determining the nullity this way is that

the matrix must be named A. Additionally, if you have

been using the variables m and n, the values of these

variables will be reassigned when you run the script file.

An alternative would be to create a function file.

Function Files
Function files begin with a function declaration

statement of the form

function[oargl, …, oargj] = fname(inarg1, …, inargk)

[m, n] = size(A)

nuldim = n − rank(A)



All the variables used in the function M-file are local.

When you call a function file, only the values of the

output variables will change in your MATLAB session.

For example, we could create a function file nullity.m
to compute the nullity of a matrix as follows:

The lines beginning with % are comments that are not

executed. These lines will be displayed whenever you

type help nullity in a MATLAB session. Once the

function is saved, it can be used in a MATLAB session in

the same way that we use built-in MATLAB functions.

For example, if we set

B = [ ];

and then enter the command

n = nullity(B)

MATLAB will return the answer: n = 1.

The MATLAB Path
The M-files that you develop should be kept in folders

that can be added to the default MATLAB path—the list

of folders where MATLAB will automatically search for

Mfiles. To add or remove a folder from the MATLAB

path or to reorder the folders in the path, select the home

tab at the top of the page and then click on the Set Path

option.

function k = nullity(A)

% The command nullity(A) computes the dimension

%   of the nullspace of A.

[m, n] = size(A);

k = n − rank(A);

7 8 91 2 3; 4 5 6;



Relational and Logical

Operators
MATLAB has six relational operators that are used for

comparisons of scalars or elementwise comparisons of

arrays. These operators are:

Relational Operators

< less than

<= less than or equal

> greater than

>= greater than or equal

== equal

∼= not equal

Given two m × n matrices A and B, the command

C = A < B

will generate an m × n matrix consisting of zeros and

ones. The (i, j) entry will be equal to 1 if and only if 

aij < bij. For example, suppose that

The command A >= 0 will generate

A =
⎡⎢⎣ −2 0 3

4 2 −5

−1 −3 2

⎤⎥⎦



There are three logical operators in MATLAB:

Logical Operators

& AND

| OR

∼ NOT

These logical operators regard any nonzero scalar as

corresponding to TRUE and 0 as corresponding to

FALSE. The operator & corresponds to the logical AND.

If a and b are scalars, the expression a & b will equal 1 if

a and b are both nonzero (TRUE) and 0 otherwise. The

operator | corresponds to the logical OR. The expression

a|b will have the value 0 if both a and b are 0; otherwise

it will be equal to 1. The operator ∼ corresponds to the

logical NOT. For a scalar a, it takes on the value 1

(TRUE) if a = 0(FALSE) and the value 0 (FALSE) if 

a ≠ 0(TRUE).

For matrices, these operators are applied elementwise.

Thus, if A and B are both m × n matrices, then A & B is

a matrix of zeros and ones whose ij th entry is 

a(i, j)&b(i, j). For example, if

then

ans =

0 1 1

1 1 0

0 0 1

A = and B =
⎡⎢⎣ 1 0 1

0 1 1

0 0 1

⎤⎥⎦ ⎡⎢⎣ −1 2 0

1 0 3

0 1 2

⎤⎥⎦



The relational and logical operators are often used in if
statements.

A&B = , = , ∼ A =
⎡⎢⎣ 1 0 0

0 0 1

0 0 1

⎤⎥⎦ A|B
⎡⎢⎣ 1 1 1

1 1 1

0 1 1

⎤⎥⎦ ⎡⎢⎣ 0 1 0

1 0 0

1 1 0

⎤⎥⎦



Columnwise Array Operators
MATLAB has a number of functions that, when applied

to either a row or column vector x, return a single

number. For example, the command max(x) will

compute the maximum entry of x, and the command

sum(x) will return the value of the sum of the entries of

x. Other functions of this form are min, prod, mean,

all, and any. When used with a matrix argument, these

functions are applied to each column vector and the

results are returned as a row vector. For example, if

then

A =
⎡⎢⎣ −3 2 5 4

1 3 8 0

−6 3 1 3

⎤⎥⎦min(A) = (−6, 2, 1, 0)

max(A) = (1, 3, 8, 4)

sum(A) = (−8, 8, 14, 7)

prod(A) = (18, 18, 40, 0)



Graphics
If x and y are vectors of the same length, the command

plot(x, y) will produce a plot of all the (xi, yi) pairs,

and each point will be connected to the next by a line

segment. If the x-coordinates are taken close enough

together, the graph should resemble a smooth curve. The

command plot(x, y, ’x‘) will plot the ordered pairs with

x’s, but will not connect the points.

For example, to plot the function f(x) = sin x
x + 1  on the

interval [0, 10], set

The command plot(x, y) will generate the graph of the

function. To compare the graph to that of sin x, we could

set z = sin(x) and use the command plot(x, y, x, z)

to plot both curves at the same time. We can include

additional arguments in the command to specify the

format of each plot. For example the command

plot(x, y, ’c‘, x, z, ‘ − −’)

will plot the first function using a light blue (cyan) color

and the second function using dashed lines. See Figure

A.1.

Figure A.1.

y = sin(x)./(x + 1)x = 0 : 0.2 : 10 and



Figure A.1. Full Alternative Text

file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig_a_001.xhtml#la_fig_a_001


It is also possible to do more sophisticated types of plots

in MATLAB, including polar coordinates, three-

dimensional surfaces, and contour plots.



Symbolic Toolbox
In addition to doing numeric computations, it is possible

to do symbolic calculations with MATLAB’s symbolic

toolbox. The symbolic toolbox allows us to manipulate

symbolic expressions. It can be used to solve equations,

differentiate and integrate functions, and perform

symbolic matrix operations.

MATLAB’s sym command can be used to turn any

MATLAB data structure into a symbolic object. For

example, the command sym(‘t’) will turn the string

‘t’ into a symbolic variable t, and the command

sym(hilb(3)) will produce the symbolic version of the 

3 × 3 Hilbert matrix written in the form

We can create a number of symbolic variables at once

with the syms command. For example, the command

creates three symbolic variables a, b, and c. If we then

set

A = [ ]

the result will be the symbolic matrix

The MATLAB command subs can be used to substitute

an expression or a value for a symbolic variable. For

example, the command subs(A, c, 3) will substitute

[ ]

[ ]

[ ]

1, 1
2

, 1
3

1
2

, 1
3

, 1
4

1
3

, 1
4

, 1
5

cbasyms

a, b, c;b, c, a; c, a, b

A =

[ ]

[ ]

[ ]

ca, b,

ab, c,

bc, a,



3 for each occurrence of c in the symbolic matrix A.

Multiple substitutions are also possible: The command

subs(A, [a,b, c], [a− 1,b+1, 3])

will substitute a− 1,b+ 1, and 3 for a, b, and c,

respectively, in the matrix A.

The standard matrix operations ∗,ˆ, +, −, and ′ all work

for symbolic matrices and also for combinations of

symbolic and numeric matrices. If an operation involves

two matrices and one of them is symbolic, the result will

be a symbolic matrix. For example, the command

sym(hilb(3)) + eye(3)

will produce the symbolic matrix

Standard MATLAB matrix commands such as

det, eig, inv,null, trace, sum,prod,poly

all work for symbolic matrices; however, others such as

rref, orth, rank,norm

do not. Likewise, none of the standard matrix

factorizations are possible for symbolic matrices.

[ ]

[ ]

[ ]

1
3

2, 1
2

,
1
4

1
2

, 4
3

,
1
3

, 1
4

, 6
5



Help Facility
MATLAB includes a HELP facility that provides help on

all MATLAB features. To access MATLAB’s help browser,

click on the help button in the toolbar (this is the button

with the ? symbol) or type doc in the command window.

The help facility gives information on getting started

with MATLAB and on using and customizing the

desktop. It lists and describes all the MATLAB functions,

operations, and commands.

You can also obtain help information on any of the

MATLAB commands directly from the command

window. Simply enter help followed by the name of the

command. For example, the MATLAB command eig is

used to compute eigenvalues. For information on how to

use this command, you could either find the command

using the help browser or simply type help eig in the

command window.

From the command window, you also can obtain help on

any MATLAB operator. Simply type help followed by

the symbol for that operator. For example, to obtain help

on the backslash operation, type help \.



Conclusions

MATLAB is a powerful tool for matrix computations that

is also user friendly. The fundamentals can be mastered

easily, and consequently students are able to begin

numerical experiments with only a minimal amount of

preparation. Indeed, the material in this appendix,

together with the MATLAB help facility, should be

enough to get you started.

The MATLAB exercises at the end of each chapter are

designed to enhance understanding of linear algebra.

The exercises do not assume familiarity with MATLAB.

Often specific commands are given to guide the reader

through the more complicated MATLAB constructions.

Consequently, you should be able to work through all the

exercises without resorting to additional MATLAB books

or manuals.

Although this appendix summarizes the features of

MATLAB that are relevant to an undergraduate course in

linear algebra, many other advanced capabilities have

not been discussed. References [20] and [29] describe

MATLAB in greater detail.
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Answers to Selected Exercises



Chapter 1



1.1

1. 1. 

1. (a) (11, 3)

2. (b) (4, 1, 3);

3. (c) (−2, 0, 3, 1);

4. (d) (−2, 3, 0, 3, 1)

2. 2. 

1. (a) [ ];

2. (b) ;

3. (c) 

3. 3. 

1. (a) One solution. The two lines intersect at the point 

(3, 1).

2. (b) No solution. The lines are parallel.

3. (c) Infinitely many solutions. Both equations represent

the same line.

4. (d) No solution. Each pair of lines intersect in a point;

however, there is no point that is on all three lines.

4. 4. 

1. (a) [     ];

2. (c) [     ];

1 −3

0 2

⎡⎢⎣ 1 1 1

0 2 1

0 0 3

⎤⎥⎦⎡⎢⎣ 1 2 2 1

0 3 1 −2

0 0 −1 2

0 0 0 4

⎤⎥⎦1 1

1 −1 ∣ 4

2

2 −1

−4 2 ∣ 3

−6



3. (d)    

5. 6. 

1. (a) (1, −2);

2. (b) (3, 2);

3. (c) ( 1
2 , 2

3 );

4. (d) (1, 1, 2);

5. (e) (−3, 1, 2);

6. (f) (−1, 1, 1)

7. (g) (1, 1, −1);

8. (h) (4, −3, 1, 2);

6. 7. 

1. (a) (2, −1);

2. (b) (−2, 3)

7. 8. 

1. (a) (−1, 2, 1);

2. (b) (3, 1, −2)

8. 9. Hints: 

1. (a) and (b)

Subtract the first equation from the second. Now replace

the second equation in the system by this new equation.

Under what conditions will this new system have a

unique solution?

2. (c) If the geometric interpretation of an equation of the

form −mx1 + x2 = b is not immediately apparent to

you, then think of x1 as your independent variable x and 

x2 as your dependent variable y. If you plug x and y into

the equation and solve for y then you get

y = mx + b

This equation should be familiar to you from your

elementary algebra courses. What is the geometrical

interpretation of the equation and of the quantities m

and b?

⎡⎢⎣ 1 1

1 −1

−1 3 ∣ 3

1

1
⎤⎥⎦



9. 10. Hint: When the numbers on the right hand side of the

equations are both 0 there is an obvious choice x1 and x2 that will

make both left hand sides equal to 0.

10. 11. Hint: A linear equation in 3 unknowns represents a plane in 3-

space. The solution sets for a 3 × 3 linear system would be the set

of all points that lie on all three planes. What are the possibilities

for the ways that three planes can intersect?



1.2

1. 1. Row echelon form: (a), (c), (d), (g), and (h); reduced row

echelon form: (c), (d), and (g)

2. 2. 

1. (a) inconsistent;

2. (c) consistent, infinitely many solutions;

3. (d) consistent (4, 5, 2);

4. (e) inconsistent;

5. (f) consistent, (5, 3, 2)

3. 3. 

1. (b) ∅;

2. (c) {(2 + 3α, α, −2)|α real};

3. (d) {(5 − 2α − β, α, 4 − 3β, β)|α, β real};

4. (e) {(3 − 5α + 2β, α, β, 6)|α, β real};

5. (f) {(α, 2, −1)|α real}

4. 4. 

1. (a) x1, x2, x3 are lead variables.

2. (c) x1, x3 are lead variables and x  is a free variable.

3. (e) x1, x4 are lead variables and x2, x3 are free

variables.

5. 5. 

1. (a) (5, 1);

2. (b) inconsistent;

3. (c) (0, 0);

4. (d) {(
5 − α

4
,

1 + 7α

8
, α)   α real};

5. (e) {(8 − 2α, α − 5, α)};

6. (f) inconsistent;

7. (g) inconsistent;

2∣



8. (h) inconsistent;

9. (i) (0, 3
2

, 1);

10. (j) {(2 − 6α, 4 + α, 3 − α, α)};

11. (k) {( 15
4

− 5
8

α − β, − 1
4

− 1
8

α, α, β)};

6. 6. 

1. (a) (0, −1);

2. (b) {( 3
4

− 5
8

α, − 1
4

− 1
8

α, α, 3) | α is real};

3. (d) {α(− 4
3

, 0, 1
3

, 1)}

7. 7. Hint: The hint for Exercise11 in the previous section also applies

to this exercise.

8. 8. a ≠ −2

9. 9. 

1. (b) β = 2

10. 10. 

1. (a) a = 5, b = 4;

2. (b) a = 5, b ≠ 4

11. 11. 

1. (a) (−2, 2);

2. (b) (−7, 4)

12. 12. 

1. (a) (−3, 2, 1);

2. (b) (2, −2, 1)

13. 13. Hint: Is a homogeneous system necessarily consistent? Could

the row echelon form for the coefficient matrix possibly involve

free variables?

14. 14. Hint: Will the row echelon form of the coefficient matrix

involve free variables?

15. 15. x1 = 280, x2 = 230, x3 = 350, x4 = 590

16. 17. Hint: Plug in x1 = αc1 and x2 = αc2 into the system to see if

they work.

17. 19. x1 = 2,  x2 = 3,  x3 = 12,  x4 = 6



18. 20. 6 moles N2, 18 moles H2, 21 moles O2

19. 21. All three should be equal, i.e., x1 = x2 = x3.

20. 22. 

1. (a) (5, 3, −2);

2. (b) (2, 4, 2);

3. (c) (2, 0, −2, −2, 0, 2)



1.3

1. 1. 

1. (a) ;

2. (b) ;

3. (c) ;

4. (d) ;

5. (f) ;

6. (h) 

2. 2. 

1. (a) [ ];

2. (c) ;

3. (f) 

(b) and (e) are not possible.

3. 3. 

1. (a) 3 × 3;

2. (b) 1 × 2

⎡⎢⎣ 6 2 8

−4 0 2

2 4 4

⎤⎥⎦⎡⎢⎣ 4 1 6

−5 1 2

3 −2 3

⎤⎥⎦⎡⎢⎣ 3 2 2

5 −3 −1

−4 16 1

⎤⎥⎦⎡⎢⎣ 3 5 −4

2 −3 16

2 −1 1

⎤⎥⎦⎡⎢⎣ 5 5 8

−10 −1 −9

15 4 6

⎤⎥⎦⎡⎢⎣ 5 −10 15

5 −1 4

8 −9 6

⎤⎥⎦15 19

4 0

⎡⎢⎣ 19 21

17 21

8 10

⎤⎥⎦⎡⎢⎣ 6 4 8 10

−3 −2 −4 −5

9 6 12 15

⎤⎥⎦



4. 4. 

1. (a) [ ] [ ] = [ ];

2. (b)   = ;

3. (c)   =

5. 9. 

1. (a) b = 2a1 + a2

6. 10. 

1. (a) inconsistent;

2. (b) consistent;

3. (c) Hint: If c is any linear combination of the column

vectors of A then c1 = c2 = c3.

7. 11. Hint: b = 1a1 + 1a2 + 0a3 = 0a1 + 1a2 + 1a3.

8. 13. 

1. (b) b = (8, −7, −1, 7)
T

9. 14. w = ( 1
2

, 1
3

, 1
6

)
T
, r = ( 43

120
, 45

120
, 32

120
)T

10. 18. b = a22 −
a12a21

a11

3 2

2 −3

x1

x2

1

5

⎡⎢⎣ 1 1 0

2 1 −1

3 −2 2

⎤⎥⎦ ⎡⎢⎣ x3

x1

x2

⎤⎥⎦ ⎡⎢⎣ 7

5

6
⎤⎥⎦⎡⎢⎣ 2 1 1

1 −1 2

3 −2 −1

⎤⎥⎦ ⎡⎢⎣ x3

x1

x2

⎤⎥⎦ ⎡⎢⎣ 0

4

2
⎤⎥⎦



1.4

1. 1. Hint: In general

BA + AB ≠ 2AB and BA − AB ≠ O

2. 3. Hint: There are many possible choices for A and B. Make up a

nonzero matrix A whose first and second rows are the same and

then see if you can come up with a matrix B such that AB = O.

3. 4. Hint: Make use of the result from Exercise3 .

4. 5. Hint: A 2 × 2 symmetric matrix is one of the form

If A is of this form and A2 = O, what would that imply about the

scalars a, b and c?

5. 7. A = A2 = A3 = An

6. 8. A2n = I,A2n+1 = A

7. 10. Hint: If the given matrix is not necessarily symmetric, make up

an example to show that the matrix need not be symmetric. If the

matrix is necessarily symmetric, use the algebraic rules for

transposes to show that the matrix must be symmetric.

8. 11. The hint for Exercise10 also applies to this exercise.

9. 13. 

1. (a) [ ];

2. (c) [ ]

10. 15. Hint: You should be able to show this result directly from the

definition of a nonsingular matrix.

11. 17. Hint: If A were nonsingular and

Ax = Ay

, what could you conclude about the vectors x and y?

12. 23. Hint: (uuT)(uuT) = u(uT u)uT .

13. 30. 

A = [ ]
a b

b c

1 −2

−3 7

1 − 3
2

−1 2



1. (b) Hint: How is the matrix 
1

2
B +

1

2
C related to A?

14. 31. 4500 married, 5500 single

15. 32. 

1. (b) 0 walks of length 2 from V2 to V3 and 3 walks of

length 2 from V2 to V5;

2. (c) 6 walks of length 3 from V2 to V3 and 2 walks of

length 3 from V2 to V5

16. 33. 

1. (a) A = ;

2. (c) 5 walks of length 3 from V2 to V4 and 7 walks of

length 3 or less

17. 34. Hint: Take a specific vector, say

x = e1 = (1, 0)T

and let A and B be 2 × 2 matrices. Is it possible to find A and B

such that Ae1 = Be1 and A ≠ B?

18. 36. Hint: Make use of the result from Exercise16 .

⎡⎢⎣ 0 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1 1 0 0 1

0 0 0 1 0

⎤⎥⎦



1.5

1. 1. 

1. (a) type I;

2. (b) not an elementary matrix;

3. (c) type III;

4. (d) type II

2. 3. 

1. (a) [ ];

2. (b) ;

3. (c) 

3. 4. 

1. (a) ;

2. (b) [ ];

3. (c) 

4. 5. 

1. (a) E = ;

2. (b) F =

−2 0

0 1

⎡⎢⎣1 0 0

0 0 1

0 1 0

⎤⎥⎦⎡⎢⎣1 0 0

0 1 0

0 2 1

⎤⎥⎦⎡⎢⎣0 0 1

0 1 0

1 0 0

⎤⎥⎦1 −3

0 1

⎡⎢⎣ 1
2

0 0

0 1 0

0 0 1

⎤⎥⎦⎡⎢⎣1 0 0

0 1 0

1 0 1

⎤⎥⎦⎡⎢⎣1 0 0

0 1 −1

0 0 1

⎤⎥⎦



3. (c) Hint: See if the definition of row equivalent matrices

applies.

5. 6. 

1. (a) E1 = ;

2. (b) E2 = ;

3. (c) E3 =

6. 7. Hint: For part (b), use row operations to transform A to reduced

row echelon form and keep track of the elementary matrices

involved. Use the result from part (b) to obtain the factorization

for part (a).

7. 8. 

1. (a) [ ] [ ];

2. (c)  

8. 9. 

1. (a) Hint: According to the definition, B = A−1
 if and

only if

AB = BA = I

so check to see if the given inverse matrix has this

property.

2. (b) Hint: If Ax = b and A is nonsingular, then 

x = A−1
b. (ii) (−4, −2, 5)

T
, (iii) (0, 3, −2)

T

9. 10. 

1. (a) [ ];

2. (b) [ ];

⎡⎢⎣ 1 0 0

−3 1 0

0 0 1

⎤⎥⎦⎡⎢⎣ 1 0 0

0 1 0

−2 0 1

⎤⎥⎦⎡⎢⎣1 0 0

0 1 0

0 1 1

⎤⎥⎦1 0

3 1

3 1

0 2

⎡⎢⎣ 1 0 0

3 1 0

−2 2 1

⎤⎥⎦ ⎡⎢⎣1 1 1

0 2 3

0 0 3

⎤⎥⎦0 1

1 1

3 −5

−1 2



3. (c) [ ];

4. (d) [ ];

5. (f) ;

6. (g) ;

7. (h) 

10. 11. 

1. (a) [ ];

2. (b) [ ]

11. 12. 

1. (a) [ ];

2. (c) [ ]

3. (d) Hint: If XA + C = X then

12. 13. Hint: For each of the two questions, try some examples using

elementary matrices of all three types. If the examples all seem to

work, see if you can explain why the answer to the question is yes.

If you find an example that doesn’t satisfy the property in

question, then the example shows that in general the property

does not hold.

13. 15. Hint: The given information should be sufficient for you to be

able to determine two solutions. If you can find two solutions, then

what does that tell you about the total number of solutions to the

linear system?

−4 3
3
2

−1

1
3

0

−1 1
3

⎡⎢⎣ 3 0 −5

0 1
3

0

−1 0 2

⎤⎥⎦⎡⎢⎣ 2 −3 3

− 3
5

6
5

−1

− 2
5

− 1
5

0

⎤⎥⎦⎡⎢⎣− 1
2

−1 − 1
2

−2 −1 −1
3
2

1 1
2

⎤⎥⎦−1 0

4 2

−8 5

−14 9

20 −5

−34 7

0 −2

−2 2

XA − XI = −C

X(A − I) = −C

X = −C(A − I)−1



14. 16. Hint: Rewrite the equation in the same form as the equation in

Exercise 15.

15. 17. Hint: Look at Cx0.

16. 18. Hint: The hint given in the book should be sufficient, but here

is a second hint. The result can be proved using condition (b) of

Theorem1.5.2 .

17. 19. 

1. (a) Hint: To explain why U must be nonsingular, make

use of condition (c) in Theorem1.5.2 .

2. (b) Hint: The same row operations that were used to

reduce U to the identity matrix will transform I into U −1

. What effect will these operations have when you apply

them to I?

18. 22. Hint: To show that A−1
 is a symmetric matrix, you need to

show that (A−1)T = A−1
. Going back to the definition of A−1

, to

show (A−1)T = A−1, you must show that

(A−1)TA = I and A(A−1)T = I

19. 23. Hint: Write out what it means for A to be row equivalent to B

and then make use of Theorem 1.5.1.

20. 24. 

1. (a) Hint: If A is row equivalent to B, then there exist

elementary matrices E1, E2, … , Ek such that

A = EkEk−1 … E1B

Since B is row equivalent to C, there exist elementary

matrices H1, H2, … , Hj such that

B = HjHj−1 … H1C

Use these equations to express A as the product of a

finite sequence of elementary matrices times C.

2. (b) Hint: Make use of Theorem1.5.2 .

21. 26. Hint: You need to show two things:

1. (i) If B is row equivalent to A, then B = MA, where M

is nonsingular.

2. (ii) If B = MA, where M is nonsingular, then B is row

equivalent to A.

Make use of Theorems1.4.2 and 1.5.1 to show (i). To

show (ii), make use of Theorem1.5.2 .



22. 27. Hint: If B is row equivalent to A and C is any other matrix that

is row equivalent to A, then B is row equivalent to C.

23. 28. 

1. (b) Hint: Show that if V c = 0, then the polynomial

p(x) = c1 + c2x + … + cn+1x
n

has

n + 1

roots. What can you conclude about p(x) if you know it

has degree n and it has n + 1 roots?

24. 31. Hint: Rewrite the equation in the form

a1 + a2 − a3 − 2a4 = 0

and interpret this equation as a linear system.



1.6

1. 1. 

1. (b) [ ];

2. (c) [ ];

3. (d) + I;

4. (e) [ ]

2. 2. Hint: Partition AT
 into row vectors and A into column vectors

and perform the block multiplication.

3. 3. 

1. (a) Ab1 = [ ], Ab2 = [ ];

2. (b)

3. (c) AB = [ ]

4. 4.

I

A−1

AT A AT

A I

AAT

I A−1

A I

3

3

4

−1

[ ] B = [ ],

[ ] B = [ ];

1 1 3 4

2 −1 3 −1

3 4

3 −1



5. 5.

6. 6. 

1. (b) Hint: For a pair of vectors x and y the transpose of

the outer product xyT
 is

(xyT)T = (yT)T xT = yxT

7. 8. Hint: AX and B are equal if and only if their corresponding

column vectors are equal.

8. 9. 

1. (b) Hint: Aej = aj for j = 1, … , n.

9. 10. 

1. (b) Hint: Let X = UΣ. If A = UΣV T
 then 

A = XV T , so A can be expressed as an outer product

expansion of XV T . How are the column vectors of X

related to the column vectors of U?

10. 11. Hint: You need to determine a matrix C so that the block

multiplication of

will equal the 2n × 2n identity matrix

I2n = [ ]

Once you have found C check that the product of the matrices in

the reverse order will also equal I2n.

11. 13. 

[ ] [ ] = [ ]
C

O A−1
22

A−1
11 A11 A12

O A12

I A−1
11 A12 + CA22

O I

I O

O I

A2 = [ ], A4 = [ ]
B O

O B

B2 O

O B2



12. 14. 

1. (a) [ ];

2. (b) [ ]

13. 15. Hint: The block structure of A resembles the form of an

elementary matrix of type III.

14. 16. Hint: The block form of S−1
 is

S−1 = [ ]

15. 17. Hint: Just plug in for B and C and multiply things out.

16. 18. Hint: In order for the block multiplication to work we must

have

XB = S and Y M = T

Fortunately both B and M are nonsingular.

17. 21. Hint: The hint for Exercise20 also applies to this exercise.

O I

I O

I O

−B I

I −A

O I



Chapter Test A

1. 1. Hint: Can you make up an example of an inconsistent system

that is in row echelon form and has free variables?

2. 2. Hint: For a homogeneous system there is always one solution

that is very obvious.

3. 3. Hint: See Theorem1.5.2 .

4. 4. The hint for the previous question also applies here.

5. 5. Hint: Try making up some examples to see if this works.

6. 6. Hint: See Exercise22 from Section1.4 .

7. 7. Hint: It should be easy to make up a counterexample for this

statement. To see why the formula doesn’t work multiply out the

expression

(A−B)2 = (A−B)(A−B)

and remember that matrix multiplication is not commutative.

8. 8. Hint: If

AB = AC

and A is nonsingular then you should be able to give a one line

proof that B must equal C. What about the case where A is singular

and A ≠ O. In this case, can you find B and C such that 

AB = AC and B ≠ C. Try making up an example using 2 × 2
matrices.

9. 11. Hint: Given the form of b, you should be able to determine one

solution. So the system must be consistent. How many solutions

there are will depend upon how many ways you can write b as a

linear combination of the column vectors of A.

10. 12. Hint: b = a1 + a2 + a3 = a1 + 2a2 + 0a3

11. 13. Hint: Examine the effects of transposing for each of the three

types of elementary matrices.

12. 14. Hint: Make up some elementary matrices and multiply them

together. Do you always end up with an elementary matrix?

13. 15. Hint: How are the rows of A = xyT  related to yT  and what

does this relation imply about any row echelon of the matrix?



Chapter Test B

1. 2. 

1. (c) Hint: You can make use of a theorem from Section

1.2 or you can give a geometric explanation.

2. 3. 

1. (b) If A were nonsingular, how many solutions would

there be?

3. 4. Hint: Use the consistency theorem.

4. 5. 

1. (a) Hint: What row operation is performed on A to

transform it to B?

2. (b) Hint. What column operation is performed on A to

transform it to C?

5. 6. Hint: Refer to a theorem.

6. 7. Hint: Make use of Theorem1.5.2 .

7. 9. Hint: Try some examples.

8. 11. Hint: The block structure of A resembles the form of an

elementary matrix of type III.

9. 12. 

1. (a) Hint: The column partition of A must match up with

the row partition of B.



Chapter 2



2.1

1. 1. 

1. (a)

2. (b) A21 = 8, A22 = −2, A23 = −5

2. 2. (a) and (c) are nonsingular.

3. 3. 

1. (a) 1;

2. (b) 4;

3. (c) 0;

4. (d) 58;

5. (e) −39;

6. (f) 0;

7. (g) 8;

8. (h) 20

4. 4. 

1. (a) 2;

2. (b) −4;

3. (c) 0;

4. (d) 0

5. 5. −x3 + ax2 + bx + C

6. 6. λ = 6 or  − 1

7. 11. 

1. (a) Hint: Consider some examples with 2 × 2 matrices.

2. (b) Hint: Just use brute force. Compute det(A) and

det(B) in terms of a11, a12, a21, a22, b11, b12, b21, b22

and compare the result to what you get if you first

compute AB and then take its determinant.

3. (c) Hint: Make use of the result from part (b).

det(M23) = 5;

det(M21) = −8, det(M22) = −2,





2.2

1. 1. 

1. (a) −24;

2. (b) 30;

3. (c) −1

2. 2. 

1. (a) 10;

2. (b) 20

3. 3. (a), (e), and (f) are singular while (b), (c), and (d) are

nonsingular.

4. 4. c = 5 or  − 3

5. 5. Hint: What is the effect on det(A) if you multiply just one row of

A by α? When you do the scalar multiplication αA you are

multiplying all of the rows of A by α.

6. 6. Hint: Use Theorem2.2.3 to prove the result.

7. 7. 

1. (a) 20;

2. (b) 108;

3. (c) 160;

4. (d) 
5
4

8. 9. 

1. (a) −6;

2. (c) 6;

3. (e) 1

9. 10. Hint: Look at the list of important concepts for this section.

10. 11. Hint: Show that if A is a n × n whose entries are real numbers

then det(A2) ≥ 0.

11. 12. 



1. (a) Hint: Use elimination to zero out the (2,1) and (3,1)

entries of V before computing its determinant.

12. 13. det(A) = u11u22u33

13. 14. Hint: Use Theorem2.2.3 .

14. 15. Hint: If AB = I, use determinants to show that A must be

nonsingular and then show that B = A
−1.

15. 16. Hint: Make use of the result from Exercise5 .

16. 17. Hint: Subtract c = det(A)/Ann from the (n, n) entry of A

and then do a cofactor expansion along the last row of the matrix.

17. 19. Hint: By appling row operation I repeatedly to the matrix M,

one can transform it into the matrix C given in Exercise18 .



2.3

1. 1. 

1. (a) 

2. (c) 

2. 2. 

1. (a) ( 5
7

, 8
7

);

2. (b) ( 11
5

, − 4
5

);

3. (c) (4, −2, 2);

4. (d) (2, −1, 2);

5. (e) (− 2
3

, 2
3

, 1
3

, 0)

3. 3. − 3
4

4. 4. ( 1
2

, − 3
4

, 1)T

5. 5. 

1. (a) det(A) = 0, so A is singular.

2. (b) 

6. 7. Hint: The solution of the linear system Ix = b is x=b.

7. 9. 

A−1 = [ ];

det(A) = −7,   adj A = [ ],
−1 −2

−3 1
1
7

2
7

3
7

− 1
7

A−1 = 1
3

adj A

det(A) = 3,   adj A = ,
⎡⎢⎣−3 5 2

0 1 1

6 −8 −5

⎤⎥⎦adj A =  and

A adj A =

⎡⎢⎣−1 2 −1

2 −4 2

−1 2 −1

⎤⎥⎦⎡⎢⎣0 0 0

0 0 0

0 0 0

⎤⎥⎦



1. (a) det(adj(A)) = 8 and det(A) = 2;

2. (b) A =

8. 12. Hint: If det(A) = 1, show that

adj A = A−1

and then apply the result from Exercise10 .

9. 13. Hint: The (j, i) entry of QT
 is qij. Determine an expression

for the (j, i) entry of Q−1
 involving a cofactor of Q.

10. 14. Do Your Homework.

11. 15. 

1. (d) Hint: Expand the determinant into cofactors along

the third row.

⎡⎢⎣1 0 0 0

0 4 −1 1

0 −6 2 −2

0 1 0 1

⎤⎥⎦



Chapter Test A

1. 1. Hint: See Theorem2.2.3 .

2. 2. Hint: Try some examples with 2 × 2 matrices.

3. 3. Hint: See Exercise5 in Section 2.2.

4. 4. Hint: See Theorems2.1.2 and 2.2.3.

5. 5. Hint: An easy way to make up a counterexample would be to use

diagonal matrices for A and B.

6. 6. Hint: Make use of Theorem2.2.3 to prove the result.

7. 7. Hint: See Theorems2.1.3 and 2.2.2.

8. 8. Hint: See Theorem 1.5.2.

9. 9. Hint: What are the effects of row operations I and II on the

value of the determinant?

10. 10. Hint: How is det(A
k) related to det(A)?



Chapter Test B

1. 4. Hint: Use Theorem2.1.2

2. 5. Hint: How are the determinants of S and S−1
 related?

3. 7. Hint: Use Theorem 1.5.2.

4. 8. Hint: Show that det(A) = x1x2det(B) where B is a matrix

whose first two rows are equal.

5. 9. Hint: Use Theorem 1.5.2.

6. 10. Hint: If A has integer entries then adj A will also have integer

entries.



Chapter 3



3.1

1. 1. 

1. (a) x1 ∥= 10, ∥ x2 ∥= √17;

2. (b) ∥x3 ∥= 13 <∥ x1 ∥ + ∥ x2∥

2. 2. 

1. (a) x1 ∥= √5, ∥ x2 ∥= 3√5;

2. (b) x3 ∥= 4√5 =∥ x1 ∥ + ∥ x2

3. 4. Hint: As in the previous exercise you must check to see if the

eight axioms hold. Theorem 1.3.1 guarantees that 5 of the axioms

hold, so you need only show that the remaining 3 also hold.

4. 7. If x + y = x for all x in the vector space, then 

0 = 0 + y = y.

5. 8. If x + y = x + z, then −x + (x + y) = −x + (x + y)
and the conclusion follows using axioms 1, 2, 3, and 4.

6. 9. 

1. (a) Hint: Show first that if y =β0, then y + y = y.

2. (b) Hint: Show that if αx = 0 and α ≠ 0, then 

x = 0.

7. 10. Hint: Since addition is defined in the standard way, check out

the axioms that involve scalar multiplication.

8. 11. V is not a vector space. Axiom 6 does not hold.

9. 13. Hint: Four of the axioms fail to hold. To show it’s not a vector

space all you need to show is a single example where one of the

axioms fails to hold.

10. 14. Hint: Two of the axioms fail to hold.∥∥∥ ∥



3.2

1. 1. (a) and (c) are subspaces; (b), (d), and (e) are not.

2. 2. (b) and (c) are subspaces; (a) and (d) are not.

3. 3. (a), (c), (e), and (f) are subspaces; (b), (d), and (g) are not.

4. 4. 

1. (a) {(0, 0)
T
};

2. (b) Span((−2, 1, 0, 0)
T
, (3, 0, 1, 0)

T
);

3. (c) Span((1, 1, 1)T);

4. (d) Span((−5, 0, −3, 1)T , (−1, 1, 0, 0)T)

5. 5. Only the set in part (c) is a subspace of P4.

6. 6. (a), (b), and (d) are subspaces.

7. 10. 

1. (b) Hint: If AB ≠ BA, then is A(cB) ≠ (cB)A for all

scalars c?

8. 11. (a), (c), and (e) are spanning sets.

9. 12. (a) and (b) are spanning sets.

10. 13.  

1. (a) Hint: x ∈ Span(x1, x2) if and only if there exist

scalars c1 and c2 such that

c1x1 + c2x2 = x

Thus, x ∈ Span(x1, x2) if and only if the linear system 

Xc = x is consistent.

11. 14. Hint: Is it possible to make any conclusions as to whether or

not the system is consistent? In the case of a consistent system,

Theorem 3.2.2 can be used to determine how many solutions there

will be.

12. 15. Hint: Is it possible to make any conclusion as to whether or not

the system is consistent? In the case of a consistent system,

Theorem 3.2.2 can be used to determine how many solutions there

will be.

13. 16. Hint: Zc = c1z1 + c2z2 + c3z3.



14. 19. Hint: Show that any matrix

A = [ ]

can be expressed as a linear combination of E11,E12,E21,E22.

15. 20. (b) and (c)

16. 21. Hint: If S ≠ {0} is a subspace of R
1, then it is closed under

scalar multiplication.

17. 22. Hint: You need to prove (a) implies (b), (b) implies (c), and (c)

implies (a). All three implications should be simple to show.

18. 25. Hint: Show that S ∪ T  is not closed under vector addition.

19. 27. Hint: To show that two subspaces V and W are equal, you must

show that if v is any vector in V then v ∈ W , and also that if w is

any vector in W then w ∈ V . Before trying to prove the

statements, look at some examples to see whether or not the

statements appear to be true. Try taking V to be R
2
 and take U, S,

and T to be subspaces that are each spanned by a single nonzero

vector.

a11 a12

a21 a22



3.3

1. 1. (a) and (e) are linearly independent; (b), (c), and (d) are linearly

dependent.

2. 2. (a) and (e) are linearly independent; (b), (c), and (d) are not.

3. 3. 

1. (a) and (b) are all of 3-space;

2. (c) a plane through (0, 0, 0);

3. (d) a line through (0, 0, 0);

4. (e) a plane through (0, 0, 0)

4. 4. 

1. (a) linearly independent;

2. (b) linearly independent;

3. (c) linearly dependent

5. 8. (a) and (b) are linearly dependent while (c) and (d) are linearly

independent.

6. 11. When α is an odd multiple of π/2. If the graph of y = cos x is

shifted to the left or right by an odd multiple of π/2, we obtain the

graph of either sin x or  −  sin x.



3.4

1. 1. Only in parts (a) and (e) do they form a basis.

2. 2. Hint: Since the dimension of R
3
 is 3, a basis must consist of

exactly 3 vectors and they must be linearly independent. If the set

has either more or less than 3 vectors then it cannot be a basis. If

the set consists of 3 vectors it will be a basis for R
3
 if and only if

the vectors are linearly independent.

3. 3.  

1. (a) Hint: By Theorem 3.4.3, it suffices to show that the

two vectors are linearly independent.

2. (b) Hint: Apply Theorem 3.4.1.

3. (c) 2

4. 4. 1

5. 5. 

1. (c) 2;

2. (d) a plane through (0, 0, 0) in 3-space

6. 6. 

1. (b) {(1, 1, 1)T}, dimension 1;

2. (c) {(1, 0, 1)T , (0, 1, 1)T}, dimension 2

7. 7. basis {(1, 1, 0, 0)T , (1, −1, 1, 0)T , (0, 2, 0, 1)
T
}

8. 8. 

1. (a) Hint: Hint. See Theorem 3.4.4.

9. 9. 

1. (b) Hint: If b = Ax then how is b related to the column

vectors of A?

10. 10. Hint: You must find a subset of three vectors that are linearly

independent.

11. 11. {x2 + 2, x + 3}

12. 12. 



1. (a) {E11, E22};

2. (c) {E11, E21, E22};

3. (e) {E12, E21, E22};

4. (f) {E11, E22, E21 + E12}

13. 13. 2

14. 14. 

1. (a) 3;

2. (b) 3;

3. (c) 2;

4. (d) 2

15. 15. 

1. (a) {x, x2};

2. (b) {x − 1, (x − 1)2};

3. (c) {x(x − 1)}

16. 17. Hint: The hint in the book should help you to prove your

answer analytically. To describe the possibilities geometrically

recall that a 2-dimensional subspace of R
3
 corresponds to a plane

through the origin in 3-space.

17. 18. Hint: Show that if {u1, u2, ..., uj} is a basis for U and 

{v1, v2, ..., vk} is a basis for V then u1, ..., uj, v1, v2, ..., vk

are linearly independent.



3.5

1. 1. 

1. (a) [ ];

2. (b) [ ];

3. (c) [ ]

2. 2. 

1. (a) [ ];

2. (b) [ ];

3. (c) [ ]

3. 3.

1. (a) [ ];

2. (b) [ ];

3. (c) [ ]

4. 4. [x]E = (−1, 2)T , [y]
E

= (5, −8)
T
, [z]

E
= (−1, 5)

T

5. 5. 

1. (a) ;

2. (b) (1, −4, 3)
T

;

3. (c) (0, −1, 1)T ;

4. (d) (2, 2, −1)T

1 −1

1 1

1 2

2 5

0 1

1 0

1
2

1
2

− 1
2

1
2

5 −2

−2 1

0 1

1 0

5
2

7
2

− 1
2

− 1
2

11 14

−4 −5

2 3

3 4

⎡⎢⎣ 2 0 −1

−1 2 −1

0 −1 1

⎤⎥⎦



6. 6. 

1. (a) ;

2. (b) 

7. 7. w1 = (5, 9)
T
 and w2 = (1, 4)

T

8. 8. u1 = (0, −1)T  and u2 = (1, 5)T

9. 9. 

1. (a) [ ];

2. (b) [ ]

10. 10. 

⎡⎢⎣1 −1 −2

1 1 0

1 0 1

⎤⎥⎦⎡⎢⎣−2

7

5
⎤⎥⎦2 2

−1 1

1
4 − 1

2
1
4

1
2

⎡⎢⎣1 −1 0

1 1 −1

0 0 1

⎤⎥⎦



3.6

1. 2. 

1. (a) 3;

2. (b) 3;

3. (c) 2

2. 3. 

1. (a) u2,u4,u5 are the column vectors of U corresponding

to the free variables. 

u2 = 2u1,u4 = 5u1 − u3,u5 = −3u1 + 2u3

2. (b) Hint: The column vectors of A satisfy the same

dependency relations that the column vectors of U

satisfy.

3. 4. 

1. (a) consistent;

2. (b) inconsistent;

3. (e) consistent

4. 5. 

1. (a) infinitely many solutions;

2. (c) unique solution

5. 6. Hint: Use the consistency theorem to determine if the system is

consistent. If A is an m × n matrix with linearly dependent

columns, then what can you conclude about its nullity? For a

consistent system what does the nullity of the coefficient matrix

tell you about the number of solutions?

6. 7. 

1. (b) Hint: If A has rank 6, then the column vectors of A

will span R
6.

7. 8.  

1. (a) Hint: If N(A) = {0}, then what will the rank of A

be?



2. (b) Hint: Hint. Use the consistency theorem. If a system

is consistent and N(A) = {0}, then what can you

conclude about the number of solutions? Alternatively,

Theorem 3.3.2 could be helpful in answering these

questions.

8. 10. 

1. (b) Hint: Whenever you represent a vector as a linear

combination of linearly independent vectors, that

representationwill be unique.

9. 12. 

1. (a) Hint: If A and B are row equivalent, then how are

their ranks related?

2. (b) Hint: Look at some examples. Make up a singular

matrix A whose entries are all nonzero and then reduce

A to its echelon form U. Do U and A have the same

column spaces?

10. 14. Hint: The column vectors of A satisfy the same dependency

relations that the column vectors of U satisfy.

11. 15. 

1. (b) (ii). Hint: Use the equation Ax0 = b to solve for a4.

12. 16. Hint: Show that the system must be consistent and that the

echelon form of the coefficient matrix will involve free variables.

13. 18. 

1. (b) n − 1

14. 19. Hint: y = Ax ≠ 0 is equivalent to saying that x is not in the

null space of A.

15. 21. Hint: If you have bases for the column spaces of A and B, you

can use them to form a spanning for the column space of A + B.

16. 22. 

1. (a) Hint: Show that if x ∈ N(A) then x ∈ N(BA) and

show the converse, if x ∈ N(BA) then x ∈ N(A).

2. (b) Hint: Use part (a) to show first that (AC)T
 and AT

have the same rank.

17. 24. Hint: What is the rank of A − B?

18. 25. 



1. (b) Hint: Partition B into columns and perform the block

multiplication

AB = A(b1,b2, ...,bn) = (Ab1,Ab2, ...,Abn)

19. 27. 

1. (b) Hint: Use the Rank-Nullity theorem.

20. 28. 

1. (a) Hint: Show that each column vector of C is a linear

combination of the column vectors of A.

2. (b) Hint: CT = BTAT .

21. 29. 

1. (a) Hint: In general a matrix E will have linearly

independent column vectors if and only if Ex = 0 has

only the trivial solution x = 0. One way to show that C

has linearly independent column vectors is to show that 

Cx ≠ 0 for all x ≠ 0 and hence that Cx = 0 has only

the trivial solution.

2. (b) Hint: CT = BTAT .

22. 30. 

1. (a) Hint: If the column vectors of B are linearly

dependent then Bx = 0 for some nonzero vector 

x ∈ R
r.

23. 31. 

1. (a) Hint: To get started, if C is a right inverse of A, let b

be any vector in R
m

 and let c = Cb.

2. (b) Hint: If n vectors span R
m

 then how must m and n

be related?

24. 32. If xj is a solution to Ax = ej for j = 1,… ,m and 

X = (x1,x2,… ,xm) then AX = Im.

25. 34. Hint: Let B be an n × m matrix. If B has a left inverse, then 

BT
 has a right inverse. Apply the result of Exercise 31 to BT .



Chapter Test A

1. 1. Hint: See the discussion at the beginning of Section3.2 .

2. 2. Hint: If x is a vector in R
2, then it has only 2 entries.

3. 3. Hint: A two dimensional subspace of R
3
 corresponds to a plane

through the origin in 3-space.

4. 4. Hint: See Exercise22 of Section3.2 .

5. 5. Hint: See Exercise21 of Section3.2 .

6. 6. Hint: See Theorem 3.4.3.

7. 7. Hint: Is it possible for three vectors x1,x2,x3 to span the

vector space R
2?

8. 8. Hint: If

Span(x1,x2, ...,xk) = Span(x1,x2, ...,xk−1)

then xk must be in Span(x1,x2, ...,xk−1).

9. 9. Hint: See Theorem 3.6.5.

10. 10. Hint: Use the Rank-Nullity theorem to determine the nullities

of the matrices.

11. 12. Hint: Look at some examples.

12. 13. Hint: Show that if x1,x2, ...,xk,xk+1 were linearly dependent

and xk+1 is not in Span(x1,x2, ...,xk), then x1,x2, ...,xk

would have to be linearly dependent.

13. 14. Hint: Hint. In switching from {u1,u2} to {v1,v2} and then

to {w1,w2}, which transition matrix is applied first?

14. 15. Hint: It is easy to see that the statement will be true if both

matrices have rank n, so you should investigate the case where A

and B both have rank r, where r < n.



Chapter Test B

1. 1. Hint: Find a nontrivial linear combination of x1, x2, x3 that

equals 0.

2. 2. 

1. (b) Hint: S2 consists of all vectors of the form

[ ] or [ ]

3. 5. Hint: One-dimensional subspaces correspond to lines through

the origin, and two-dimensional subspaces correspond to planes

through the origin.

4. 6. Hint: The vectors in S are matrices of the form

[ ]

5. 7. 

1. (c) Hint: The consistency theorem guarantees that there

will be at least one solution. Whether or not there are

more depends on whether there are free variables in the

echelon form of the coefficient matrix.

6. 9. Hint: You should be able to show linear independence by just

working from the definition.

7. 10. 

1. (a) Hint: First determine the rank of A.

2. (b) Hint: If A and U are row equivalent matrices, then

their column vectors satisfy the same dependency

relations.

8. 11. 

1. (b) Hint: The equation c1v1 + c2v2 = d1u1 + d2u2

can be rewritten as a matrix equation, V c = Ud.

a

0

0

b

a b

b c



Chapter 4



4.1

1. 1. 

1. (a) reflection about x2 axis;

2. (b) reflection about the origin;

3. (c) reflection about the line x2 = x1;

4. (d) the length of the vector is halved;

5. (e) projection onto x2 axis

2. 4. (7, 18)
T

3. 5. All except (c) are linear transformations from R
3
 into R

2
.

4. 6. (b) and (c) are linear transformations from R
2
 into R

3
.

5. 7. (a), (b), and (d) are linear transformations.

6. 9. (a) and (c) are linear transformations from P2 into P3.

7. 10. L(e
x) = e

x − 1 and L(x
2) = x

3/3.

8. 11. (a) and (c) are linear transformations from C[0, 1] into R
1
.

9. 13. Hint: If v is any element of V then

v = α1v1 + α2v2 + ... + αnvn

10. 17. 

1. (a) ker(L) = {0}, L(R
3) = R

3
;

2. (c) 

,

11. 18. 

1. (a) ;

2. (b) 

12. 19. 

1. (a) ker(L) = P1, L(P3) = Span(x
2, x);

2. (c) ker(L) = Span(x
3 − x), L(P3) = P2

13. 20. Hint: Show that if v ∈ L−1(T ), then L(cv) ∈ T  for any

scalar c and show that if v and w are in L
−1(T ), then 

ker(L) = Span(e2, e3) L(R
3) = Span((1, 1, 1)T)

L(S) = Span(e2, e3)

L(S) = Span(e1, e2)



L(v + w) ∈ T .

14. 21. Hint: Show that if L is one-to-one and v ∈ ker(L), then v

must be the zero vector. Show that if 

ker(L) = {0} and L(v1) = L(v2) then v1 must equal v2.

15. 23. The operator in part (a) is one-to-one and onto.



4.2

1. 1. 

1. (a) [ ];

2. (c) [ ];

3. (d) [ ];

4. (e) [ ]

2. 2. 

1. (a) [ ];

2. (b) [ ];

3. (c) [ ]

3. 3. 

1. (a) ;

2. (b) ;

3. (c) 

4. 4. 

1. (a) (0, 0, 0)T ;

2. (b) (2, −1, −1)T ;

3. (c) (−15, 9, 6)T

−1 0

0 1

0 1

1 0

1
2 0

0 1
2

0 0

0 1

1 1 0

0 0 0

1 0 0

0 1 0

−1 1 0

0 −1 1

⎡⎢⎣0 0 1

0 1 0

1 0 0

⎤⎥⎦⎡⎢⎣1 0 0

1 1 0

1 1 1

⎤⎥⎦⎡⎢⎣0 0 2

3 1 0

2 0 −1

⎤⎥⎦



5. 5. 

1. (a) ;

2. (b) [ ]

3. (c) [ ];

4. (d) [ ]

6. 6. 

7. 7. Hint: In part (a) we must find a vector c = (c1, c2, c3)T  such

that

⌶(e1) = c1y1 + c2y2 + c3y3

Since ⌶ is the identity operator, ⌶(e1) = e1, and hence we can

rewrite the equation in the form

Y c = e1

It follows that

c = Y
−1

e1

Note that c is the first column of Y
−1

 which is the transition

matrix from the standard basis [e1, e2, e3] to [y1, y2, y3].

8. 8. 

1. (a) ;

2. (b)  

1. 7y1 + 6y2 − 8y3,

2. 3y1 + 3y2 − 3y3,

3. y1 + 5y2 − 3y3

9. 9. 

1. (a) square;

2. (b)  

⎡⎢⎣ 1

√2

1

√2

−
1

√2

1
√2

⎤⎥⎦0 1

1 0

√3 −1

1 √3

0 1

0 0

⎡⎢⎣1 0

0 1

1 1

⎤⎥⎦ ⎡⎢⎣1 1 1

2 0 1

0 −2 −1

⎤⎥⎦



1. contraction by a factor 
1
2 ,

2. clockwise rotation by 45°,

3. translation 2 units to the right and 3 units

down

10. 10. 

1. (a) ;

2. (b) ;

3. (d) 

11. 13. [ ];

12. 14. [ ];

1. (a) [ ]

2. (d) [ ]

13. 15. ;

14. 16. Hint: Make use of Theorem 1.5.2.

15. 18. 

1. (a) [ ]

2. (b) Hint:

L(u1) = [ ], L(u2) = [ ], L(u1) = [ ]

Use Corollary4.2.4 to find the matrix representation of L.

3. (c) [ ]

⎡⎢⎣− 1
2 − √3

2 0

√3
2 − 1

2 0

0 0 1

⎤⎥⎦⎡⎢⎣1 0 −3

0 1 5

0 0 1

⎤⎥⎦⎡⎢⎣−1 0 0

0 1 2

0 0 1

⎤⎥⎦1 1
2

1 0

1 1
2

1
2

−2 0 0

1
2

−2

5

−8

⎡⎢⎣1 1 0

0 1 2

0 0 1

⎤⎥⎦−1 −3 1

0 2 0

0

2

2

0

0

−2

2 −2 −4

−1 3 3





4.3

1. 1. For the matrix A, see the answers to Exercise 1 of Section 4.2.

1. (a) B = [ ];

2. (b) B = [ ];

3. (c) B = [ ];

4. (d) B = [ ];

5. (e) B = [ ]

2. 2. 

1. (a) [ ];

2. (b) [ ]

3. 3. 

B = A =

(Note: in this case the matrices A and U commute; so 

B = U −1AU = U −1UA = A.)

4. 4. 

V = , B =

5. 5. 

1. (a) ;

0 1

1 0

−1 0

0 −1

1 0

0 −1

2 0

0 2

1

1

2 2

2 2

1 1

1 1

1 1

−1 −3

1 0

−4 −1

⎡⎢⎣ 2 −1 −1

−1 2 −1

−1 −1 2

⎤⎥⎦⎡⎢⎣1 1 0

1 2 −2

1 0 1

⎤⎥⎦ ⎡⎢⎣0 0 0

0 1 0

0 0 1

⎤⎥⎦⎡⎢⎣0 0 2

0 1 0

0 0 2

⎤⎥⎦



2. (b) ;

3. (c) ;

4. (d) a1x + a22n(1 + x2)

6. 6. 

1. (a) ;

2. (b) ;

3. (c) 

7. 7. Hint: If A is similar to B then there exists a nonsingular matrix 

S1 such that A = S−1
1

BS1 and if B is similar to C then there

exists a nonsingular matrix S2 such that B = S−1
2

CS2 .

8. 9. Hint: Can you use S and S−1
 to transform A to B?

9. 10. Hint: If A is similar to B then there is a nonsingular matrix S

such that

A = SBS
−1

If A is also equal to ST, then how must T be chosen?

10. 11. Hint: If B is similar to A, then B = S−1 AS . Take

determinants of both sides of this equation and make use of

results from Section 2 of Chapter 2.

11. 14. 

1. (a) Hint: If A and B are similar, then there exists a

nonsingular matrix S such that B = SAS
−1 . Look at 

S(A − λI)S−1.

⎡⎢⎣0 0 0

0 1 0

0 0 2

⎤⎥⎦⎡⎢⎣1 0 1

0 1 0

0 0 1

⎤⎥⎦⎡⎢⎣1 0 0

0 1 1

0 1 −1

⎤⎥⎦⎡⎢⎣0 0 0

0 0 1

0 1 0

⎤⎥⎦⎡⎢⎣0 0 0

0 1 0

0 0 −1

⎤⎥⎦



Chapter Test A

1. 1. Hint: If L is represented by a matrix A, then L(x) = Ax for

each x ∈ R2. Does Ax1 = Ax2 necessarily imply that x1 = x2?

2. 2. Hint: Show that

(L1 + L2)(c1v1 + c2v2) = c1(L1 + L2)(v1) + c2(L1 + L2)(v2)

3. 4. Hint: Hint. Make up some vectors. For each vector x you make

up, test to see if L1(x) = L2(x).

4. 5. Hint: Check to see if the homogeneous coordinate system is

closed under the operations of scalar multiplication and vector

addition.

5. 6. Hint: Check to see if

L2(c1x1 + c2x2) = c1L
2(x1) + c2L

2(x2)

6. 7. Hint: Let L1 and L2 be linear transformations that are both

represented by the same matrix A with respect to the ordered basis

E. Will L1(x) = L2(x) for every x ∈ Rn?

7. 8. Hint: See Theorem 4.3.1.

8. 9. Hint: If

A = X−1 BX and B = Y −1 CY

can you come up with a matrix Z such that A = Z−1 CZ?

9. 10. Hint: Can you make up an example of a singular matrix and a

nonsingular matrix that have the same trace? Can a singular

matrix be similar to a nonsingular matrix?



Chapter Test B

1. 2. Hint: First write v3 as a linear combination of v1 and v2.

2. 4. Hint: The range of L is a 2-dimensional subspace of R3
. Find

the two basis vectors.

3. 5. Hint: To find the matrix representation A determine the effect

of L on e1 and e2.

4. 6. Hint: To find the matrix representation A determine the effect

of L on e1 and e2.

5. 8. Hint: The standard matrix representation for L is

A =

Use U = (u1, u2) and A to determine the matrix representation

of L with respect to {u1, u2}

6. 9. 

1. (b) Hint: I = S−1IS.

⎡
⎣

1
√2

− 1
√2

1
√2

1
√2

⎤
⎦



Chapter 5



5.1

1. 1. 

1. (a) 0°

2. (b) 90°

2. 2. 

1. (a) √14 (scalar projection), (2, 1, 3)T
 (vector

projection);

2. (b) 0, 0;

3. (c) 
14√13

T

13 , ( 42
13 , 28

13 )
T

;

4. 
8√21

T

21 , ( 8
21 , 16

21 , 32
21 )

T

3. 3. 

1. (a) 

2. (c) 

4. 5. (1.8, 3.6)

5. 6. (1.4, 3.8)

6. 7. 0.4

7. 8. 

1. (a) 2x + 4y + 3z = 0;

2. (c) z − 4 = 0

8. 9. 
5
3

9. 10. 
8
7

10. 13. Hint: Expand the right hand side of the equation

u +v ∥2 = (u + v)
T
(u + v)

p = (3, 0)T , x − p = (0, 4)T ,

p
T (x − p) = 3.0 + 0.4 = 0;

p = (3, 3, 3)T , x − p = (−1, 1, 0)T ,
p

T (x − p) = −1 ⋅ 3 + 1 ⋅ 3 + 0 ⋅ 3 = 0∥



11. 20. The correlation matrix with entries rounded to two decimal

places is

⎡⎢⎣ 1.00 −0.04 0.41
−0.04 1.00 0.87

0.41 0.87 1.00

⎤⎥⎦



5.2

1. 1. 

1. (a) {(3, 4)T } basis for R(AT ),

{(−4, 3)T } basis for N(A),

{(1, 2)T } basis for R(A),

{(−2, 1)
T

} basis for N(AT );

2. (d) basis for R(AT ):

{(1, 0, 0, 0)
T

, (0, 1, 0, 0)
T

(0, 0, 1, 1)
T

},

basis for N(A): {(0, 0, −1, 1)
T

},

basis for R(A): 

{(1, 0, 0, 1)T , (0, 1, 0, 1)T (0, 0, 1, 1)T },

basis for N(AT ): {(1, 1, 1, −1)T }

2. 2. 

1. (a) Hint: A vector y is in S⊥
 if and only if yT x = 0.

3. 3. 

1. (a) Hint: A vector z will be in S⊥
 if and only if z is

orthogonal to both x and y.

2. (b) The orthogonal complement is spanned by 

(−5, 1, 3)T
.

4. 4. {(−1, 2, 0, 1)T , (2, −3, 1, 0)T } is one basis for S⊥
.

5. 6. Hint: If (3, 1, 2) is in the row space of A, then (3, 1, 2)
T

 is in

the column space of AT
.

6. 7. Hint: What do we know about the intersection of N(AT) and

R(A)?

7. 10. Hint: If Ax = b has no solution, then b ∉ R(A). But 

R(A) = N(AT)
⊥

, so b ∉ N(AT)
⊥

.

8. 11. Hint: The argument here is similar to that used in the previous

exercise.

9. 12. Hint: Make use of Theorem 5.2.3.

10. 13.  



1. (a) Hint: Ax =x1a1 + x1a1 + ... + xnan.

2. (b) Hint: You need to show that if x ∈ N(A), then 

x ∈ N(AT A); and you also need to show that if 

x ∈ N(AT A), then x ∈ N(A). One of these

statements should be very easy to show and the other is

easy to show if you use the result from part (a).

11. 15. Hint: If x ∈ U ∩ V , then we can write

12. 16. Hint: You need to show that Ax1, Ax2, ..., Axr  are all in

R(A) and that they are linearly independent. To do this, it is useful

to note that

R(A
T) ∩ N(A) = {0}

13. 17. Hint: If z is in N(A), then

0 = Az =xyT z + yxT z = (yx
T

z)x + (x
T

z)y

x = 0 + x (0 ∈ U , x ∈ V )

x = x + x (x ∈ U , 0 ∈ V )



5.3

1. 1. 

1. (a) (2, 1)T
;

2. (c) (1.6, 0.6, 1.2)T

2. 2. 

1. (1a) p = (3, 1, 0)
T
, r = (0, 0, 2)T

2. (1c) p = (3.4, 0.2, 0.6, 2.8)
T
,

r = (0.6, −0.2, 0.4, −0.8)
T

3. 3. 

1. (a) {(1 − 2α, α)T α real};

2. (b) {(2 − 2α, 1 − α, α)
T

α real}

4. 4. 

1. (a) p = (1, 2, −1)T , b − p = (2, 0, 2)T
;

2. (b) p = (3, 1, 4)T , p − b = (−5, −1, 4)T

5. 5. 

1. (a) y = 1.8 + 2.9x

6. 6. 0.55 + 1.65x + 1.25x2

7. 9.  

1. (a) Hint: If b ∈ R(a) then b =Ax for some x ∈ R
n

.

2. (b) Hint: R(A)
⊥

= N(AT).

8. 10. Hint: If the case of a consistent system, what can we conclude

about b in relation to one of the fundamental subspaces?

9. 14. The least squares circle will have center (0.58, −0.64) and

radius 2.73 (answers rounded to two decimal places).

10. 15. ∣ ∣



1. (a) w = (0.1995, 0.2599, 0.3412, 0.1995)
T

2. (b) r = (0.2605, 0.2337, 0.2850, 0.2208)
T



5.4

1. 1. ∥x∥2 = 2, ∥y∥2 = 6, ∥x + y∥2 = 2√10

2. 2. 

1. (a) θ = π
4 ; p = ( 4

3 , 1
3 , 1

3 , 0)
T

3. 3. 

1. (b) ∥x∥ = 1, ∥y∥ = 3

4. 4. 

1. (a) 0;

2. (b) 5;

3. (c) 7;

4. (d) √74

5. 7. 

1. (a) 1;

2. (b) 
1
π

6. 8. 

1. (a) 
π
6 ;

2. (b) p = 3
2 x

7. 11. 

1. (a) 
√10

2 ;

2. (b) 
√34

4

8. 15. 

1. (a) ∥x∥1 = 7, ∥x∥2 = 5, ∥x∥∞ = 4;

2. (b) ∥x∥1 = 4, ∥x∥2 = √6, ∥x∥∞ = 2;

3. (c) ∥x∥1 = 3, ∥x∥2 = √3, ∥x∥∞ = 1



9. 16. 

10. 17. Hint: If x is orthogonal to y, then it is also orthogonal to –y.

Note that ∥x − y ∥=∥ x + (− y)∥.

11. 20. Hint: If A is nonsingular and Ax = 0, then x must be the

zero vector.

12. 28. 

1. (a) Hint: If

|f(a)| + |f(b)| = 0

does this imply that f must be the zero function?

2. (b) Hint: This is how the 1-norm is defined for function

spaces. It is the continuous version of the discrete 1-

norm we use for R
n

. Show that the 3 conditions required

in the definition of a norm are satisfied.

3. (c) Hint: This is how the infinity norm is defined for

function spaces. It is the continuous version of the

discrete infinity norm we use for R
n

. Show that the 3

conditions required in the definition of a norm are

satisfied.

13. 31. Hint: See Exercise 21 in Section 5.1.

14. 32. (b) Hint: Apply the result from part (a) to the matrix A + B.

∥x − y∥1 = 5, ∥x − y∥2 = 3, ∥x − y∥∞ = 2



5.5

1. 1. (a) and (d)

2. 2. 

1. (a) Hint: You need to show that the vectors are mutually

orthogonal, that is,

uT
1 u2 = uT

1 u3 = uT
2 u3 = 0

and also that the vectors are unit vectors, that is,

uT
1 u1 = uT

2 u2 = uT
3 u3 = 1

2. (b) 

3. 3. p = ( 23
18 , 41

18 , 8
9 )

T
, p − x = ( 5

18 , 5
18 , − 10

9 )
T

4. 4. 

1. (b) Hint: Make use of Theorem 5.5.2.

5. 5. Hint: Make use of Theorem 5.5.2 and Parseval’s formula.

6. 6. 

1. (a) 15;

2. (b) ∥u∥ = 3, ∥v∥ = 5√2;

3. (c) 
π
4

7. 7. Hint: Make use of Theorem 5.5.2 and Parseval’s formula.

8. 9. 

1. (b) 

1. 0,

2. − π
2 ,

3. 0,

4. 
π
8

x = − √2
3 u1 + 5

3 u2,

∥x∥ = [(− √2
3 )

2
+ ( 5

3 )
2
]1/2 = √3



9. 14. Hint: H is symmetric since

H T = (I − 2uuT)
T

= I T − 2(uT)
T

uT = I − 2uuT = H

Since H is symmetric, it follows that H T H = H 2
. So, to show

that H is orthogonal, you need to show that H 2 = I.

10. 15. Hint: Since det(QT)= det(Q), it follows that

[det(Q)]2 = det(QT)det(Q)

11. 18. Hint: If P is a symmetric permutation matrix, then P is

orthogonal and P −1 = P T = P .

12. 21. 

1. (b)  

1. (2, −2)T
,

2. (5, 2)T
,

3. (3, 1)T

13. 22. 

1. (a) P = ;

14. 23. 

1. (b) Q =

15. 25.  

1. (a) Hint: If U is a matrix whose columns form an

orthonormal basis for S, then the projection matrix P

corresponding to S is given by P = UU T
.

16. 26. Hint: Show that AT A is a diagonal matrix and that its

diagonal entries are a
T
1 a1, a

T
2 a2, ..., a

T
n an.

17. 27. Hint: Represent v as a sum of orthogonal vectors and use the

Pythagorean law.

18. 28. Hint: V = S ⊕ S⊥
.

⎡⎢⎣ 1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎤⎥⎦⎡⎢⎣ 1
2 − 1

2 0 0

− 1
2

1
2 0 0

0 0 1
2 − 1

2

0 0 − 1
2

1
2

⎤⎥⎦



19. 29. 

1. (b) ∥1∥ = √2, ∥ x ∥= √6
3 ;

2. (c) l(x) = 9
7 x

Hint: Normalize 1 and x so as to make them unit vectors 

u1(x) and u2(x) and then determine the stet solution in

terms of u1(x) and u2(x).



5.6

1. 1. 

1. (a) {(− 1

√2
, 1

√2
)T ,( 1

√2
, 1

√2
)T};

2. (b) {( 2
√5

, 1
√5

)T ,(− 1
√5

, 2
√5

)T}

2. 2. 

1. (a) [ ];

2. (b) [ ]

3. 3. {( 1
3 , 2

3 , − 2
3 )

T
, ( 2

3 , 1
3 , 2

3 )
T
, (− 2

3 , 2
3 , 1

3 )
T
}

4. 4. u1(x) = 1
√2

, u2(x) = √6
2 x, u3(x) = 3√10

4 (x2 − 1
3 )

5. 5. 

1. (a) { 1
3 (2, 1, 2)T , √2

6 (−1, 4, −1)T};

2. (b) ;

3. (c) x = [ ]

6. 6. 

1. (b)  [ ];

2. (c) (2.1, 5.5)T

⎡

⎣

− 1
√2

1
√2

1
√2

1
√2

⎤

⎦

√2 √2

0 4√2

⎡

⎣

2
√5

− 1
√5

1
√5

2
√5

⎤

⎦

√5 4√5

0 3√5

Q = ; R = [ ]

⎡⎢⎣ 2
3

−√2
6

1
3

2√2
3

2
3

−√2
6

⎤⎥⎦ 3 5
3

0 √2
3

9

−3

⎡⎢⎣ 3
5 − 4

5√2
4
5

3

5√2

0 1
√2

⎤⎥⎦ 5 1

0 2√2



7. 7. {(− 1
√2

, 1
√2

, 0, 0)
T

,(
√2
3 ,

√2
3 , −

√2
2 ,

√2
6 )

T

}

8. 8. ,    ,   

9. 13.  

1. (a) Hint: Make use of Theorems 5.5.7 and 5.5.8.

2. (b) Hint: Use the result from part (a).

3. (c) Hint: The projection matrix corresponding to a

subspace is unique.

10. 15. Hint: dim(U ∩ V ) = r > 0, start with an orthonormal basis 

{v1, v2, ..., vr} for U ∩ V  and extend it to an orthonormal

basis for {v1, v2, ..., vk} for V. Let W = Span(vr+1, ..., vk)
and show that U + V = U ⊕ W .

⎧⎪⎨⎪⎩⎡⎢⎣ 4
5
2
5
2
5
1
5

⎤⎥⎦ ⎡⎢⎣ 1
5

− 2
5

− 2
5
4
5

⎤⎥⎦ ⎡⎢⎣ 0
1

√2

− 1
√2

0

⎤⎥⎦⎫⎪⎬⎪⎭



5.7

1. 1. 

1. (a) T4 = 8x4 − 8x2 + 1, T5 = 16x5 − 20x3 + 5x;

2. (b) 

2. 2. p1(x) = x, p2(x) = x2 − 4
π

+ 1

3. 3. Hint: Let x = cosθ and make use of the identity 

Tn(x) = cosnθ. This hint also applies to exercises 6, 7, and 8.

4. 4. 

5. 5. Hint: Write pn(x) in the form pn(x) = anxn + q(x) where

degree q(x) < n. By Theorem 5.7.1, ⟨q, pn⟩ = 0. It follows then

that

∥pn∥2 = ⟨pn, pn⟩ = ⟨anxn + q(x), p(x)⟩

6. 6. 

1. (a) U0 = 1, U1 = 2xU2 = 4x2 − 1

7. 11. 

p(x) = (x − 2)(x − 3) + (x − 1)(x − 3) + 2(x − 2)(x − 2)

8. 13. 1 ⋅ f(− 1
√3

) + 1 ⋅ f( 1
√3

)

9. 14. (a) degree 3 or less; (b) the formula gives the exact answer for

the first integral. The approximate value for the second integral is

1.5, while the exact answer is 
π

2
.

10. 15.  

1. (a) Hint: If f(x) is a polynomial of degree less than n,

then the Lagrange polynomial that interpolates f(x) at 

x1, x2, ..., xn must be equal to f(x).

11. 17.  

1. (a) Hint: What will the γj’s turn out to be in this case?

H4 = 16x4 − 48x2 + 12,

H5 = 32x5 − 160x3 + 120x

p(x) = (sinh 1)P0(x) + 3
e

P1(x) + 5(sinh 1 − 3
e
)P2(x)

p(x) ≈ 0.9963 + 1.1036x + 0.5367x2



MATLAB Exercises

1. 5.  

1. (d) Hint: If b ∈ R(A), then b =Ax for some x ∈ R
5
.

Make use of the result from part (c) to show 

QQT
b = b.



Chapter Test A

1. 1. Hint: Make up an example using linearly independent vectors x

and y.

2. 2. Hint: If xT y = 1, what can you conclude about the angle

between the vectors?

3. 3. Hint: Look at Exercise 14 of Section 5.1. If you can find vectors 

x1, x2, x3 such that x1 ⊥ x2 and x2 ⊥ x3, but x1 is not

orthogonal to x3, then consider the subspaces

S1 = Span(x1), S2 = Span(x2), S3 = Span(x3)

4. 4. Hint: If AT y = 0, then y is in N(AT).

5. 5. Hint: The matrices A and AT A have the same rank. (See

Exercise 13 of Section 5.2.)

6. 6. Hint: The least squares problem will not have a unique solution

but that doesn’t imply` the projection is not unique. See Theorem

5.3.1.

7. 7. Hint: If A is m × n and N(A) = {0}, then what can you

conclude about the rank of A?

8. 8. Hint: Check to see if (Q1Q2)T(Q1Q2)=I.

9. 9. Hint: How is the (i, j) entry of U T U  determined?

10. 10. Hint: Make up some examples (with k < n) to see if the

statement is true.∣ ∣



Chapter Test B

1. 4.  

1. (b) Hint: The vector x is in both R(A) and N(AT)

2. 5. Hint: If ϕ is the angle between Qx and Qy and θ is the angle

between x and y, show that cos ϕ = cos θ.

3. 9.  

1. (a) Hint: Show that if qj is the jth column vector of Q

then qj is in N(AT) and show that Px = 0 for any

vector x in N(AT).

2. (b) Hint: If {u1, u2, u3, u4} is an orthonormal basis for

R(A) and {u5, u6, u7} is an orthonormal basis for 

N(AT) and we set

U1 = (u1, u2, u3, u4) U2 = (u5, u6, u7)

then U = (U1, U2) is an orthogonal matrix.

4. 11.  

1. (b) Hint: The vectors cos x and sin x are orthogonal, so

you can use the Pythagorean Law.



Chapter 6



6.1

1. 1. 

1. (a) λ1 = 5, the eigenspace is spanned by (1, 1)T
, 

λ2 = −1, the eigenspace is spanned by (1, −2)T
;

2. (b) λ1 = 3, the eigenspace is spanned by (4, 3)T
, 

λ2 = 2, the eigenspace is spanned by (1, 1)T
;

3. (c) λ1 = λ2 = 2, the eigenspace is spanned by (1, 1)T
,

4. (d) λ1 = 3 + 4i, the eigenspace is spanned by 

(2i, 1)T , λ2 = 3 − 4i, the eigenspace is spanned by 

(−2i, 1)T
;

5. (e) λ1 = 2 + i, the eigenspace is spanned by 

(1, 1 + i)T , λ2 = 2 − i, the eigenspace is spanned by 

(1, 1 − i)T
;

6. (f) λ1 = λ2 = λ3 = 0, the eigenspace is spanned 

(1, 0, 0)T
;

7. (g) λ1 = 2, the eigenspace is spanned by (1, 1, 0)T
, 

λ2 = 1, the eigenspace is spanned by 

(1, 0, 0)T , (0, 1, −1)T
;

8. (h) λ1 = 1, the eigenspace is spanned by (1, 0, 0)T
, 

λ2 = 4, the eigenspace is spanned by (1, 1, 1)T
, 

λ3 = −2, the eigenspace is spanned by (−1, −1, 5)T
;

9. (i) λ1 = 2, the eigenspace is spanned by (7, 3, 1)T
, 

λ2 = 1, the eigenspace is spanned by (3, 2, 1)T
, λ3 = 0,

the eigenspace is spanned by (1, 1, 1)T
;

10. (j) λ1 = λ2 = λ3 = −1, the eigenspace is by (1, 0, 1)T
;

11. (k) λ1 = λ2 = 2, the eigenspace is spanned by e1 and e2

, λ3 = 3, the eigenspace is spanned by e3, λ4 = 4, the

eigenspace is spanned by e4;

12. (l) λ1 = 3, the eigenspace is spanned by (1, 2, 0, 0)T
, 

(1, 2, 0, 0)T , λ2 = 1, the eigenspace is spanned by 

(0, 1, 0, 0)T , λ3 = λ4 = 2, the eigenspace is spanned by

(0, 0, 1, 0)T

2. 3. Hint: det(A) = det(A − 0I).

3. 4. Hint: Make use of the eigenvector x belonging to λ.



4. 5. Hint: Try to solve the equation algebraically. What condition is

necessary in order to guarantee that we can find a matrix X that

works?

5. 7.  

1. (b) Hint: Use the result from Exercise 3.

6. 8. Hint: If λ is an eigenvalue of A and x is an eigenvector belonging

to λ, then show that (λ2 − λ)x = 0.

7. 9. Hint: If λ is an eigenvalue of A, then by Exercise 6, λk
 is also an

eigenvalue of Ak

8. 10. β is an eigenvalue of B if and only if β = λ − α for some

eigenvalue λ of A.

9. 11. Hint: Similar matrices have the same eigenvalues.

10. 12. Hint: Look at some nonsymmetric 2 × 2 examples.

11. 13. Hint: See Example 2 in Section 2 of Chapter 4.

12. 14. λ1 = 6, λ2 = 2;

13. 18. Hint: Use the Rank-Nullity Theorem.

14. 20.  

1. (b) Hint: Show that the (i, j) entries of AB and AB are

equal.

15. 21. Hint: If Q is an n × n orthogonal matrix, then ‖Qx‖ = ∥x∥
for all x ∈ R

n
.

16. 23.  

1. (b) Hint: First show that λ2 must be a scalar of the form 

cos θ + sin θ for some angle θ.

17. 24. λ1xT y = (Ax)T y = xT AT y = λ2xT y

18. 25. Hint: Show that if x is in N(A − λI) and y =Bx, then y is

in N(A − λI).

19. 26. Hint: You need to show that y =Sx is nonzero and that 

Ay =λy.

20. 28. Hint: If Ax =λ1x and Bx =λ2x, then show that Cx will

equal a scalar multiple of x.

21. 29. Hint: If λ ≠ 0 and x is an eigenvector belonging to λ, then 

x = 1
λ Ax.

22. 31. Hint: If the columns of A each add up to a fixed constant δ then

the row vectors of A − δI  all add up to (0, 0, ..., 0).

23. 32. Hint: Consider the expression xT AT y and note that it can

also be written in the form (Ax)T y.



24. 33.  

1. (a) Hint: Let x be and eigenvector of AB belonging to λ

(where λ ≠ 0) and let y =Bx. Show that y ≠ 0.

2. (b) Hint: If λ = 0 is an eigenvalue of AB, then AB must

be singular.



6.2

1. 1. 

1. (a) [ ];

2. (b) [ ];

3. (c) [ ];

4. (d) [ ];

5. (e) [ ];

6. (f) 

2. 2. 

1. (a) [ ];

2. (b) [ ];

3. (c) ;

4. (d) 

3. 4. 

,

4. 5. 

1. (a) [ ]

c1e2t +c2e3t

c1e2t +2c2e3t

−c1e−2t −4c2et

c1e−2t +c2et

2c1 +c2e5t

c1 −2c2e5t

−c1et sin t + c2et cos t

c1et cos t + c2et  sin t

−c1e3tsin 2t + c2e3t cos 2t

c1e3t cos 2t + c2e3t sin 2t

⎡⎢⎣ −c1 +c2e5t + c3et

−3c1 +8c2e5t

c1 +4c2e5t

⎤⎥⎦e−3t + 2et

−e−3t + 2et

et cos 2t + 2et sin 2t

et sin 2t − 2et cos 2t

⎡⎢⎣−6et +2e−t + 6

−3et +e−t + 4

−et +e−t + 2

⎤⎥⎦⎡⎢⎣−2 − 3et + 6e2t

1 + 3et − 3et

1 + 3et

⎤⎥⎦y1(t) = 15e−0.24t + 25e−0.08t y2(t) = −30e−0.24t + 50e−0.08t

−2c1et − 2c2e−t + c3e√2t + c4e−√2t

c1et + c2e−t − c3e√2t − c4e−√2t



2. (b) [ ]

5. 6. 

6. 8. 

7. 10. 

1. (a) 

2. (b) 

8. 11. p(λ) = (−1)n(λn − an−1λn−1 − ⋯ − a1λ − a0)

c1e2t + c2e−2t − c3et − c4e−t

c1e2t − c2e−2t + c3et − c4e−t

y2(t) = −e2t − e−2t + 2et

y1(t) = −e2t + e−2t + et;

x1(t) = cos t + 3  sin t + 1
√3

sin √3t,

x2(t) = cos t + 3  sin t − 1
√3

sin √3t

m1x′′
1(t) = −kx1 + k(x2 − x1)

m2x′′
2(t) = −k(x2 − x1) + k(x3 − x2)

m3x′′
3(t) = −k(x3 − x2) − kx3

⎡⎢⎣ 0.1 cos 2√3t + 0.9 cos √2t

0.1 cos 2√3t + 0.9 cos √2t

−0.2 cos 2√3t + 1.2 cos √2t

⎤⎥⎦



6.3

1. 4. Hint: If A has an XDX−1
 factorization, can you find a

diagonal matrix D1 such that D2
1 = D?

2. 6. Hint: If A = XDX−1
 and the diagonal entries of D are all 1 or

−1, show that D−1 = D.

3. 7. Hint: Show that the eigenspace corresponding to the eigenvalue

a has dimension 1.

4. 8. Hint: If A has distinct eigenvalues then it is diagonalizable. If A

has multiple eigenvalues then it may or may not be defective

depending on the dimensions on the eigenspaces.

5. 9. Hint: Make use of the Rank-Nullity theorem.

6. 11. Hint: Is it possible for a matrix with real entries to have a

complex eigen-value whose corresponding eigenvector has real

entries? Show that if x and y were linearly dependent, then the

vectors z1 and z2 would have to be linearly dependent.

7. 13. Hint: Make use of the Rank-Nullity theorem.

8. 14. Hint: Show that any vector in the column space of A can be

written as a linear combination of the eigenvectors of A that

correspond to the nonzero eigenvalues.

9. 16.  

1. (a) Hint: A and B are similar, so they have the same

eigenvalues λ1, λ2, ..., λn. Here we are assuming

λ1 = λ2 = ⋯ = λk = λ

Show that for the matrix B, the vector ei is an

eigenvector of λi for i = 1, ..., k.

10. 17.  

1. (a) Hint: Make use of the Rank-Nullity theorem.

2. (b) Hint: How is tr(A) related to the eigenvalues of A?

11. 18. Hint: If B is similar to A and A = XDX−1
, find a matrix Y

such that B = Y DY −1
.

12. 19. Hint: If A and B both have the same diagonalizing matrix X,

then

A = XD1X−1 and B = XD2X−1



13. 20. Hint: If rj is the eigenvector of T corresponding to the

eigenvalue λj = tjj, show that its last n − j entries are all equal to

0.

14. 21. The transition matrix and steady-state vector for the Markov

chain are

= [ ]

In the long run we would expect 60 percent of the employees to be

enrolled.

15. 22. 

1. (a) A =

2. (c) The membership of all three groups will approach

100,000 as n gets large.

16. 23.  

1. (a) Hint: Since A is stochastic, you should already know

the value of one of its eigenvalues.

17. 26. Hint: Use Theorems 6.3.3 and 6.3.4 and make use of the result

from Exercise 25.

18. 28.  

1. (c) Hint: Show that for k = 1, 2, ...

Ak =

19. 29. Hint: These matrices are diagonalizable so in each case

eA = XeBX−1

20. 30. 

1. (d) Hint: The matrix A is defective, so etA
 must be

computed using the definition of the matrix exponential.

21. 31. Hint: If λ is an eigenvalue of A and x is an eigenvector

belonging to λ then

eA
x =[I + A +

1

2!
A2 +

1

3!
A3 + ...]x

[ ]    x
0.80 0.30

0.20 0.70

0.60

0.40

⎡⎢⎣ 0.70 0.20 0.10

0.20 0.70 0.10

0.10 0.10 0.80

⎤⎥⎦⎡⎢⎣ 1 0 −k

0 1 0

0 0 1

⎤⎥⎦



22. 32. Hint: If A is diagonalizable then how are the eigenvalues of eA

related to the eigenvalues of A?



6.4

1. 1. 

1. (a) 

∥z ∥= 6, ∥ w ∥= 3, ⟨z, w⟩ = −4 + 4i, ⟨w, z⟩ = −4 − 4i

;

2. (b) 

∥z ∥= 4, ∥ w ∥= 7, ⟨z, w⟩ = −4 + 10i, ⟨w, z⟩ = −4 − 10i

2. 2. 

1. (a) Hint: Show that

zH
2 z1 = 0 and zH

1 z1 = zH
2 z2 = 1

2. (b) Hint: Note for a real inner product space V with an

orthonormal basis {u1, ..., un}, we have by Theorem

5.5.2 that if

x = c1u1 + ... + cnun

then

cj = ⟨uj, x⟩ = ⟨x,uj⟩

For the complex case if {u1, ..., un} is an orthonormal

basis for a complex inner product space and

z = c1u1 + ... + cnun

then

cj = ⟨z,uj⟩ and cj = ⟨uj, z⟩

3. 3. 

1. (a) 

;

2. (b) ∥z ∥= 9

4. 4. (b) and (f) are Hermitian while (b), (c), (e), and (f) are normal.

5. 9.  

1. (c) Hint: Use the result from Exercise 20(b) of Section

6.1.

u
H
1 z = 4 + 2i, z

H
u1 = 4 − 2i,

u
H
2 z = 6 − 5i, z

H
u2 = 6 + 5i



6. 10. Hint: Are AB and ABA Hermitian?

7. 12. Hint: ⟨z, αx + βy⟩ = ⟨αx + βy, z⟩

8. 13. Hint: Show first that

⟨z, w⟩ =
n

∑
i=1

ai⟨ui, w⟩

9. 14. Hint: Factor A into a product A = QDQH
 and find a

diagonal matrix D1 so that DH
1 D1 = D.

10. 15. U is unitary, since 

U HU = (I − 2uu
H)

2
= I − 4uu

H + 4u(u
H

u)u
H = I .

11. 17. Hint: If U is a matrix that is both unitary and Hermitian, then

U 2 = U HU = I

12. 18. (b) and (c) Hint: If A has Schur decomposition UTU H
, then 

AU = UT . So AU and UT have the same column vectors.

13. 19. Hint: Each block should be either 1 × 1 or 2 × 2 depending on

whether it corresponds to a real eigenvalue or a pair of complex

conjugate eigenvalues. The blocks depend on the way the

eigenvalues have been ordered and hence can reordered along the

diagonal to correspond to different permutations of the

eigenvalues.

14. 20. Hint: See Exercise 20 in the previous section of the book.

15. 22. Hint: The proof is similar to the proof that the eigenvalues of

an Hermitian matrix must all be real.

16. 24. Hint: The matrix B is similar to A and it should turn out to be

symmetric.

17. 25.  

1. (b) Hint: Let B = A−1CA. The matrices B and C are

similar and the eigenvalues of C are the roots of p(x).

18. 26. Hint: If A is Hermitian, then there is a unitary U that

diagonalizes A and we can factor A into a product UDU H
 where

D is a diagonal matrix.



6.5

1. 2. 

1. (a) σ1 = √10, σ2 = 0;

2. (b) σ1 = 3, σ2 = 2;

3. (c) σ1 = 4, σ2 = 2;

4. (d) σ1 = 3, σ2 = 2, σ3 = 1. The matrices U and V are

not unique. The reader may check his or her answers by

multiplying out UΣV T
.

2. 3. 

1. (b) rank of A = 2, A′ = [ ]

3. 4. The closest matrix of rank 2 is

,

The closest matrix of rank 1 is

4. 5. 

1. (a) basis for 

R(AT) : {v1 = ( 2
3 , 2

3 , 1
3 )

T
, v2 = (− 2

3 , 1
3 , 2

3 )
T
};

basis for N(A) : {v3 = ( 1
3 , − 2

3 , 2
3 )

T
}

5. 6. Hint: ATA = A2

6. 8. Hint: ATA = V ΣTΣV T and AAT = UΣΣTU T
.

7. 9. Hint: det(ATA)=det(A)2
.

8. 12. Hint: Plug

x̂ = A+b = UΣ+V Tb

into the normal equations.

1.2 −2.4

−0.6 1.2

⎡⎢⎣ −2 8 20

14 19 10

0 0 0

⎤⎥⎦⎡⎢⎣ 6 12 12

8 16 16

0 0 0

⎤⎥⎦





6.6

1. 1. 

1. (a) [ ];

2. (b) 

2. 3. 

1. (a) Q = 1
√2

[ ],
(x′)2

4 +
(y′)2

12 = 1, ellipse;

2. (d) 

Q = 1
√2

[ ],(y′ +
√2
2 )

2
= −

√2
2 (x′ − √2)

or (y′′ )2 = −
√2

2
x′′, parabola

3. 6. 

1. (a) positive definite;

2. (b) indefinite;

3. (d) negative definite;

4. (e) indefinite

4. 7. 

1. (a) minimum;

2. (b) saddle point;

3. (c) saddle point;

4. (f) local maximum

5. 8. Hint: Look at some diagonal 2 × 2 matrices with positive

determinants.

6. 9. Hint: If A is symmetric positive definite, then what can you

conclude about its eigenvalues?

3 − 5
2

− 5
2 1

⎡⎢⎣ 2 1
2 −1

1
2 3 3

2

−1 3
2 1

⎤⎥⎦1 1

1 −1

1 1

−1 1



7. 10. Hint: Make use of Theorem 1.5.2 to show AT A is not positive

definite.

8. 12. Hint: Can you find a vector xj such that x
T
j Axj = ajj?

9. 13. Hint: If x is a nonzero vector and S is nonsingular, then 

y =Sx must also be a nonzero vector.



6.7

1. 1. 

1. (a) det(A1) = 2, det(A2) = 3, positive definite;

2. (b) det(A1) = 3, det(A2) = −10, not positive

definite;

3. (c) det(A1) = 6, det(A2) = 14, det(A3) = −38,

not positive definite;

4. (d) det(A1) = 4, det(A2) = 8, det(A3) = 13,,
positive definite

2. 2. a11 = 3, a
(1)
22 = 2, a

(2)
33 = 4

3

3. 4. 

1. (a) [ ]  [ ]  [ ];

2. (b) [ ]  [ ]  [ ];

3. (c)       ;

4. (d)         

4. 5. 

1. (a) [ ]   [ ];

2. (b) [ ]   [ ];

3. (c)     ;

1 0
1
2 1

4 0

0 9
1 1

2

0 1

1 0

− 1
3 1

9 0

0 1

1 − 1
3

0 1

⎡⎢⎣ 1 0 0
1
2 1 0
1
4 −1 1

⎤⎥⎦ ⎡⎢⎣ 16 0 0

0 2 0

0 0 4

⎤⎥⎦ ⎡⎢⎣ 1 1
2

1
4

0 1 −1

0 0 1

⎤⎥⎦⎡⎢⎣ 1 0 0
1
3 1 0

− 2
3 1 1

⎤⎥⎦ ⎡⎢⎣ 9 0 0

0 3 0

0 0 2

⎤⎥⎦ ⎡⎢⎣ 1 1
3 − 2

3

0 1 1

0 0 1

⎤⎥⎦2 0

1 3

2 1

0 3

3 0

−1 1

3 −1

0 1

⎡⎢⎣ 4 0 0

2 √2 0

1 −√2 2

⎤⎥⎦ ⎡⎢⎣ 4 2 1

0 √2 −√2

0 0 2

⎤⎥⎦



4. (d)       

5. 6. Hint: You must show that the three conditions in the definition

of an inner product are all satisfied.

6. 7. 

1. (a) Hint: We compute the inverse of U by using row

operations to accomplish the transformation

[ ]   → [ ]  

The row operations are chosen to zero out the entries

above the diagonal of the left matrix in the partition.

What effect do these operations have on the right matrix

in the partition?

2. (b) The (i, j) entry of U1U2 is computed using the ith

row vector of U1 and the jth column vector of U2. How

do these two vectors pair up when j < i?, when j = i?

7. 8. Hint: Use the hint in the book and show that U2U−1
1 = I.

8. 9. Hint: Suppose A has two Cholesky factorizations

A = LLT = KKT

where L and K are n × n lower triangular matrices with positive

diagonal entries. Factor these matrices into products

L = L1D1, K = K1D2

where L1, L2 are unit lower triangular matrices and D1, D2 are

diagonal matrices and then form two LDU factorizations of the

matrix A. Make use of the uniqueness of the LDU factorization to

show that L and K must be equal.

9. 10. Hint: Show first that if A is an m × n matrix of rank n and x is

a nonzero vector in R
n, then y =Ax is a nonzero vector in R

m.

10. 11. Hint: AT A = (QR)(QR)T = RT QT QR. Since the matrix

Q has orthonormal column vectors, the (i, j) entry of QT Q will

be q
T
i qj = δij.

11. 13. Hint: Use the definition of the matrix exponential to show 

(eA)T = eA. How are the eigenvalues of A and eA
 related?

12. 14. Hint: If B is symmetric then B2 = BT B.

13. 15. 

1. (b) Hint: To show B2
 is not positive definite you must

find a nonzero vector x such that x
T B2

x ≤ 0.

⎡⎢⎣ 3 0 0

1 √3 0

−2 √3 √2

⎤⎥⎦ ⎡⎢⎣ 3 1 −2

0 √3 √3

0 0 √2

⎤⎥⎦U I I U−1



14. 16. 

1. (b) Hint: The proof is similar to the proof that the

leading principal sub-matrices of a positive definite

matrix are all positive definite.



6.8

1. 1. 

1. (a) λ1 = 4, λ2 = −1, x1 = (3, 2)T
;

2. (b) λ1 = 8, λ2 = 3, x1 = (1, 2)T
;

3. (c) λ1 = 7, λ2 = 2, λ3 = 0, x1 = (1, 1, 1)T

2. 2. 

1. (a) λ1 = 3, λ2 = −1, x1 = (3, 1)T
;

2. (b) 

;

3. (c) 

3. 3. x1 = 70, 000, x2 = 56, 000, x3 = 44, 000

4. 4. x1 = x2 = x3

5. 5. (I − A)−1 = I + A + ⋯ + Am−1

6. 6. 

1. (a) (I − A)−1 = ;

2. (b) 

7. 7. (b) and (c) are reducible.

8. 8. Hint: See Theorem6.8.2 .

9. 9. 

λ1 = 2 = 2 exp(0),

λ2 = −2 = 2 exp(π, i), x1 = (1, 1)T

λ1 = 2 = 2 exp(0),

λ2 = −1 + √3i = 2 exp( 2πi
3 ),

λ3 = −1 − √3i = 2 exp( 4πi
3 ),

x1 = (4, 2, 1)T

⎡⎢⎣ 1 −1 3

0 0 1

0 −1 2

⎤⎥⎦A2 = ,

A3 =

⎡⎢⎣ 0 −2 2

0 0 0

0 0 0

⎤⎥⎦⎡⎢⎣ 0 0 0

0 0 0

0 0 0

⎤⎥⎦



1. (b) Hint: Apply Perron’s theorem to B and C.

10. 11. Hint: Make use of the result from Exercise 10.

11. 12. Hint: Apply Perron’s theorem to Ak.

12. 13. 

1. (c) Hint: Show that if c1 did equal 0, then yj would

approach the zero vector as j → ∞, contradicting the

result from part (b).

13. 15. 

1. (d) 

w = ( 12
29 , 12

29 , 3
29 , 2

29 )
T

≈ (0.4138, 0.4138, 0.4138, 0.1034, 0.0690)T



MATLAB Exercises

1. 11. 

1. (a) Hint: What is the nullity of A − I? How is the

multiplicity of the eigenvalue related to the dimension of

the eigenspace? For symmetric matrices, eigenvalue

computations should be quite accurate. Thus one would

expect to get nearly full machine accuracy in the

computed eigenvalues of A even though λ = 1 is a

multiple eigenvalue.

2. (b) The roots of a tenth degree polynomial are quite

sensitive, i.e., any small roundoff errors in either the

data or in the computations are liable to lead to

significant errors in the computed roots. In particular if 

p(λ) has multiple roots, the computed eigenvalues are

label to be complex.

2. 13. Hint: Apply the Rank-Nullity theorem.

3. 14. Hint: See Exercise7 in Section6.1 .



Chapter Test A

1. 1. Hint: If the eigenvalues of A are all nonzero then what can you

conclude about the value of det(A)?

2. 5. Hint: Whether or not the matrix is defective depends upon the

number of linearly independent eigenvectors.

3. 6. Hint: The eigenspace corresponding to λ = 0 is N(A), so the

dimension of the eigenspace is equal to the nullity of A.

4. 7. Hint: The hint for question 6 also applies to this question.

5. 8. Hint: Look at some triangular matrices that have some 0’s on

the diagonal.

6. 9. Hint: See the list of observations following the proof of

Theorem6.5.1

7. 11. Hint: U−1 = UH, soA = UTU−1.

8. 12. Hint: If A is normal, then A can be factored into a product 

A = UDUH
 where U is unitary and D is diagonal.

9. 13. Hint: What do we know about the eigenvalues of A and A−1?

10. 14. Hint: Look at some examples of 2 × 2 diagonal matrices.



Chapter Test B

1. 1. 

1. (c) Hint: A
7 = XD

7
X

−1

2. 2. Hint: tr(A) = 4

3. 4. Hint: Show that dim N(A − aI) < 3.

4. 5. 

1. (a) Hint: Show that A can be reduced to upper triangular

form U using only row operation III and that the

diagonal entries of U are all positive.

2. (b) Hint: The elimination process in part (a) should yield

an LU factorization of A. The upper triangular matrix U

should factor into a product DL
T .

5. 7. Hint: A is diagonalizable, so e
tA

 can be computed as a product

of Xe
tD

X
−1.

6. 9. 

1. (b) Hint: If z = c1u1 + c2u2, then

∥z∥2
2 = c1

2 + |c2|2

7. 10. Hint: Show that B and C are both symmetric. What can you

conclude about the eigenvalues of these matrices?∣ ∣



Chapter 7



7.1

1. 1. 

1. (a) 0.231 × 104
;

2. (b) 0.326 × 102
;

3. (c) 0.128 × 10−1
;

4. (d) 0.824 × 105

2. 2. 

1. (a) ϵ = −2; δ ≈ −8.7 × 10−4
;

2. (b) ϵ = 0.04; δ ≈ 1.2 × 10−3
;

3. (c) ϵ = 3.0 × 10−5; δ ≈ 2.3 × 10−3
;

4. (d) ϵ = −31; δ ≈ −3.8 × 10−4

3. 3. 

1. (a) (1.0101)2 × 24
;

2. (b) (1.1000)2 × 2−2
;

3. (c) (1.0100)2 × 23
;

4. (d) −(1.1010)2 × 2−4

4. 4. 

1. (a) 10, 420, ϵ = −0.0018, δ ≈ −1.7 × 10−7
;

2. (b) 0, ϵ = −8, δ ≈ −1;

3. (c) 1 × 10−4, ϵ = 5 × 10−5, δ = 1;

4. (d) 82, 190, ϵ = 25.7504, δ ≈ 3.1 × 10−4

5. 5. 

1. (a) 0.1043 × 106
;

2. (b) 0.1045 × 106
;

3. (c) 0.1045 × 106

6. 8. 23



7. 9. 

1. (a) (1.00111000000000000000000)2 × 23
 or 9.75



7.2

1. 1. A =       

2. 2. 

1. (a) (2, −1, 3)T
;

2. (b) (1, −1, 3)T
;

3. (c) (1, 5, 1)
T

3. 3. 

1. (a) n2
 multiplications and n(n − 1) additions;

2. (b) n3
 multiplications and n2(n − 1) additions;

3. (c) (AB)x requires n3+n2
 multiplications and n3−n

additions; A(Bx) requires 2n2
 multiplications and 

2n(n − 1) additions.

4. 4. 

1. (b)  

1. 156 multiplications and 105 additions,

2. 47 multiplications and 24 additions,

3. 100 multiplications and 60 additions

5. 8. 5n − 4 multiplications/divisions, 3n − 3
additions/subtractions

6. 9. 

1. (a) [(n − j)(n − j + 1)]/2 multiplications; 

[(n − j − 1)(n − j)]/2 additions;

2. (c) It requires on the order of 
2
3

n3
 additional

multiplications/divisions to compute A−1
 given the LU

factorization.

7. 10. Hint: The operation count for the multiplication A−1
b is the

same as the operation count for Exercise3(a) . In determining the

⎡⎢⎣ 1 0 0

2 1 0

−3 2 1

⎤⎥⎦ ⎡⎢⎣ 1 1 1

0 2 −1

0 0 3

⎤⎥⎦



operation counts for doing forward and back substitution the

following formula is useful.

1 + 2 + ... + n =
n(n + 1)

2



7.3

1. 1. 

1. (a) (1, 1, −2);

2. (b)           

2. 2. 

1. (a) (1, 2, 2);

2. (b) (4, −3, 0);

3. (c) (1, 1, 1)

3. 3. 

4. 4. 

5. 5. 

1. (a) 

2. (b) x = Qz = (4, −3)
T

6. 6. 

⎡⎢⎣ 0 0 1

1 0 0

0 1 0

⎤⎥⎦ ⎡⎢⎣ 1 0 0

2 1 0

0 3 1

⎤⎥⎦ ⎡⎢⎣ 1 2 −2

0 1 8

0 0 −23

⎤⎥⎦P = , L = ,

U = , x =   

⎡⎢⎣ 0 0 1

1 0 0

0 1 0

⎤⎥⎦ ⎡⎢⎣ 1 0 0

2 1 0

−
2

−
3 1

1

1 1

⎤⎥⎦⎡⎢⎣ 2 4 −6

0 6 9

0 0 5

⎤⎥⎦ ⎡⎢⎣ 1

6

− 1
2

⎤⎥⎦P = Q = [ ],
0 1

1 0

PAQ = LU = [ ]  [ ],

x = [ ]  

1 0
1
2

1

4 2

0 2

3

−2

ĉ = Pc = (−4, 6)T ,

y = L−1
ĉ = (−4, 8)T ,

z = U −1
y = (−3, 4)T ;



1. (b) 

7. 7. Error 
−2000e

0.6
≈ −3333e. If e = 0.001, then δ = − 2

3
.

8. 8. (1.667, 1.001)

9. 9. (5.002, 1.000)

10. 10. (5.001, 1.001)

P = , Q = ,

L = , U =   

⎡⎢⎣ 0 0 1

0 1 0

1 0 0

⎤⎥⎦ ⎡⎢⎣ 0 0 1

1 0 0

0 1 0

⎤⎥⎦⎡⎢⎣ 1 0 0

− 1
2

1 0
1
2

2
3

1

⎤⎥⎦ ⎡⎢⎣ 8 6 2

0 6 3

0 0 2

⎤⎥⎦



7.4

1. 1. 

1. (a) A F = √2,‖A‖∞ = 1,‖A‖1 = 1;

2. (b) ‖A‖F = 5,‖A‖∞ = 5,‖A‖1 = 6;

3. (c) ‖A‖F = ‖A‖∞ = ‖A‖1 = 1;

4. (d) ‖A‖F = 7,‖A‖∞ = 6,‖A‖1 = 10;

5. (e) ‖A‖F = 9,‖A‖∞ = 10,‖A‖1 = 12;

2. 2. 2

3. 3. Hint: ∥A∥2 is 1 since A has singular values σ1 = 1andσ2 = 0.

To show that the ∥A ∥2= 1 using the definition of the 2-norm, we

must show that

max
x≠0

∥Ax∥

∥x∥
= max

x≠0

√x2
1

√x2
1 + x2

2

= 1

To do this, consider the 2 cases: (i) x2 ≠ 0 and (ii) x2 = 0.

4. 4. ‖I‖1 = ‖I‖∞ = 1,‖I‖F = √n;

5. 5. Hint: If

dkk = max
1≤i≤n

(|dii|)

you can establish the result by either using the definition and

showing

max
x≠0

∥Dx∥

∥x∥
= |dkk|

or you can make use of Theorem7.4.3 and show that the largest

singular value of D is |dkk|.

6. 6. 

1. (a) 10;

2. (b) (−1, 1, −1)T

7. 10. 

1. (a) Hint: If x in R
1

, then x is just a scalar and hence

∥ ∥ | | ∥ ∥ ∥ ∥

∥ ∥ ∣ ∣



∥x∥2 = |x| and ∥Y x∥2 = ∥xy∥2

Alternatively, one could determine ∥y∥2 computing the

singular value decomposition of Y . This can be done

using a single Householder transformation.

2. (b) Hint: How are the singular values of Y and Y

related? Alternatively, to prove the result using the

definition of the matrix 2-norm, note that if x is any

vector in R
n

, then

Y T
x ∥2=∥ yTx ∥2= yTx

8. 11.  

1. (a) Hint: One can view y
T

x  as a scalar or as a 1 × 1
matrix (y

T
x ). It follows then that

Ax 2 = w(yT
x) 2 = (yT

x)w 2 = y
T

x ∥w∥2

9. 13.  

1. (b) Hint: Construct the vector x in the same way you did

for part (b) of Exercise12 .

10. 16.  

1. (b) Hint: ∥A ∥F=∥ Σ∥F

11. 20. Hint: ∥Ax ∥2=∥ x1a1 + x − 2a2 + ... + xnan∥2

12. 21. Hint: For any vector x, we have ∥x ∥2≤∥ x∥1.

13. 22. 

1. (b) Hint: Apply the result from Exercise4 to the matrix

AB.

2. (c) Hint: Use the result from path (a).

14. 23. Hint: If x is a unit eigenvector belonging to the eigenvalue λ,

then |λ| =∥ λx∥.

15. 25. Hint: Use the result from Exercise23 . Note Perron’s theorem

guarantees that there is a dominant eigenvalue.

16. 26. Hint: Show that if λ is an eigenvalue of Aij, then

λ ≤ min(∥ A ∥1, ∥ A ∥∞)

17. 27. (a) and (b). Hint: For any vector y ∈ R
n

y ∥∞≤∥ y ∥2≤ n1/2 ∥ y ∞

(c) Hint: Use the results from parts (a) and (b).

∥ ∣ ∣∥ ∥ ∥ ∥ ∥ ∥ ∣ ∣∥ ∥ T



18. 28. Hint: Let A be a symmetric matrix with orthonormal

eigenvectors u1, ..., un. Ifx ∈ R
n

 then by Theorem5.5.2

x = c1u1 + ... + cnun

where ci = u
T
i x, i = 1, ...,n. Make use of Parseval’s formula in

parts (a) and (b).

(c) If A is a symmetric matrix, how are its singular values and

eigenvalues related?

19. 29. cond∞ A = 400

20. 30. The solutions are [ ]   and [ ]  

21. 31. cond∞(A) = 28

22. 32. Hint: Make use of the result from Exercise8(a) .

23. 33. 

1. (a) A−1
n = [ ];

2. (b) cond∞ An = 4n;

3. (c) limn→∞ cond∞ An = ∞;

24. 34. Hint: Express ‖A‖2, cond2(A), and ‖A‖F  in terms of

the singular values of A.

25. 35. 

1. (a) r = (−0.06, 0.02)T  and the relative residual is

0.012;

2. (b) 20;

3. (c) x = (1, 1)T ,‖x − x
′‖∞ = 0.12;

26. 36. cond1(A) = 6

27. 37. 0.3

28. 38. 

1. (a) ∥r∥∞ = 0.10,  cond∞(A) = 32;

2. (b) 0.64;

3. (c) x = (12.50, 4.26, 2.14, 1.10)T , δ = 0.04

29. 41. 

1. (a) Hint: This can be shown using the definition of the 2-

norm.

2. (b) Hint: The matrix Q−1 = QT
 is also orthogonal.

−0.48
0.8

−2.902
2.0

1 − n n

n −n



30. 42.  

1. (a) Hint: Show first that

∥QAx ∥2=∥ Ax∥2

2. (b) Hint: For each nonzero vector x in R
n

, set y=V x.

Since V is nonsingular it follows that y is nonzero.

Conversely, if we are given a nonzero vector y, then 

x = V T
y is a nonzero vector and y = V x.

31. 43. (b) Hint: You need to find vectors x1 and y1 for which

equality holds in part (a).

32. 44. Hint: If y = V T
x, show that

∥Ax ∥2=∥ Σy ∥2≥ σn ∥ x∥2

Show also that if we take x = vn then

∥Ax ∥2= σn = σn ∥ x∥2



7.5

1. 1. 

1. (a) ;

2. (b) ;

3. (c) [ ]

2. 2. 

1. (a) ;

2. (b) ;

3. (c) ;

4. (d) 

3. 3. H = I − 1
β

vvT
 for the given β and v. 

1. (a) β = 90, v = (−10, 8, −4)T ;

2. (b) β = 70, v = (10, 6, 2)T ;

3. (c) β = 15, v = (−5, −3, 4)T

4. 4. 

1. (a) β = 90, v = (0, 10, 4, 6)T ;

⎡

⎣

1
√2

1
√2

− 1
√2

1
√2

⎤

⎦

⎡

⎣

√3
√2

− 1
2

1
2

√3
2

⎤

⎦

− 4
5

3
5

− 3
5 − 4

5

⎡⎢⎣ 3
5 0 4

5

0 1 0
4
5 0 − 3

5

⎤⎥⎦⎡⎢⎣ 1
√2

− 1
√2

0

− 1
√2

− 1
√2

0

0 0 1

⎤⎥⎦⎡⎢⎣1 0 0

0 1
2

√3
2

0 √3
2 − 1

2

⎤⎥⎦⎡⎢⎣1 0 0

0 −
√3
2

1
2

0 1
2

√3
2

⎤⎥⎦



2. (b) β = 15, v = (0, 0, −5, −1, 2)T

5. 6. 

1. (a) H2H1A = R, where Hi = I − 1
βi

viv
T
i , i = 1, 2,

and β1 = 12, β2 = 45.

2. (b) x = (−4, 1, 0)T

6. 7. 

1. (a) 

7. 8. It takes three multiplications, two additions, and one square

root to determine H. It takes four multiplications/divisions, one

addition, and one square root to determine G. The calculation of

GA requires 4n multiplications and 2n additions, while the

calculation of HA requires 3n multiplications/divisions and 3n

additions.

8. 9. 

1. (a) n − k + 1 multiplications/divisions,

2n − 2k + 1 additions;

2. (b) n(n − k + 1) multiplications/divisions,

n(2n − 2k + 1) additions,

9. 10. 

1. (a) 4(n − k) multiplications/divisions,

2(n − k) additions;

2. (b) 4n(n − k) multiplications/divisions,

2n(n − k) additions

10. 11. 

R = ,

c = H2H1b = ;

v1 = , v2 = ,
⎡⎢⎣−4

2
−2

⎤⎥⎦ ⎡⎢⎣ 0
9

−3

⎤⎥⎦⎡⎢⎣3 19
2

9
2

0 −5 −3
0 0 6

⎤⎥⎦⎡⎢⎣− 5
2

−5
0

⎤⎥⎦G = , x = [ ]
⎡⎢⎣ 3

5 5

5
− 3

5

4

4

⎤⎥⎦ −1
1



1. (a) rotation;

2. (b) rotation;

3. (c) Givens transformation;

4. (d) Givens transformation

11. 12. 

1. (b) Hint: uT x  is a 1 × 1 matrix, so the matrix product 

2uuT x can be expressed as a scalar multiple of x.

2uuT x = (2uT x)u

Use the result from part (a) to show that

2uT x = ‖x − y‖

12. 15.  

1. (a) Hint: Let Q = QT
1 Q2 = R1R2

−1
. Show that Q

must be both orthogonal and upper triangular. If a

matrix has both of these properties, what can you

conclude?

13. 16. Hint: Let H1 and H2 be Householder matrices with the

properties

H1x =∥ x ∥ e
(m)
1 and  H2y =∥ y ∥ e

(m)
1

where e1
(m)

 is the first column vector of the m x m identity

matrix and e1
(n)

 is the first column vector of the n x n identity

matrix.



7.6

1. 1. 

1. (a) u1 = [ ];

2. (b) A2 = [ ];

3. (c) λ1 = 2, λ2 = 0; the eigenspace corresponding to λ1

is spanned by u1

2. 2. 

1. (a) 

2. (b) λ′
1 = 4.05;

3. (c) λ1 = 4,  δ = 0.0125

3. 3. Hint: How are the eigenvalues of A related?

4. 4. 

5. 5. 

1. (b) H = I −
1

β
vv

T
, where β = 1

3  and 

v = (− 1
3 , − 2

3 , 1
3 )T

;

2. (c) λ2 = 3,  λ3 = 1,  HAH =

6. 6.  

1

1

2 0

0 0

v1 = , u1 = ,

v2 = , u2 = ,

v3 = ;

⎡⎢⎣ 3

5

3

⎤⎥⎦ ⎡⎢⎣ 0.6

1.0

0.6

⎤⎥⎦⎡⎢⎣ 2.2

4.2

2.2

⎤⎥⎦ ⎡⎢⎣ 0.52

1.00

0.52

⎤⎥⎦⎡⎢⎣ 2.05

4.05

2.05

⎤⎥⎦λ1 = 2 = √2 ≈ 3.141, λ2 = 2 − √2 ≈ 0.586

A2 = [ ], A3 = [ ],
3 −1

−1 1

3.4 0.2

0.2 0.6

⎡⎢⎣ 4 0 3

0 5 −4

0 2 −1

⎤⎥⎦



1. (a) Hint: If xj is an eigenvector of A belonging to λj,

then

B−1
xj = (A − λI)xj = (λj − λ)xj =

1

μj

xj

7. 7.  

1. (b) Hint: It follows from part (a) that

(λ − aii)xi =
n

∑ aijxj

8. 8. Hint: A AT
 have the same eigenvalues.

j=1

j≠i



7.7

1. 1. 

1. (a) (√2, 0)T ;

2. (b) (1 − 3√2, 3√2, −√2)T ;

3. (c) (1, 0)T ;

4. (d) (1 − √2, √2 − √2)T

2. 2. xi =
dibi + eibn+i

d2
i + e2

I

, i = 1, … ,n

3. 4. 

1. (a) 

2. (b) x = [ ]T

4. 5. Hint: A+
 will satisfy the four Penrose conditions if and only if 

Σ+
 satisfies the four Penrose conditions.

5. 7. Hint: If X = 1

∥x∥2
2

x
T

, then

Xx =
1

∥x∥2
2

x
T

x = 1

Using this it is easy to verify that x and X satisfy the four Penrose

conditions.

6. 12. 

A+ = [ ]

7. 13. Hint: Show first that the three conditions hold for the case 

A = Σ

8. 15. A1 − A2 ∥F= ρ, ∥ A+
1 − A+

2 ∥F= 1/ρ. As ρ → 0, 

∥A1 − A2 ∥F→ 0 and A+
1 − A+

2 ∥F→ ∞.

Q = , R = [ ]

⎡⎢⎣ 1
2 − 1

6
1
2 − 1

2
1
2

5
6

1
2 − 1

6

⎤⎥⎦ 2 12
0 6

0 1
3

1
4

1
4 0

1
4

1
4 0∥ ∥



7.8

1. 5. Determine either the spectral radius or the norm of B.

2. 7. Make use of the result from Exercise6 .

3. 10.

x
(k) − x = B(x

(k−1) − x) = B(x
(k−1) − x

(k) + k
(k) − x)



MATLAB Exercises

1. 7. Hint: Look at the row sums of A − tI . Why must the row

vectors of A − tI  be linearly dependent?



Chapter Test A

1. 1. Hint: Make up an examples using 2-digit decimal floating point

arithmetic.

2. 2. Hint: Make up some examples where not all of the matrices are

square matrices.

3. 3. Hint: Look at some of the examples in Section 7.4.

4. 4. Hint: See the remarks following Theorem7.6.1 . in the text.

5. 5. Hint: If the matrix is nonsymmetric then the eigenvalue

problem could be ill-conditioned.

6. 6. Hint: See Exercise10 of Section7.2 .

7. 7. Hint: See Theorem7.4.2 .

8. 8. Hint: Look at some diagonal matrices.

9. 9. Hint: See the discussion of the normal equations in Section 7.7.

10. 10. Hint: See Exercise14 in Section 7.7.



Chapter Test B

1. 1. Hint: The computation of (AB)x involves a matrix-matrix

multiplication followed by a matrix-vector multiplication.The

multiplication A(Bx) should be more efficient since it only involves

2 matrix-vector multiplications.

2. 3. Hint: Show that the singular values of Q are all equal to 1.

3. 5. Hint: If 15 digit decimal arithmetic is used the machine epsilon

will be 0.5 × 10
−4

.

4. 7. Hint: B = QTAQ



Chapter 8



8.1

1. 6. Hint: You need to show two implications. For one of them, see

Exercise 15 in Section 5.2. For the other, start with vectors 

v1 ∈ S1 and v2 ∈ S2 and show that if S1 ∩ S2 = {0}, then 

v1 = v2 = 0.

2. 7. Hint: If V = S1 ⊕ S2, the representation

0 = v1 + v2 v1 ∈ S1, v2 ∈ S2

is unique. Make use of the uniqueness to show that the vectors in

B must be linearly independent.

3. 9. Hint: L(L
kâ1(v)) = L

k(v).



8.2

1. 4.  

1. (a) If k = i − j, then Li(v) = Lj(Lk(v)) for any v in

V.

2. (b) Use mathematical induction.

2. 5 

1. (b) In general dimR(Lk) + dim ker(Lk) = dim V
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A

Absolute error, 407

Addition

of matrices, 30

in R
n

, 115

of vectors, 116

Adjacency matrix, 58

Adjoint of a matrix, 101

Aerospace, 193, 303

Analytic hierarchy process, 39, 240, 394, 453

Angle

between vectors in 2-space, 208

Angle between vectors, 45, 106, 214

Approximation of functions, 262–265

Astronomy

Ceres orbit of Gauss, 232

Augmented matrix, 8

Automobile leasing, 326

Aviation, 193



B

Backslash operator, 510

Back substitution, 6, 417, 418

Basis, 146

change of, 152–162

orthonormal, 255

Bidiagonalization, 468

Binormal vector, 108

Block multiplication, 74–78



C

C[a, b], 117

Catastrophic cancellation, 412

Cauchy–Schwarz inequality, 210, 249

Characteristic equation, 299

Characteristic polynomial, 299

Characteristic value(s), 296

Characteristic vector, 296

Chebyshev polynomials, 285

of the second kind, 288

Chemical equations, 21

Cholesky decomposition, 386

Closure properties, 116

C
n

, 339

Coded messages, 104–105

Coefficient matrix, 7

Cofactor, 90

Cofactor expansion, 90

Column space, 162, 225

Column vector notation, 28

Column vector(s), 28, 162

Communication networks, 57

Companion matrix, 309

Comparison matrix, 394

Compatible matrix norms, 426

Complete pivoting, 423

Complex

eigenvalues, 305, 313–315

matrix, 341

Computer graphics, 190



Condition number, 431–436

formula for, 433

Conic sections, 368–374

Consistency Theorem, 35, 163

Consistent comparison matrix, 395

Consistent linear system, 2

Contraction, 190

Cooley, James W., 268

Coordinate metrology, 238

Coordinate vector, 152, 158

Coordinates, 158

Correlation matrix, 219

Correlations, 217

Covariance, 219

Covariance matrix, 220

Cramer’s rule, 103

Cross product, 105

Cryptography, 104–105



D

Dangling Web page, 330

Data fitting, least squares, 235–238

Defective matrix, 324

Definite quadratic form, 376

Deflation, 455

Determinant(s), 87–111

cofactor expansion, 90

definition, 92

and eigenvalues, 299

of elementary matrices, 97

and linear independence, 139

of a product, 99

of a singular matrix, 97

of the transpose, 92

of a triangular matrix, 93

DFT, 267

Diagonal matrix, 68

Diagonalizable matrix, 322

Diagonalizing matrix, 322

Digital imaging, 363

Dilation, 190

Dimension, 148

of row space and column space, 166

Dimension Theorem, 281

Direct sum, 227

Discrete Fourier transform, 265–267

Distance

in 2-space, 208



in n-space, 214, 253

in a normed linear space, 251

Dominant eigenvalue, 328



E

Economic models, 22–24

Edges of a graph, 57

Eigenspace, 299

Eigenvalue(s), 296

complex, 305

definition, 296

and determinants, 299

numerical computation, 450–461

product of, 306

sensitivity of, 480

of similar matrices, 307

and structures, 301, 398

sum of, 306

of a symmetric positive definite matrix, 376

Eigenvector, 296

Electrical networks, 19

Elementary matrix, 63

determinant of, 97

inverse of, 65

Equivalent systems, 3–5, 63

Euclidean length, 208

Euclidean n-space, 28



F

Factor analysis, 220

Fast Fourier Transform, 268–269

Filter bases, 450

Finite dimensional, 148

Floating point number, 406

FLT axis system, 193

Forward substitution, 417, 418

Fourier coefficients, 264

complex, 265

Fourier matrix, 267

Francis, John G. F., 457

Free variables, 14

Frobenius norm, 247, 425

Frobenius theorem, 392

Full rank, 170

Fundamental subspaces, 224–225

Fundamental Subspaces Theorem, 225



G

Gauss, Carl Friedrich, 231

Gauss–Jordan reduction, 18

Gaussian elimination, 14

algorithm, 415

algorithm with interchanges, 421

complete pivoting, 423

with interchanges, 419–424

without interchanges, 414–419

partial pivoting, 423

Gaussian quadrature, 287

Gerschgorin disks, 483

Gerschgorin’s theorem, 460

Givens transformation, 482

Golub, Gene H., 468

Golub-Reinsch Algorithm, 469

Google PageRank algorithm, 329

Gram–Schmidt process, 272–281

modified version, 279

Graph(s), 57



H

Harmonic motion, 317

Hermite polynomials, 285

Hermitian matrix, 341

eigenvalues of, 342

Hessian, 379

Hilbert matrix, 480

Homogeneous coordinates, 192

Homogeneous system, 21

nontrivial solution, 21

Hotelling, H., 365

Householder QR factorization, 463

Householder transformation, 440–445, 481



I

Idempotent, 60, 308

Identity matrix, 53

IEEE floating point standard, 410

Ill conditioned, 431

Image space, 180

Inconsistent, 2

Indefinite

quadratic form, 376

Infinite dimensional, 148

Information retrieval, 42, 215, 329, 364

Initial value problems, 311, 315

Inner product, 79, 244

complex inner product, 340

for C
n

, 340

of functions, 245

of matrices, 245

of polynomials, 245

of vectors in R
n

, 244

Inner product space, 244

complex, 340

norm for, 250

Interpolating polynomial, 235

Lagrange, 286

Invariant subspace, 308, 346

Inverse

computation of, 67



of an elementary matrix, 65

of a product, 55

Inverse matrix, 54

Inverse power method, 460

Invertible matrix, 54

Involution, 60

Irreducible matrix, 391

Isomorphism

between row space and column space, 229

between vector spaces, 120

Iterative Methods, 473



J

Jacobi polynomials, 285

Jordan canonical form, 329



K

Kahan, William, 468

Kernel, 180

Kirchhoff’s laws, 20



L

Lagrange’s interpolating formula, 286

Laguerre polynomials, 285

Latent semantic indexing, 217

LDL
T

 factorization, 385

LDU factorization, 385

Lead variables, 13

Leading principal submatrix, 382

Least squares problem(s), 231–244, 259, 461–472

Ceres orbit of Gauss, 232

fitting circles to data, 238

Least squares problem(s), solution of, 232

by Householder transformations, 463–464

from Gram–Schmidt QR, 277, 462–463

from normal equations, 234, 461

from singular value decomposition, 464–467

Left inverse, 169

Left singular vectors, 355

Legendre polynomials, 284

Legendre, Adrien-Marie, 231

Length

of a complex scalar, 339

in inner product spaces, 246

of a vector in C
n

, 339

of a vector in R2
, 106, 113, 208

of a vector in R
n

, 214

Length of a walk, 58

Leontief input-output models



closed model, 24, 393

open model, 389–391

Leslie matrix, 52

Leslie population model, 52

Linear combination, 34, 124

Linear differential equations

first order systems, 309–315

higher order systems, 315–319

Linear equation, 1

Linear operator, 175

Linear system(s), 1

equivalent, 63

homogeneous, 21

inconsistent, 2

matrix representation, 32

overdetermined, 15

underdetermined, 16

Linear transformation(s), 174–204

contraction, 190

definition, 174

dilation, 190

image space, 180

inverse image, 183

kernel, 180

one-to-one, 183

onto, 183

on R
2
, 175

range, 180

reflection, 190

from R
n

 to R
m

, 178

standard matrix representation, 184

Linearly dependent, 136



Linearly independent, 136

in C
(n−1)[a, b], 143–144

in Pn, 142

Loggerhead sea turtle, 51, 85

Lower triangular, 68

LU factorization, 69, 416



M

Machine epsilon, 362, 409, 411

Management Science, 39

Markov chain(s), 46, 154, 325–329, 393

Markov process, 46, 154, 325

MATLAB, 507–518

array operators, 515

built in functions, 512

entering matrices, 508

function files, 513

graphics, 515

help facility, 83, 517

M-files, 512

programming features, 512

relational and logical operators, 513

script files, 512

submatrices, 508

symbolic toolbox, 516

MATLAB path, 513

Matrices

addition of, 30

equality of, 30

multiplication of, 36

row equivalent, 66

scalar multiplication, 30

similar, 201

Matrix

coefficient matrix, 7

column space of, 162



condition number of, 433

correlation, 219

defective, 324

definition of, 7

determinant of, 92

diagonal, 68

diagonalizable, 322

diagonalizing, 322

elementary, 63

Fourier, 267

Hermitian, 341

identity, 53

inverse of, 54

invertible, 54

irreducible, 391

lower triangular, 68

negative definite, 376

negative semidefinite, 376

nonnegative, 389

nonsingular, 54

normal, 348

null space of, 123

orthogonal, 257

positive, 389

positive definite, 376

positive semidefinite, 376

powers of, 50

projection, 234, 261

rank of, 163

reducible, 391

row space of, 162

singular, 55

sudoku matrix, 437

symmetric, 42

transpose of, 42



triangular, 68

unitary, 342

upper Hessenberg, 456

upper triangular, 68

Matrix algebra, 47–59

algebraic rules, 48

notational rules, 41

Matrix arithmetic, 27–46

Matrix exponential, 332

Matrix factorizations

Cholesky decomposition, 386

Gram–Schmidt QR, 275

LDL
T

, 385

LDU, 385

LU factorization, 69, 416

QR factorization, 444, 447, 463

Schur decomposition, 344

singular value decomposition, 352

Matrix generating functions, 509

Matrix multiplication, 36

definition, 36

Matrix norms, 425–431

1-norm, 390, 428

2-norm, 430

compatible, 426

Frobenius, 247, 425

infinity norm, 428

subordinate, 426

Matrix notation, 28

Matrix representation theorem, 187

Matrix, adjoint of, 101



Maximum

local, 380

of a quadratic form, 376

Minimum

local, 380

of a quadratic form, 376

Minor, 90

Mixtures, 311

Modified Gram–Schmidt process, 279, 462

Moore–Penrose pseudoinverse, 466

Multipliers, 416



N

Negative correlation, 219

Negative definite

matrix, 376

quadratic form, 376

Negative semidefinite

matrix, 376

quadratic form, 376

Networks

communication, 57

electrical, 19

Newtonian mechanics, 106

Nilpotent, 308

Nonnegative matrices, 389–398

Nonnegative matrix, 389

Nonnegative vector, 389

Nonsingular matrix, 54, 66

Norm

1-norm, 250

in Cn
, 340

infinity, 250

from an inner product, 246, 250

of a matrix, 426

of a vector, 250

Normal equations, 234, 461

Normal matrices, 348–349

Normal vector, 212

Normed linear space, 250



Nth root of unity, 271

Null space, 123

dimension of, 164

Nullity, 164

Numerical integration, 286

Numerical rank, 362–363



O

Ohm’s law, 20

Operation count

evaluation of determinant, 98–99, 101

forward and back substitution, 418

Gaussian elimination, 415

QR factorization, 445, 448

Ordered basis, 152

Origin shifts, 459

Orthogonal complement, 224

Orthogonal matrices, 257–259

definition, 257

elementary, 440

Givens reflection, 445, 447

Householder transformation, 440–445

permutation matrices, 258

plane rotation, 445, 447

properties of, 258

Orthogonal polynomials, 281–288

Chebyshev polynomials, 285

definition, 282

Hermite, 285

Jacobi polynomials, 285

Laguerre polynomials, 285

Legendre polynomials, 284

recursion relation, 283

roots of, 287

Orthogonal set(s), 253

Orthogonal subspaces, 223



Orthogonality

in n-space, 214

in an inner product space, 246

in R
2
 or R

3
, 210

Orthonormal basis, 255

Orthonormal set(s), 253–271

Outer product, 79

Outer product expansion, 79

from singular value decomposition, 361, 363

Overdetermined, 15



P

PageRank algorithm, 329

Parseval’s formula, 256

Partial pivoting, 423

Partitioned matrices, 72–78

Pascal matrix, 402

Pearson, Karl, 365

Penrose conditions, 465

Permutation matrix, 258

Perron’s theorem, 391

Perturbations, 405

Pitch, 193

Pivot, 8

Plane

equation of, 212

Plane rotation, 445, 447

Pn, 118

Population migration, 153

Positive correlation, 219

Positive definite matrix, 381–389

Cholesky decomposition, 386

definition, 376

determinant of, 381

eigenvalues of, 376

LDL
T

 factorization, 385

leading principal submatrices of, 382

Positive definite quadratic form, 376

Positive matrix, 389

Positive semidefinite



matrix, 376

quadratic form, 376

Positive vector, 389

Power method, 452

Principal Axes Theorem, 374

Principal component analysis, 220, 221, 365

Probability vector, 326

Projection

onto column space, 233

onto a subspace, 261

Projection matrix, 234, 261

Pseudoinverse, 465

Psychology, 220

Pythagorean law, 214, 246



Q

QR algorithm, 458–459

QR factorization, 275, 444, 447, 463

Quadratic equation

in n variables, 374

in two variables, 368

Quadratic form

in n variables, 374

negative definite, 376

negative semidefinite, 376

positive definite, 376

positive semidefinite, 376

in two variables, 368



R

R
m×n

, 115

R
n

, 28

Range, 180

of a matrix, 225

Rank deficient, 170

Rank of a matrix, 163

Rank-Nullity Theorem, 164

Rayleigh quotient, 351

Real Schur decomposition, 346

Real Schur form, 346

Reciprocal matrix, 394

Reduced row echelon form, 17

Reducible matrix, 391

Reflection, 190

Reflection matrix, 445, 447

Regular Markov process, 329, 393

Relative error, 407

Relative residual, 432

Residual vector, 232

Right inverse, 169

Right singular vectors, 355

Roll, 193

Rotation matrix, 185, 445, 447, 481

Round off error, 407

Row echelon form, 14

Row equivalent, 66

Row operations, 5, 8

Row space, 162

Row vector notation, 29

Row vector(s), 28, 162





S

Saddle point, 376, 380

Scalar multiplication

for matrices, 30

in R
n

, 115

in a vector space, 116

Scalar product, 32, 79, 208

in R
2
 or R

3
, 208–211

Scalar projection, 211, 248

Scalars, 27

Schur decomposition, 344

Schur’s theorem, 343

Sex-linked genes, 331, 400

Signal processing , 265–268

Similarity, 198–204, 307

definition, 201

eigenvalues of similar matrices, 307

Singular matrix, 55

Singular value decomposition, 45, 217, 221, 352, 482

compact form, 355

and fundamental subspaces, 355

and least squares, 464

and rank, 355

Singular values, 352

and 2-norm, 430

and condition number, 431

and the Frobenius norm, 358



Skew Hermitian, 348, 350

Skew symmetric, 101, 348

Solution set of linear system, 2

Space shuttle, 303

Span, 124

Spanning set, 126

Spearman, Charles, 220

Spectral Theorem, 344

Square matrix, 7

Stable algorithm, 405

Standard basis, 150

for Pn, 150

for R
2×2

, 150

for R
3
, 146

for R
n

, 150

State vectors, 326

Stationary point, 375

Steady-state vector, 295

Stochastic matrix, 154, 327

Stochastic process, 325

Strict triangular form, 5

Subordinate matrix norms, 426

Subspace(s), 120–133

definition, 121

Sudoku, 437

Sudoku matrix, 437

Svd, 352

Sylvester’s equation, 351

Symmetric matrix, 42



T

Trace, 204, 253, 306

Traffic flow, 18

Transition matrix, 155, 159

for a Markov process, 326

Translations, 192

Transpose

of a matrix, 42

of a product, 56

Triangle inequality, 250

Triangular factorization, 69–70, 416

Triangular matrix, 68

Trigonometric polynomial, 264

Trivial solution, 21

Tukey, John W., 268



U

Uncorrelated, 219

Underdetermined, 16

Uniform norm, 250

Unit lower triangular, 385

Unit round off, 362

Unit triangular, 385

Unit upper triangular, 385

Unit vector, 106

Unitary matrix, 342

Upper Hessenberg matrix, 456

Upper triangular, 68



V

Vandermonde matrix, 72, 100

in MATLAB, 100, 480

Vector projection, 211, 248

Vector space

axioms of , 116

closure properties, 116

of continuous functions, 117

definition, 116

of m × n matrices, 116

of polynomials, 118

subspace of, 121

Vector(s), 28

Vectors in R
n

, 28

Vertices of a graph, 57

Vibrations of a structure, 319



W

Walk in a graph, 58

Wavelets, 450

Web searches, 45, 329

Weight function, 245

Weights, 244

Well conditioned, 431

Wronskian, 143



Y

Yaw, 193



Z

Zero

matrix, 31

subspace, 121

vector, 116
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Long description
The values of each object and the direction of flow

between the objects are summarized in the following

matrix.

Object F M C

F 1 half 1 third 1 half

M 1 fourth 1 third 1 fourth

C 1 fourth 1 third 1 fourth



Long description
The solutions are as follows.

Graph 1. Unique solution, intersecting lines intersecting at (2, 0).

The graph is a set of two lines intersecting, in the shape of letter X,

at (2, 0).

Graph 2. No solution, parallel lines. The graph is a set of two

parallel lines that fall from the second quadrant to the fourth

quadrant, through the first quadrant.

Graph 3. Infinite solutions, the same line. The graph is a line that

falls from the second quadrant to the fourth quadrant, through the

first quadrant.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 2, 1, 3.

Row 2. 3, negative 1, negative 3, negative 1.

Row 3. 2, 3, 1, 4.

A vertical bar is placed between the third and fourth

columns. Row 1 is highlighted and labeled, pivotal row.

The whole matrix is labeled, pivot a sub 11 = 1, entries to

be eliminated, a sub 21 = 3 and a sub 31 = 2.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 6.

Row 2. 0, negative 1, negative 1, 1, 0.

Row 3. 2, 4, 1, negative 2, negative 1.

Row 4. 3, 1, negative 2, 2, 3.

A vertical bar is placed between the fourth and fifth

columns. Row 1 is highlighted and labeled, pivotal row.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 6.

Row 2. 0, negative 1, negative 1, 1, 0.

Row 3. 0, 2, negative 1, negative 4, negative 13.

Row 4. 0, negative 2, negative 5, negative 1, negative 15.

A vertical bar is placed between the fourth and fifth

columns. Row 2 is highlighted.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 6.

Row 2. 0, negative 1, negative 1, 1, 0.

Row 3. 0, 0, negative 3, negative 2, negative 13.

Row 4. 0, 0, negative 3, negative 3, negative 15.

A vertical bar is placed between the fourth and fifth

columns. Row 3 is highlighted.



Long description
The row entries in the first matrix are as follows.

Row 1. x, x, x, x, x.

Row 2. x, x, x, x, x.

Row 3. x, x, x, x, x.

Row 4. x, x, x, x, x.

After step 1, the row entries are as follows.

Row 1. x, x, x, x, x.

Row 2. 0, x, x, x, x.

Row 3. 0, x, x, x, x.

Row 4. 0, x, x, x, x.

After step 2, the row entries are as follows.

Row 1. x, x, x, x, x.

Row 2. 0, x, x, x, x.

Row 3. 0, 0, x, x, x.

Row 4. 0, 0, x, x, x.

After step 3, the row entries are as follows.

Row 1. x, x, x, x, x.

Row 2. 0, x, x, x, x.

Row 3. 0, 0, x, x, x.

Row 4. 0, 0, 0, x, x.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 1, 1.

Row 2. Negative 1, negative 1, 0, 0, 1, negative 1.

Row 3. Negative 2, negative 2, 0, 0, 3, 1.

Row 4. 0, 0, 1, 1, 3, negative 1.

Row 5. 1, 1, 2, 2, 4, 1.

A vertical bar is placed between the fifth and sixth

columns. Row 1 is highlighted and labeled, pivotal row.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 1, 1.

Row 2. 0, 0, 1, 1, 2, 0.

Row 3. 0, 0, 2, 2, 5, 3.

Row 4. 0, 0, 1, 1, 3, negative 1.

Row 5. 0, 0, 1, 1, 3, 0.

A vertical bar is placed between the fifth and sixth

columns. Row 2 is highlighted and labeled, pivotal row.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 1, 1.

Row 2. 0, 0, 1, 1, 2, 0.

Row 3. 0, 0, 0, 0, 1, 3.

Row 4. 0, 0, 0, 0, 1, negative 1.

Row 5. 0, 0, 0, 0, 1, 0.

A vertical bar is placed between the fifth and sixth

columns. Row 3 is highlighted.



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 1, 1.

Row 2. 0, 0, 1, 1, 2, 0.

Row 3. 0, 0, 0, 0, 1, 3.

Row 4. 0, 0, 0, 0, 0, negative 4.

Row 5. 0, 0, 0, 0, 0, negative 3.

A vertical bar is placed between the fifth and sixth

columns. A line separates the following cells (1, 1), (1, 2),

(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), and (3, 5).



Long description
The row entries in the matrix are as follows.

Row 1. 1, 1, 1, 1, 1, 1.

Row 2. 0, 0, 1, 1, 2, 0.

Row 3. 0, 0, 0, 0, 1, 3.

Row 4. 0, 0, 0, 0, 0, 0.

Row 5. 0, 0, 0, 0, 0, 0.

A vertical bar is placed between the fifth and sixth

columns. A line separates the following cells (1, 1), (1, 2),

(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), and (3, 5).



Long description
The graph is a set of three lines.

Line 1 falls from the second quadrant to the fourth quadrant,

through (1, 0).

Line 2 rises from the third quadrant to the first quadrant, through

(0, negative 1) and (2, 0).

Line 3 rises from the third quadrant to the first quadrant, through

(3, 0).



Long description
The row entries in the first matrix are as follows.

Row 1. 1, 1, 1, 1, 1, 2.

Row 2. 0, 0, 0, 1, 1, 1.

Row 3. 0, 0, 0, 0, 1, negative 1.

A vertical bar is placed between the fifth and sixth

columns. Row 3 is highlighted.

The row entries in the second matrix are as follows.

Row 1. 1, 1, 1, 1, 0, 3.

Row 2. 0, 0, 0, 1, 0, 2.

Row 3. 0, 0, 0, 0, 1, negative 1.

A vertical bar is placed between the fifth and sixth

columns. Row 2 is highlighted.

The row entries in the third matrix are as follows.

Row 1. 1, 1, 1, 0, 0, 1.

Row 2. 0, 0, 0, 1, 0, 2.

Row 3. 0, 0, 0, 0, 1, negative 1.



Long description
The row entries in the first matrix are as follows.

Row 1. Negative 1, 1, negative 1, 3, 0.

Row 2. 3, 1, negative 1, negative 1, 0.

Row 3. 2, negative 1, negative 2, negative 1, 0.

A vertical bar is placed between the fourth and fifth

columns. Row 1 is highlighted.

After the elimination process, the row values in the

second matrix are as follows.

Row 1. Negative 1, 1, negative 1, 3, 0.

Row 2. 0, 4, negative 4, 8, 0.

Row 3. 0, 1, negative 4, 5, 0.

A vertical bar is placed between the fourth and fifth

columns. Row 2 is highlighted.

After the elimination process, the row values in the third

matrix are as follows.

Row 1. Negative 1, 1, negative 1, 3, 0.

Row 2. 0, 4, negative 4, 8, 0.

Row 3. 0, 0, negative 3, 3, 0.

A vertical bar is placed between the fourth and fifth

columns.

After the elimination process, the row values in the

fourth matrix are as follows.

Row 1. 1, negative 1, 1, negative 3, 0.

Row 2. 0, 1, negative 1, 2, 0.

Row 3. 0, 0, 1, negative 1, 0.



A vertical bar is placed between the fourth and fifth

columns. Row 3 is highlighted. A text beside the matrix

reads, row echelon form.

After the elimination process, the row values in the fifth

matrix are as follows.

Row 1. 1, negative 1, 0, negative 2, 0.

Row 2. 0, 1, 0, 1, 0.

Row 3. 0, 0, 1, negative 1, 0.

A vertical bar is placed between the fourth and fifth

columns. Row 2 is highlighted.

After the elimination process, the row values in the sixth

matrix are as follows.

Row 1. 1, 0, 0, negative 1, 0.

Row 2. 0, 1, 0, 1, 0.

Row 3. 0, 0, 1, negative 1, 0.

A vertical bar is placed between the fourth and fifth

columns. A text beside the matrix reads, reduced row

echelon form.



Long description
The intersections of the streets are as follows.

Intersection of the streets Point

First horizontal street and first vertical street A

Second horizontal street and first vertical street B

Second horizontal street and second vertical street C

First horizontal street and second vertical street D

Vehicles move downward in the first vertical street,

upward in the second vertical street, leftward in the first

horizontal street, and rightward in the second horizontal

street. The number of vehicles entering or leaving an

intersection point or a street is as follows.

P

o

i

n

t

Entering Leaving

A
X sub 1 vehicles from D and 

450 vehicles from the street

610 vehicles to the street 

and x sub 2 vehicles to B

B
X sub 2 vehicles from A and 

520 vehicles from the street

480 vehicles to the street 

and x sub 3 vehicles to C

C
X sub 3 vehicles from B and 

390 vehicles from the street

600 vehicles to the street 

and x sub 4 vehicles to D

D
X sub 4 vehicles from C and 

640 vehicles from the street

310 vehicles to the street 

and x sub 1 vehicles to A





Long description
The circuit has two power sources, 8 volts above and 9

volts below. A leftward current i sub 1 passes from the

positive end of the power source of 8 volts to point A. A

resistor of 3 ohms is present below A. This resistor

connects directly to the positive end of the power source

of 9 volts that has a leftward current i sub 3 passing from

the power source. The negative end of the power source

then connects right to a resistor of 2 ohms, which moves

up to point B. It then further connects up to a resistor of

4 ohms, which in turn connects to the power source of 8

volts. A resistor of 2 ohms connects A and B with

rightward current i sub 2 passing from the resistor.



Long description
A horizontal line is given, which indicates a path along

which current may flow. A horizontal line with a break in

between, a short vertical line, the negative end, and a

vertical line a bit longer than the short one, the positive

end, represents an electrical source. A line with pointed

zigzag lines in between is a resistor.



Long description
The table is as follows.

Blank F M C

F 1 half 1 third 1 half

M 1 fourth 1 third 1 fourth

C 1 fourth 1 third 1 fourth



Long description
Vehicles move downward in the first vertical street,

upward in the second vertical street, leftward in the first

horizontal street, and rightward in the second horizontal

street. The number of vehicles entering or leaving an

intersection point or a street is as follows.

Intersec

tion 

point of 

the 

streets

Entering Leaving

First 

horizon

tal 

street 

and 

first 

vertical 

street

X sub 1 vehicles from the 

intersection of the first 

horizontal street and the 

second vertical street and 

380 vehicles from the 

street

430 vehicles to the street 

and x sub 2 vehicles to 

the intersection of the 

second horizontal street 

and the first vertical 

street

Second 

horizon

tal 

street 

and 

first 

vertical 

street

X sub 2 vehicles from the 

intersection of the first 

horizontal street and the 

first vertical street and 

540 vehicles from the 

street

420 vehicles to the street 

and x sub 3 vehicles to 

the intersection of the 

second horizontal street 

and the second vertical 

street

Second 

horizon

tal 

street 

and 

second 

vertical 

street

X sub 3 vehicles from the 

intersection of the second 

horizontal street and the 

first vertical street and 

470 vehicles from the 

street

400 vehicles to the street 

and x sub 4 vehicles to 

the intersection of the 

first horizontal street 

and the second vertical 

street

First 

horizon

420 vehicles from the 

intersection of the second 

X sub 4 vehicles to the 

street and x sub 1 



tal 

street 

and 

second 

vertical 

street

horizontal street and the 

second vertical street and 

450 vehicles from the 

street

vehicles to the 

intersection of the first 

horizontal street and the 

first vertical street



Long description
Vehicles move downward in the first vertical street,

upward in the second vertical street, leftward in the first

horizontal street, and rightward in the second horizontal

street. The number of vehicles entering or leaving an

intersection point or a street is as follows.

Interse

ction 

point of 

the 

streets

Entering Leaving

First 

horizon

tal 

street 

and 

first 

vertical 

street

X sub 1 vehicles from the 

intersection of the first 

horizontal street and the 

second vertical street and 

a sub 1 vehicles from the 

street

B sub 1 vehicles to the 

street and x sub 2 

vehicles to the 

intersection of the 

second horizontal street 

and the first vertical 

street

Second 

horizon

tal 

street 

and 

first 

vertical 

street

X sub 2 vehicles from the 

intersection of the first 

horizontal street and the 

first vertical street and a 

sub 2 vehicles from the 

street

B sub 2 vehicles to the 

street and x sub 3 

vehicles to the 

intersection of the 

second horizontal street 

and the second vertical 

street

Second 

horizon

tal 

street 

and 

second 

vertical 

street

X sub 3 vehicles from the 

intersection of the second 

horizontal street and the 

first vertical street and a 

sub 3 vehicles from the 

street

B sub 3 vehicles to the 

street and x sub 4 

vehicles to the 

intersection of the first 

horizontal street and the 

second vertical street

First 

horizon

X sub 4 vehicles from the 

intersection of the second 

B sub 4 vehicles to the 

street and x sub 1 



tal 

street 

and 

second 

vertical 

street

horizontal street and the 

second vertical street and 

a sub 4 vehicles from the 

street

vehicles to the 

intersection of the first 

horizontal street and the 

first vertical street



Long description
The power source of 16 volts is at the top of the circuit. A

leftward current i sub 1 flows from the positive end of the

power source to point A. The other end of the power

source connects to a resistor of 2 ohms which then leads

to point B. B connects to a resistor of 3 ohms from which

a leftward current i sub 3 passes toward A. A and B are

connected by a 2 ohm resistor, and a rightward current i

sub 2 passes from A.



Long description
The power source of 20 volts is at the middle of the

circuit and a leftward current i sub 2 passes from its

positive end to point A. The current line then flows

upward to a resistor of 2 ohms and a rightward current i

sub 1 passes to point B. A rightward current i sub 3

passes from A downward to a 2 ohm resistor and reaches

B. The power source and B are connected by a resistor of

4 ohms.



Long description
The power source of 8 volts is at the top of the circuit,

and a rightward current i sub 1 passes from it to a 4 ohm

resistor to point B. A leftward current i sub 2 from B

passes to A through a 2 ohm resistor. A downward

current i sub 3 passes from A to point C. C connects to a

4 ohm resistor and a rightward current i sub 5 passes

from it to point D. An upward current i sub 4 passes from

D to B. D connects downward to a 5 ohm resistor, and a

leftward current i sub 6 passes to the power source of 10

volts. The positive end of the power source is connected

to point C.



Long description
A B = the 3 by 2 matrix with the following row elements.

Row 1. 3, negative 2.

Row 2. 2, 4.

Row 3. 1, negative 3.

Row 2 is highlighted.

This is multiplied with the 2 by 3 matrix with the

following row elements.

Row 1. Negative 2, 1, 3.

Row 2. 4, 1, 6.

Column 3 is highlighted. Row 1 of A is multiplied with

column 1 of B. Row 1 of A is multiplied with column 2 of

B. Row 1 of A is multiplied with column 3 of B. Row 2 of

A is multiplied with column 2 of B. This is continued till

row 3 of A is multiplied with column 3 of B. This

multiplication process will be like in the following matrix

with row entries.

Row 1. 3 times negative 2 minus 2 times 4, 3 times 1 minus 2 times

1, 3 times 3 minus 2 times 6.

Row 2. 2 times negative 2 + 4 times 4, 2 times 1 + 4 times 1, 2

times 3 + 4 times 6.

Row 3. 1 times negative 2 minus 3 times 4, 1 times 1 minus 3 times

1, 1 times 3 minus 3 times 6.

2 times 3 + 4 times 6 in row 2 is highlighted.

The resultant 3 by 3 matrix is as follows with the row

entries.

Row 1. Negative 14, 1, negative 3.

Row 2. 12, 6, 30.



Row 3. Negative 14, negative 2, negative 15.

The value, 30, in row 2 is highlighted.



Long description
The objective for the process is to pick a candidate. There

are three criteria for this. Research, Teaching, and

Professional Activities. The alternatives for each criterion

are the same and they are as follows. Doctor Gauss,

Doctor O Leary, and Doctor Taussky.



Long description
The objective for the process is to pick a candidate, 1.

There are three criteria for this. Research, 0.40.

Teaching, 0.40. Professional Activities, 0.20. The

alternatives for each criterion are as follows. For

research, Doctor Gauss, 0.50, Doctor O Leary, 0.25, and

Doctor Taussky, 0.25. For teaching, Doctor Gauss, 0.20,

Doctor O Leary, 0.50, and Doctor Taussky, 0.30. For

professional activities, Doctor Gauss, 0.25, Doctor O

Leary, 0.50, and Doctor Taussky, 0.25.



Long description



Long description
A B = the 3 by 3 matrix, A, with the following rows.

Row 1. 1, 2, 1.

Row 2. 3, 3, 5.

Row 3. 2, 4, 1.

Row 3 is highlighted.

This is multiplied with the 3 by 3 matrix, B, with the

following row entries.

Row 1. 1, 0, 2.

Row 2. 2, 1, 1.

Row 3. 5, 4, 1.

Column 2 is highlighted.10 is obtained when row 1 of A is

multiplied with column 1 of B. 6 is obtained when row 1

of A is multiplied with column 2 of B. 5 is obtained when

row 1 of A is multiplied with column 3 of B. 34 is

obtained when row 2 of A is multiplied with column 1 of

B. 23 is obtained when row 2 of A is multiplied with

column 2 of B. 14 is obtained when row 2 of A is

multiplied with column 3 of B. 15 is obtained when row 3

of A is multiplied with column 1 of B. 8 is obtained when

row 3 of A is multiplied with column 2 of B. 9 is obtained

when row 3 of A is multiplied with column 3 of B. Thus

the resultant 3 by 3 matrix has the following row entries.

Row 1. 10, 6, 5.

Row 2. 34, 23, 14.

Row 3. 15, 8, 9.

The value, 8, in row 3 is highlighted.



Long description
B to the power of T times A to the power of T = the 3 by 3

matrix, B to the power of T, with the following rows.

Row 1. 1, 2, 5.

Row 2. 0, 1, 4.

Row 3. 2, 1, 1.

Row 2 is highlighted.

This is multiplied with the 3 by 3 matrix, A to the power

of T, with the following row entries.

Row 1. 1, 3, 2.

Row 2. 2, 3, 4.

Row 3. 1, 5, 1.

Column 3 is highlighted. 10 is obtained when row 1 of B

to the power of T is multiplied with column 1 of A to the

power of T. 6 is obtained when row 1 of B to the power of

T is multiplied with column 2 of A to the power of T. 5 is

obtained when row 1 of B to the power of T is multiplied

with column 3 of A to the power of T. 34 is obtained

when row 2 of B to the power of T is multiplied with

column 1 of A to the power of T. 23 is obtained when row

2 of B to the power of T is multiplied with column 2 of A

to the power of T. 14 is obtained when row 2 of B to the

power of T is multiplied with column 3 of A to the power

of T. 15 is obtained when row 3 of B to the power of T is

multiplied with column 1 of A to the power of T. 8 is

obtained when row 3 of B to the power of T is multiplied

with column 2 of A to the power of T. 9 is obtained when

row 3 of B to the power of T is multiplied with column 3

of A to the power of T. Thus the resultant 3 by 3 matrix

has the following row entries.



Row 1. 10, 34, 15.

Row 2. 6, 23, 8.

Row 3. 5, 14, 9.

The value, 8, in column 3 is highlighted.



Long description
V sub 1 is connected to V sub 2 by a horizontal line at the

top. V sub 2 is connected to V sub 5 at the bottom by an

inclined line. V sub 3 is connected to V sub 4 by a vertical

line at the right bottom. The vertices, V sub 3 and V sub

4, at the right bottom are perpendicular to the vertices, V

sub 1 and V sub 2, at the top. V sub 3 is connected to V

sub 5 by an inclined line. V sub 4 is connected to V sub 5

by a horizontal line at the bottom. The vertices, V sub 1

and V sub 2, and the vertices, V sub 4 and V sub 5, are

parallel to each other.



Long description
V sub 1 is connected to V sub 2 by a vertical line at the

left end. V sub 2 is connected to V sub 3 by a horizontal

line at the top. V sub 1 is connected to V sub 4 by a

horizontal line at the bottom. The vertices, V sub 2 and V

sub 3, and the vertices, V sub 1 and V sub 4, are parallel

to each other. V sub 2 is connected to V sub 4 by an

inclined line from left to right. V sub 4 is connected to V

sub 5 by a rising line. V sub 5 is at the right end of the

graph.



Long description
The vertices, V sub 1, V sub 2, V sub 3, and V sub 4, join

to form a square where the vertices, V sub 1 and V sub 2,

are at the top and the vertices, V sub 4 V sub 3, are at the

bottom. The vertices, V sub 8, V sub 7, V sub 6, and V

sub 5, are inside the vertices, V sub 1, V sub 2, V sub 3,

and V sub 4. V sub 8 is connected to V sub 7 by a

horizontal line at the top. V sub 7 is connected to V sub 6

by a vertical line at the right. V sub 6 is connected to V

sub 5 by a horizontal line at the bottom. The vertices, V

sub 8 and V sub 7, and the vertices, V sub 6 and V sub 5,

are parallel to each other. The vertices, V sub 7 and V sub

6, are perpendicular to the vertices, V sub 7 and V sub 8

and V sub 6 and V sub 5, respectively. The vertices, V sub

1 and V sub 2, are connected to the vertices, V sub 8 and

V sub 7, by a falling line and a rising line, respectively.

The vertex, V sub 4, is connected to the vertex, V sub 5,

by a rising line.



Long description
Three vectors are drawn from a point on the curve.

Vector T of t is a tangent that rises upward to the left.

Vector N of t falls downward to the left. Vector B of t

rises vertically upward.



Long description



Long description



Long description
Three vectors are drawn from a point on the curve.

Vector T of t is a tangent that rises upward to the left.

Vector N of t falls downward to the left. Vector B of t

rises vertically upward.



Long description



Long description
The first vector, x, rises from the origin to (2, 1). The

second vector, also x, rises from (1, 3) to (3, 4). All values

are estimated. The equation below the graph reads, x sub

1 = 2, x sub 2 = 1, a = 1, b = 3, a + x sub 1 = 3, and b + x

sub 2 = 4.



Long description
The first vector rises from the third quadrant toward (1,

0). The second vector rises from the origin to a point that

is two units to the right and two units to the top. The

third vector rises from a point which is 3 units to the top

and two units to the right to a point which is four units to

the right and four units to the top. All values are

estimated.



Long description
Lines are drawn from the vector, d, to meet the

horizontal axis at (4, 0), and another line is drawn from

the origin to (4, 0). The vector, s, and the two lines form

a right triangle, with vector, d, as the hypotenuse. The

equation below the graph reads, x sub 1 = 4, x sub 2 = 3,

length, d = 5, d = the square root of start expression x

sub 1 squared + x sub 2 squared end expression.



Long description
The graphs and their vectors are as follows.

Graph a. Vector x rises from the origin to (2, 1).

Graph b. Vector negative x falls from the origin to (negative 2,

negative 1).

Graph c. Vector 3 x rises from the origin to the first quadrant.

Graph d. Vector negative 2 x falls from the origin to the fourth

quadrant.



Long description
The vectors and their coordinates are as follows.

Vector u rises from (0, 0) to (1, 2).

Vector v rises from (1, 2) to (3, 4).

Vector z rises from (0, 0) to (3, 4).

The equations below the graph reads, z = u + v, where u

sub 1 = 1, u sub 2 = 2, v sub 1 = 3, v sub 2 = 1, z sub 1 = 4,

and z sub 2 = 3.



Long description
The vectors and their coordinates are as follows.

Vector u rises from the origin to (1, 2). A parallel vector u rises

from (3, 1) to (4, 3).

Vector v rises from (1, 2) to (3, 4). A parallel vector v rises from the

origin to (3, 1).

Vector z rises from the origin to (4, 3).

Vector w falls from (1, 2) to (3, 1).

Vectors u and v form the parallelogram. Vectors w and z

form the diagonals of the parallelogram. The equations

for the graph are as follows.

z = u + v, w = v minus u.

u sub 1 = 1, u sub 2 = 2.

v sub 1 = 3, v sub 2 = 1.

z sub 1 = 4, z sub 2 = 3.

w sub 1 = 2, w sub 2 = negative 1.



Long description
The graphs are as follows.

Graph a. Vector x rises from the origin to (4, 2, 3).

Graph b. Vector x rises from the origin to a point in the three

dimensional plane. Vector y rises from where vector x ends. Vector

x + y connects the origin and the vector y.

The equation below graph, a, reads, x sub 1 = 4, x sub 2 =

2, and x sub 3 = 3.



Long description



Long description



Long description
The vectors rising from the origin terminate at (0, 1) and

(1, 0), respectively. The text below the graph reads,

terminal point of first vector (1, 0), terminal point of

second vector (0, 1), and target point (2, 3).



Long description



Long description



Long description



Long description



Long description



Long description
The graphs and their vectors are as follows.

Graph a. A vector rises from the origin and terminates at (x sub 1,

x sub 2). The second vector originates from (x sub 1, x sub 2) and

ends at (y sub 1, y sub 1). Vector x and vector y form a linear, rising

line. Here, x and y are linearly dependent.

Graph b. Two vectors, x and y, rise from the origin and end at (x

sub 1, x sub 2) and (y sub 1, y sub 2), respectively. Vector y lies

below vector x. Here, x and y are linearly independent.



Long description



Long description



Long description
The graphs are as follows.

Graph a. A line passes through (x sub 1, x sub 2, x sub 3) in Span,

x.

Graph b. Two vectors, x and y, lie on a plane in Span (x, y).

Graph c. Three vectors, x, y, and z, lie in Span (x, y, z).

An equation below the graph, c, reads, span of x, y, and z

= R cubed.



Long description
The vectors and their coordinates are as follows.

Vector x rises from the origin to (6, 7).

Vector y rises from the origin to (6, 3).

Vector c sub 2 z rises from the origin to (1, 4).

A parallel vector c sub 2 z rises from (6, 3) to (6, 7)

Vector c sub 1 y rises from (1, 4) to (6, 7).

An equation below the graph reads, x = c sub 1 y + c sub

2 z, c sub 1 = 3, and c sub 2 = 1.



Long description
The vectors are as follows.

Vector v originates at left bracket v sub 1, v sub 2 right bracket and

runs horizontally to end at left bracket e sub 1, e sub 2 right

bracket.

Vector inverse of U originates at left bracket e sub 1, e sub 2 right

bracket and runs vertically downward to left bracket u sub 1, u sub

2 right bracket.

Vector inverse of U, V originates at left bracket v sub 1, v sub 2

right bracket and runs downward and right to end at left bracket u

sub 1, u sub 2 right bracket.



Long description
The vector (1, 0) extends from the origin along the

horizontal axis, and the vector (0, 1) extends from the

origin along the vertical axis. The vector (1, 0) is

transformed into (cosine theta, sine theta) positive vector

by an angle theta counterclockwise. The vector (0, 1) is

transformed into (negative sine theta, cosine theta)

negative vector by an angle theta counterclockwise.



Long description



Long description
The horizontal vector L of x = x sub 1 e sub 1 stretches

along x sub 1 axis, and the vector space x rises linearly

from the origin between x sub 1 axis and x sub 2 axis. A

vertical line is drawn from the horizontal axis to the

ending point of the linear vector. The projection of the

horizontal vector is labeled, x sub 1.



Long description
The vector x = left parenthesis x sub 1, x sub 2 right

parenthesis to the t power is a line that rises linearly

from the origin in the first quadrant. The vector L of x =

left parenthesis x sub 1, negative x sub 2 right

parenthesis to the t power is a line that falls linearly from

the origin in the fourth quadrant.



Long description
The vector x = left parenthesis x sub 1, x sub 2 right

parenthesis to the t power is a line that rises linearly

from the origin. The vector is transformed to L of x = left

parenthesis negative x sub 2, x sub 1 right parenthesis to

the t power by an angle of 90 degrees counterclockwise.



Long description
Graph a, the vector (1, 0) extends from the origin along

the horizontal axis, and the vector (0, 1) extends from the

origin along the vertical axis. The vector (1, 0) is

transformed into (cosine theta, sine theta) positive vector

by an angle theta counterclockwise. The vector (0, 1) is

transformed into (negative sine theta, cosine theta)

negative vector by an angle theta counterclockwise.

Graph b, the vector, x, rises linearly from the origin. The

vector is transformed to A x by an angle theta.



Long description
The matrix A is transformed from x = left bracket lower v

right bracket sub E epsilon R to the n power to A x = left

bracket lower w right bracket sub F epsilon R to the m

power with respect to bases E and F. The vector space A

x = left bracket w right bracket sub F epsilon R to the m

power transforms to lower w = L of lower v epsilon upper

W, and lower w = L of lower v epsilon upper W

transforms to A x = left bracket lower w right bracket sub

F epsilon R to the m power vertically. The matrix L = L

sub A transforms from lower v epsilon Upper V to lower

w = L of lower v epsilon upper W. The vector space lower

v epsilon upper V transforms to x = left bracket lower v

right bracket sub E epsilon R to the n power, and x = left

bracket lower v right bracket sub E epsilon R to the n

power transforms to lower v epsilon upper V vertically.



Long description
Graph a, for a triangle defined by T, illustrates a triangle

with its base vertically aligned leftward (1, negative 1)

and (1, 1). The triangle has its apex at (0, 0). Graph b, for

Dilation by a factor of 1.5, illustrates a triangle with its

base vertically aligned leftward (1.5, negative 1.5) and

(1.5, 1.5). The triangle has its apex at (0, 0). Graph c, for

reflection about y axis, illustrates a triangle with its base

vertically aligned rightward (negative 1, negative 1) and

(negative 1, 1). The triangle has its apex at (0, 0). Graph

d, for rotation by 60 degree, illustrates a triangle rotated

counterclockwise to 60 degree with its base at (negative

1.5, 1.5) and (1.5, 0.5). The triangle has its apex at (0, 0).



Long description
Graph a, graph of 3 by 81 matrix S, illustrates a stick

figure plotted at the bottom at (0, 0) and at the top at

(0.5, 5.5). Graph b, graph of translated figure A S,

illustrates a stick figure translated from the bottom at (0,

0) and top at (0.5, 5.5) to the bottom at (6, 2) and top at

(7, 7).



Long description
Diagram, a, illustrates the original position of an airplane

superimposed in an x y plane. Diagram, b, illustrates the

yaw of airplane at 45 degrees. The plane moves 45

degrees clockwise from the positive x axis. Diagram, c,

illustrates the pitch of airplane at negative 30 degrees.

The plane moves negative 30 degrees clockwise from the

negative x axis. Diagram, d, illustrates the roll of 30

degrees. The plane moves 30 degrees clockwise from the

negative y axis.



Long description
The B matrix is translated from x to z horizontally. The s

inverse matrix is translated from t to z vertically. The A

matrix is translated from y to t horizontally. The s matrix

is translated from x to y vertically.



Long description
The matrix B representing L translates from basis F, V to

V. The matrix S representing I translates from basis F, V

to basis E, V vertically. The matrix L represents A

translates from basis E, V to V. The matrix S inverse

representing I translates from V to V.



Long description
Two vectors, y and b, rise from a common origin at a

point on the plane, R of A. Vector b rises leftward and

vector y extends along the axis, N of A to the T power.

The axis is perpendicular to the plane. The angle between

vector y and vector b is theta.



Long description
Two vectors, p and v, rise from a common origin, O.

Vector p inclines along the plane and vector v inclines

upward to the right, from the plane. The terminal point

of vector v is Q. The terminal point of vector p is upper P.

A vector, v minus p, rises from the terminal point of

vector p. The vector then extends to the terminal point,

Q. Vector, v minus p, is inclined at 90 degrees with

vector p.



Long description
Two vectors, x and y, rise from the origin to the first

quadrant. Vector x rises upward to extend to the

terminal point (x sub 1, x sub 2). Vector y rises rightward

and extends to the terminal point (y sub 1, y sub 2). A

vector, y minus x, rises from (x sub 1, x sub 2) and

extends to (y sub 1, y sub 2). Vector x inclines at an angle

theta with vector y in counterclockwise direction.



Long description
Vectors, x and y, rise from the origin. Vector y has two

points, u and p. The vector portion that starts from the

origin until p is labeled, alpha. Vector x diverges at angle

theta with vector y. Point p = alpha times u in vector y is

perpendicular to meet vector x at z = x minus p.



Long description
Vectors, w and v, rise from the origin and extend to the

first quadrant. A line, y = 1 third x, rises from the origin

along which vector w inclines through point Q. Vector v

rises from the origin to a terminal point (1, 4). A dashed

line rises from point Q on vector w to meet the terminal

point of vector v at (1, 4).



Long description
Vectors, a = Euclidean length of x and c = Euclidean

length of start expression x + y end expression, rise from

a common point. From the terminal point of vector a,

vector b = Euclidean length of y rises leftward to meet

the terminal point of vector c.



Long description
The plots are scattered along a regression line as follows.

(Negative 30, negative 28), (negative 10, negative 28),

(negative 3, negative 8), (negative 10, 2), (negative 1, 2),

(17, 20), and (40, 40). The regression line rises from

(negative 47, negative 48) through (0, 0) to (43, 47). All

values estimated.



Long description
The parallelogram is formed by vectors, a sub 1 and a sub

2. Vectors of a sub 1 form the sides of the parallelogram.

Vectors of a sub 2 form the top and bottom portions of

the parallelogram. A vertical line labeled, h, from the

bottom vector, a sub 2, rises to meet the terminal point

of vector, a sub 1, on the left. The distance between the

initial point of vector, a sub 1, on the left and the line h is

labeled, alpha.



Long description
Vectors, e sub 3, e sub 1, and e sub 2 y, rise from the

origin at a point on the X Y Z plane. Vector e sub 1

extends along the x plane and vector e sub 3 extends

along the y plane. Vector e sub 2 slopes down along the z

plane.



Long description
Two vectors, y and b, rise from the origin at a point on a

plane, R of A. The vectors rise leftward and vector y

extends along the axis, N of A to the T power, which is

perpendicular to the plane. Vector b inclines at an angle,

theta, with vector a.



Long description



Long description
The characteristics of the two diagrams are as follows.

Diagram a, b epsilon R squared and A is a 2 by 1 matrix of rank 1.

Two vectors, b and p, rise from the origin. Vector b rises upward

and vector p rises rightward along the line, R of A. From the

terminal point of vector p, a vector, r of x hat, rises to meet the

terminal point of vector b.

Diagram b, b epsilon R squared and A is a 3 by 2 matrix of rank 2.

Vectors, p and b, rise from a point on the plane, R of A. Vector p

moves rightward and vector b rises rightward. From the terminal

point of vector p, a vector, r of x hat, rises vertically upward to

meet the terminal point of vector b.



Long description
The curve rises from (negative 1, negative 1) and passes

through (0.8, 4.8), (0.8, negative 3), (2.10, 0.55), (2.30,

0.70), (3.7, negative 0.4), (5.30, 2.13), (5.80, 2.17), (6.40,

2.52), (7.3, 6.6), and (8.00, 3.54). A line rises from

(negative 2, negative 2) and passes through (negative

1.00, negative 1.02), (0.00, negative 0.52), (2.10, 0.55),

(2.30, 0.70), (2.40, 0.70), (5.30, 2.13), (6.00, 2.52),

(6.50, 2.82), and (8.00, 3.54). All values estimated.



Long description
An equation below the graph reads, Euclidean length of r

of c squared = d squared sub 1 + d squared sub 2 + d

squared sub 3.



Long description
The center of the circle is at (1, 2) and the radius is 2

units. The circle passes through (3, 2.1), (2.6, 3.4), (0.6,

4.1), (negative 0.5, 3.8), (negative 1.3, 2.3), (negative 1.1,

1.3), (0.3, 0.2), (1.6, 0.3), (2.3, 0.3), and (2.8, 1.5). All

values estimated.

A table beside the graph lists the values of x and y as

follows.

x y

3.0 2.1

2.6 3.4

0.6 4.1

Negative 0.5 3.8

Negative 1.3 2.3

Negative 1.1 1.3

0.3 0.2

1.6 0.3

2.3 0.3

2.8 1.5



Long description
The first stage, Objective, has a single level, pick a

candidate 1.00. The Objective stage drops down to levels

of Criteria stage. The three levels in Criteria stage are

Research 0.40, Teaching 0.40, and Profession Activities

0.20. The next stage labeled, Subcriteria, has 2 levels.

The research level divides down into two levels, Research

Quantity 0.40 and Research Quality 0.60. The

Subcriteria stage drops down to the Alternatives stage.

The Alternatives stage has four levels. The Research

Quantity 0.40 divides down to Doctor Gauss, 0.35,

Doctor Ipsen, 0.20, Doctor O’Leary, 0.25, and Doctor

Taussky, 0.20. The Research Quality 0.60 divides down

to Doctor Gauss, 0.3289, Doctor Ipsen, 0.1739, Doctor

O’Leary, 0.2188, and Doctor Taussky, 0.2784. The

Teaching 0.40 from Criteria stage divides down to

Doctor Gauss, 0.21, Doctor Ipsen, 0.29, Doctor O’Leary,

0.33, and Doctor Taussky, 0.17 in Alternatives stage. The

Professional Activities 0.20 from Criteria stage divides

down to Doctor Gauss, 0.23, Doctor Ipsen, 0.28, Doctor

O’Leary, 0.28, and Doctor Taussky, 0.21 in Alternatives

stage.



Long description
Vector, v, and vector, u + v, rise from a common point.

Vector v moves leftward and vector u + v rises upward to

the left. A vector, u, rises upward from the terminal point

of vector v to the terminal point of vector, u + v. The

three vectors form a right triangle whose hypotenuse is

the vector, u + v.



Long description
Two vectors, v and v + w, originate from a common

point. Vector, v, moves rightward. Vector, v + w, rises

rightward. A vector, w, rises from the terminal point of

vector v to meet the terminal point of vector, v + w. The

opposite side, an upward vector, measures w, adjacent

side measures v, and hypotenuse measures v + w.



Long description
The two diagrams are as follows.

In diagram a, two vectors, x and Q x, rise from the origin to the

first quadrant. Vector Q x diverges at an angle, theta, with vector x

in counterclockwise direction.

In diagram b, two vectors, y and inverse of Q y, rise from the

origin to the first quadrant. Vector inverse of Q y diverges at an

angle, negative theta, with vector y in clockwise direction.



Long description
Two vectors, x and p, originate from a common point.

Vector x rises upward to the right. Vector p moves

rightward. A vector, p minus x, moves from the terminal

point of vector x to the terminal point of vector p.



Long description



Long description



Long description
The characteristics of the two graphs are as follows.

The graph for noisy signal is a curve that fluctuates through (0.5,

2.1), (1.5, negative 5), (3, 2), (4, negative 2), (6, 5), (8, negative 5),

(9, 2), (11, negative 2), (12, 5), (14.2, negative 5), (15, 2), (17,

negative 2), (19, 4), and (20, negative 3). All values estimated.

The graph for filtered signal is a smooth curve that fluctuates

through (0.5, 3.5), (1.7, negative 5), (3, 2), (4.5, negative 1), (6, 4),

(7.8, negative 5), (9, 2), (11, negative 1.5), (12, 4), (14, negative 5),

(15.5, 1.5), (17, negative 2), (18.5, 4), and (20, negative 3). All

values estimated.



Long description
The data in the table are as follows.

Stude

nt

Scores for 

English

Scores for 

Mathematics

Scores for 

Science

S 1 61 53 53

S 2 63 73 78

S 3 78 61 82

S 4 65 84 96

S 5 63 59 71

Avera

ge
66 66 76



Long description
Vectors, p sub 2 and x sub 3, originate from a common

point. Vector, p sub 2, moves rightward. Vector, x sub 3,

rises upward to the right. A vector, x sub 3 minus p sub

2, rises from the terminal point of p sub 2 to the terminal

point of x sub 3. The span is (x sub 1, x sub 2).



Long description
The algorithm is as follows.

For k = 1, 2, ellipsis, n, set.

r sub start expression k k end expression= Euclidean length of a

sub k.

q sub k = start fraction 1 over r sub start expression k k end

expression end fraction, a sub k.

The above three algorithms are directed to end for loop.

For j = k + 1, k + 2, ellipsis, n, set.

r sub start expression k j end expression = q to the t power sub k, a

sub j.

a sub j = a sub j minus r sub start expression k j end expression, q

sub k.

The above three algorithms are directed to end for loop.



Long description
A unit circle is plotted that is centered at the origin. The

vector x extends in the positive horizontal x axis till (0,

1). The vector A x starts from origin and extends till (0.5,

1.5). The circumference of the circle through the four

quadrants are at (0, negative 1), (negative 1, 0), (0, 1),

and (1, 0).



Long description
The first graph has two vectors, x sub 1 and A x sub 1,

that originate from the origin and extends into the first

quadrant. A unit circle is plotted which is centered at the

origin. The second graph has two vectors, x sub 2 and A x

sub 2, that originate from the origin. Vector x sub 2

extends from the origin into the second quadrant. Vector

A x sub 2 extends from the origin into the fourth

quadrant. A unit circle is plotted which is centered at the

origin. The circumference of the circle in both the graph

through the four quadrants are at (0, negative 1),

(negative 1, 0), (0, 1), and (1, 0).



Long description
The deflection of the beam is from left to right. x

represents the horizontal displacement of the beam, y

represents the vertical displacement of the beam, and P

represents the payload of the beam.



Long description
The space shuttle is superimposed on an x y z plane. The

nose of the space shuttle is along the negative x axis, and

the exhaust is along the positive x axis. The left wing is

along the positive y axis, and the right wing of the space

shuttle is along the negative y axis. The center of gravity

is marked at the center of the space shuttle’s body. The

positive yaw rotation of the space shuttle is marked Z sub

s along the z axis, the positive pitch rotation is marked Y

sub s along the Y axis, and the positive roll rotation is

marked X sub s along the x axis.



Long description
Three vectors originate from point O. The vectors are O

P, O q sub 1, and O e sub 1. A unit vector, z, extends in

the direction of rotation R from P. Another vector, v,

extends from P to e sub 1. A vector, w, extends from P to

q sub 1. The angle between the two vectors, v and w, is

labeled beta. The change in angle due to rotation of

vector v from e sub 1 to vector w at q sub 1 is highlighted.



Long description
Two tanks labeled, tank A and tank B. A pipe connected

to tank A on top pumps 15 liters of water per minute into

tank A. Two pipes, one on top and one at the bottom,

connect tank A and tank B. The pipe connected at the

bottom pumps 20 liters of mixture per minute from tank

A to tank B. The pipe connected on the top pumps the

mixture from tank B to tank A at a rate of 5 liters per

minute. The pipe connected at the bottom of tank B

pumps the mixture out of tank B at a rate of 15 liters per

minute.



Long description



Long description
Two 100 liter tanks labeled, tank A and tank B. A pipe

connected to tank A from the top pumps 12 liters of

water per minute into tank A. Two pipes, one at top and

one at the bottom, connect tank A and tank B. The pipe

connected at the bottom pumps 16 liters of mixture per

minute from tank A to tank B. The pipe connected on top

pumps the mixture from tank B to tank A at a rate of 4

liters per minute. Another pipe connected at the bottom

of tank B pumps out the mixture from tank B at a rate of

12 liters per minute.



Long description
A vector, e sub 3 that extends along the z axis, becomes

vector 2 e sub 3 and extends along the z axis in matrix A.

Two vectors, e sub 3 that extends along the z axis and x

sub 2 extending in the fourth quadrant, become 2 e sub 3

extending along the z axis and 2 x sub 2 extending in the

fourth quadrant in matrix B.



Long description
Four circles represent site 1, site 2, site 3, and site 4. The

data flow is as follows.

Site 1 to site 2.

Site 1 to site 3.

Site 1 to site 4.

Site 2 to site 1.

Site 2 to site 3.

Site 3 to site 4.



Long description
A unit circle is centered at the origin. Vector x extends

along the positive x axis, vector A x extends into the first

quadrant. Vector y extends along the positive y axis, and

vector A y extends into the second quadrant. The

circumference of the circle through the four quadrants

are at (0, negative 1), (negative 1, 0), (0, 1), and (1, 0).



Long description
A unit circle centered at the origin. Vector A v sub 1

extends along the positive y axis. Vector v sub 1 extends

into the first quadrant, vector A v sub 2 extends along the

negative x axis, and vector v sub 2 extends into the

second quadrant. The circumference of the circle through

the four quadrants are at (0, negative 1), (negative 1, 0),

(0, 1), and (1, 0).



Long description
The first photo labeled, original 176 by 260 image, has

clear pixels and the image is clearly visible. The second

photograph labeled, rank 1 approximation to image, is

completely blurred. The third photograph labeled, rank

15 approximation to image, is partially blurred. The

fourth photograph labeled, rank 30 approximation to

image, is pixelated but the image is visible.



Long description
The first shape is a circle centered at the origin. The

second shape is an ellipse centered at the origin. The

third shape is a hyperbola with the vertex at its center.

The fourth shape is an upward opening parabola with the

vertex at its origin.



Long description
The x and y axes intersect at 0. The x and y prime axes

intersect at 1. The x prime and y axis intersect at negative

2. The vertices of the ellipse are along the y prime line

and co vertices are along the x prime line.



Long description
The line, y prime, extends from the third quadrant to the

first quadrant through the origin. A vector, q sub 2, starts

from the origin and extends along the line into the first

quadrant. The line, x prime, falls from the second

quadrant to the fourth quadrant through the origin. A

vector, q sub 2, starts from the origin and extends along

the falling line into the fourth quadrant. The two lines

intersect each other at the origin. The angle between the

vector, q sub 1, and the positive x axis is labeled 45

degrees. An ellipse centered at the origin has vertices

along the x prime line and co vertices along the y prime

line.



Long description
The first line, y prime, rises from the third quadrant to

the first quadrant through the origin. The second line, y

double prime, rises from the third quadrant to the first

quadrant through the fourth quadrant. The third line, x

prime, falls from the second quadrant to the fourth

quadrant through the origin. The fourth line, x double

prime, falls from the second quadrant to the fourth

quadrant through the third quadrant. The lines, y prime

and x prime, intersect each other at the origin. The lines,

y prime and x double prime, intersect each other in the

third quadrant. The lines, y double prime and x prime,

intersect each other in the fourth quadrant. The lines, y

double prime and x double prime, intersect each other in

the fourth quadrant. The ellipse has vertices along the x

double prime line and co vertices along the y double

prime.



Long description



Long description



Long description
Two sub matrices are formed inside A by grouping as

follows.

A 2 by 2 sub matrix with values, a sub 11 and a sub 22, along its

leading diagonal.

A 2 by 2 sub matrix with values, a sub 11, a sub 22, and a sub 33,

along its leading diagonal.

The steps to transform A is as follows.

1. A super 1 = matrix A with its leading diagonal elements as follows.

a sub 11, a super 1 sub 22, a super 1 sub 33, and a super 1 sub 44.

The grouping of sub matrices pertain.

2. A super 2 = matrix A with its leading diagonal elements as follows.

a sub 11, a super 1 sub 22, a super 2 sub 33, and a super 2 sub 44.

Grouping exists only for the 3 by 3 sub matrix.

3. A super 3 = U = matrix A with its leading diagonal elements as

follows. a sub 11, a super 1 sub 22, a super 2 sub 33, and a super 3

sub 44. There is no grouping.



Long description
The lines are as follows.

The first line, x, makes an alpha degree.

The second line makes an angle theta half.

The third line, G sub x, makes an angle theta minus alpha.



Long description



Long description
The lines are as follows.

The first line, x, makes an alpha degree.

The second line makes an angle theta half.

The third line, G sub x, makes an angle theta minus alpha.



Long description
The algorithm has 8 lines. The lines read as follows. Line

1. For i equals 1 comma 2 comma ellipsis comma n minus

1. Line 2, indented once. For k equals i plus 1 comma

ellipsis comma n. Line 3, indented twice. Set l sub k i

equals start fraction a super 1 sub k i over a super i sub i I

end fraction comma provided that a super i sub i i does

not equal 0. Line 4, indented twice. For j equals i plus 1

comma ellipsis comma n. Line 5, indented 3 times. Set a

super start expression i plus n end expression sub k j

equals a super i sub k j minus l sub k j times a super I sub

i j. Line 6, indented twice. End for loop. Line 7, indented

once. End for loop. Line 8. End for loop. The arrows

indicating loops are drawn from first line to the eighth

line, second line to the seventh line, and fourth line to

the sixth line.



Long description
The algorithm has 6 lines. The lines read as follows. Line

1. For k equals 1 comma ellipsis comma n. Line 2,

indented twice. Set y sub k equals b sub k minus the sum

of start expression m sub k i times y sub i end expression

from i equals 1 to k minus 1. Line 3. End for loop. Line 4.

For k equals n comma n minus 1 comma ellipsis comma

1. Line 5, indented twice. Set x sub k equals start fraction

y sub k minus the sum of start expression u sub k j times

x sub j end expression from j equals k plus 1 to n over u

sub k k. Line 6. End for loop. The arrows indicating loops

are drawn from the first line to the third line and fourth

line to the sixth line.



Long description
Set p of 3 = 1, p of 2 = 2, and p of 1 = 3 to the 3 by 3

matrix with the following row entries. Row 1. 6, negative

4, 2. Row 2. 4, 2, 1. Row 3 is highlighted. 2, negative 1, 1.

The 3 by 3 matrix entries are as follows. Row 1. 0,

negative 1, negative 1. Row 2. 0, 4, negative 1. Row 3. 2,

negative 1, 1.



Long description
Set p of 2 = 1, p of 3 = 2, and p of 1 = 3 to the 3 by 3

matrix with the following row entries. Row 1. 0, negative

1, negative 1, with the last two values highlighted. Row 2.

0, 4, negative 1. Row 3. 2, negative 1, 1. The 3 by 3 matrix

entries are as follows. Row 1. 0, negative 1, negative 1.

Row 2. 0, 0, negative 5. Row 3. 2, negative 1, 1.



Long description
The matrix A is as follows.

A 3 by 3 matrix with the following row entries. Row 1. 6, negative

4, 2. Row 2. 4, 2, 1. Row 3. 2, negative 1, 1.

The original matrix is reduced with 3 and 2 in the first column to

get a 3 by 3 matrix with the following row entries. Row 1. 3,

negative 1, negative 1. Row 2. 2, 4, negative 1. Row 3. 2, negative 1,

1. The elements 3 and 2 in the column 1, row 1 and row 2, are

encircled with a square box.

The reduced matrix is again reduced with negative 4 to get the 3

by 3 matrix with the following row entries. Row 1. 3, negative 1,

negative 1. Row 2. 2, negative 4, negative 5. Row 3. 2, negative 1, 1.

The elements 3, 2, and negative 4 in the column 1, row 1 and row

2, and column 2, row 2, are encircled with an upper L shaped box.

The matrix P A is as follows.

A 3 by 3 matrix with the following row entries. Row 1. 2, negative

1, 1. Row 2. 6, negative 4, 2. Row 3. 4, 2, 1.

The original matrix is reduced with 3 and 2 in the first column to

get a 3 by 3 matrix with following row entries. Row 1. 2, negative 1,

1. Row 2. 3, negative 1, negative 1. Row 3. 2, 4, negative 1. The

elements 3 and 2 in the column 1, row 2 and row 3, are encircled

with a square box.

The reduced matrix is again reduced with negative 4 to get the 3

by 3 matrix with following row entries. Row 1. 2, negative 1, 1. Row

2. 3, negative 1, negative 1. Row 3. 2, negative 4, negative 5. The

elements 3, 2, and negative 4 in the column 1, row 1 and row 2,

and column 2, row 2, are encircled with an upper L shaped box.



Long description
The code before the interchange is as follows.

The algorithm has 3 lines. The lines read as follows. Line 1. For i

equals 1 comma ellipsis comma n. Line 2, indented once. Set p of i

equals i. Line 3. End for loop. Line 4. For i equals 1 comma ellipsis

comma n.

The interchange steps are as follows.

Choose a pivot element a sub p times j times i from the elements,

start expression a sub p times j times i, a sub p times start

expression i + 1 end expression times i, ellipsis, and a sub p times

n times i end expression. Strategies for doing this will be discussed

later in this section.

Switch the i th and j th entries of p.

The continuation of code after interchange is as follows.

The continuation of code has 7 lines. The lines read as follows.

Line 5, indented twice. For k equals i plus 1 comma ellipsis comma

n. Line 6, indented 4 times. Set l sub p times k times i equals start

fraction a sub p times k times i over a sub p times I times j. Line 7,

indented 4 times. For j equals i plus 1 comma ellipsis comma n.

Line 8. Set a sub p times k times j equals a sub p times k times j

minus l sub start expression p of k comma times i end expression a

sub p of I times j. Line 9, indented 4 times. End for loop. Line 10,

indented 3 times. End for loop. Line 11, indented once. End for

loop. The arrows indicating loop are drawn from line 1 to line 3,

line 4 to line 11, line 7 to line 9, and line 5 to line 10.



Long description
The lines in the graphs are as follows.

The first graph plots two lines. The first line, x, makes an angle

alpha, and the second line, R sub x, makes an angle theta + alpha.

The second graph plots three lines. The first line, x, makes an

angle alpha, the second line makes an angle theta half, and the

third line, G sub x, makes an angle theta minus alpha.



Long description
The first curve, for the function, sine of x, is a solid wave

curve. The curve starts from (0, 0) and rises (1, 0.4) and

falls to a negative peak at (4, negative 0.2) and then rises

to (8, 0.2), and extends until (10, 0). The second curve,

for the function, start fraction sine x over x + 1 end

fraction, is a sinusoidal curve. The curve stars from (0, 0)

and rises to (1.5, 1) and falls to a negative peak at (4.75,

negative 1), (8, 1), and extend until (10, negative 0.5). All

values are estimated.
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