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Preface

We are pleased to see the text reach its tenth edition. The
continued support and enthusiasm of its many users
have been most gratifying. Linear algebra is more
exciting now than at almost any time in the past. Its
applications continue to spread to more and more fields.
Largely due to the computer revolution of the last 75
years, linear algebra has risen to a role of prominence in
the mathematical curriculum rivaling that of calculus.
Modern software has also made it possible to
dramatically improve the way the course is taught.

The first edition of this book was published in 1980.
Each of the following editions has seen significant
modifications including the addition of comprehensive
sets of MATLAB computer exercises, a dramatic increase
in the number of applications, and many revisions in the
various sections of the book. We have been fortunate to
have had outstanding reviewers, and their suggestions
have led to many important improvements in the book.

What’s New in the Tenth
Edition?

You may have noticed something new on the cover of the
book. Another author! Yes, after nearly 40 years as a
“solo act,” Steve Leon has a partner. New co-author
Lisette de Pillis is a professor at Harvey Mudd College
and brings her passion for teaching and solving real-
world problems to this revision.

The focus of this revision was transforming it from a
primarily print-based learning tool to a digital learning



tool. The eText is therefore filled with content and tools
that will help bring the entire course to life for students
in new ways and help you improve instruction.
Specifically,

« Interactive figures and utilities. We have added a number of
opportunities for students to interact with content in a dynamic
manner in order to build and enhance understanding. Interactive
figures allow students to explore concepts geometrically in ways
that are not possible without technology. Examples here include:

« In Chapter 3, Visualizing the span of vectors—Figures
3.2.3, 3.2.4, 3.2.6(a), 3.2.6(b)

« In Chapter 4, Visualizing linear transformations

o Simple linear transformations—Figures 4.1.1
through 4.1.4

« Dilations, reflections, rotations—Figure 4.2.3

« Yaw, pitch, and roll of an airplane—Figure
4.2.5

« In Chapter 6, Visualization tools for 2 x 2 matrices

« Eigenvectors—Figure 6.1.1

« Singular vectors—Figure 6.5.1

. Hints. For selected exercises, we've included hints for students to
consider if they get stuck.

« Notes, Labels, and Highlights. Notes allow instructors to add
their personal teaching style to important topics, call out need-to-
know information, or clarify difficult concepts. Students can make
their eText their own by creating highlights with meaningful labels
and notes, helping them focus on what they need to study. The
customizable Notebook allows students to filter, arrange, and
group their notes in a way that makes sense to them.

« Dashboard. Instructors can create reading assignments and see
the time spent in the eText so that they can plan more effective
instruction.

« Portability. Portable access lets students read their eText
whenever they have a moment in their day, on Android and i0S
mobile phones and tablets. Even without an Internet connection,
offline reading ensures students never miss a chance to learn.

. Ease-of-Use. Straightforward setup makes it easy for instructors
to get their class up and reading quickly on the first day of class. In
addition, Learning Management System (LMS) integration
provides institutions, instructors, and students with single sign-on
access to the eText via many popular LMSs.



Overview of Text

This book is suitable for either a lower or upper division
Linear Algebra course. The student should have some
familiarity with the basics of differential and integral
calculus. This prerequisite can be met by either one
semester or two quarters of elementary calculus.

If the text is used for a lower-level course, the instructor
should probably spend more time on the early chapters
and omit many of the sections in the later chapters. For
more advanced courses, a quick review of the topics in
the first two chapters and then a more complete coverage
of the later chapters would be appropriate. The
explanations in the text are given in sufficient detail so
that beginning students should have little trouble
reading and understanding the material. To further aid
the student, a large number of examples have been
worked out completely. Additionally, computer exercises
at the end of each chapter give students the opportunity
to perform numerical experiments and try to generalize
the results. Applications are presented throughout the
book. These applications can be used to motivate new
material or to illustrate the relevance of material that has
already been covered.

The text contains all the topics recommended by the
National Science Foundation (NSF) sponsored Linear
Algebra Curriculum Study Group (LACSG) and much
more. Although there is more material than can be
covered in a single course, it is our belief that it is easier
for an instructor to leave out or skip material than it is to
supplement a book with outside material. Even if many
topics are omitted, the book should still provide students
with a feeling for the overall scope of the subject matter.
Furthermore, students may use the book later as a
reference and consequently may end up learning omitted
topics on their own.



Suggested Course Outlines

We include here a number of outlines for one-semester
courses at either the lower or upper-division levels, and
with either a matrix-oriented emphasis or a slightly more
theoretical emphasis.

1. One-Semester Lower Division Course

1. Basic Lower Level Course

Chapter 1 Sections 1-6 7 lectures
Chapter2  Sections1-2 2 lectures
Chapter 3 Sections 1-6 9 lectures
Chapter 4  Sections 1—3 4 lectures
Chapter5  Sections 1-6 9 lectures
Chapter 6  Sections 1—3 4 lectures

Total 35 lectures

2. LACSG Matrix-Oriented Course

The core course recommended by the LACSG involves
only the Euclidean vector spaces. Consequently, for this
course you should omit Section 1 of Chapter 3 (on
general vector spaces) and all references and exercises
involving function spaces in Chapters 3 to 6. All the
topics in the LACSG core syllabus are included in the
text. It is not necessary to introduce any supplementary
materials. The LACSG recommended 28 lectures to
cover the core material. This is possible if the class is
taught in lecture format with an additional recitation
section meeting once a week. If the course is taught
without recitations, it is our contention that the
following schedule of 35 lectures is perhaps more
reasonable.

Chapter 1 Sections 1-6 7 lectures



Chapter 2 Sections 1—2 2 lectures

Chapter 3 Sections 2—6 7 lectures
Chapter 4  Sections 1-3 2 lectures
Chapter5  Sections 1-6 9 lectures

Chapter 6  Sections 1,3—5 8 lectures

Total 35 lectures

2. One-Semester Upper-Level Courses

The coverage in an upper-division course is dependent on the
background of the students. Following are two possible courses.

Option A: Minimal background in linear algebra

Chapter 1 Sections 1-6 6 lectures
Chapter 2 Sections 1—2 2 lectures
Chapter 3 Sections 1-6 7 lectures
Chapter 5 Sections 1-6 9 lectures

Chapter 6 Sections 1-7, 8* 10 lectures

Chapter7  Section 4 1 lecture

Total 35 lectures

* If time allows.

Option B: Some background in linear algebra

Review of Topics in 5 lectures

Chapters 1—-3

Chapter 4 Sections 1—3 2 lectures



Chapter 5 Sections 1-6 10 lectures

Chapter 6 Sections 1-7, 8* 11 lectures

Chapter 7 Sections 1-3%, 4—7 7 lectures

Chapter 8 Sections 1—2* 2 lectures
Total 37 lectures

* If time allows.

3. Two-Semester Sequence

Although two semesters of linear algebra have been recommended
by the LACSG, it is still not practical at many universities and
colleges. At present, there is no universal agreement on a core
syllabus for a second course. In a two-semester sequence, it is
possible to cover all 43 sections of the book. You might also
consider adding a lecture or two in order to demonstrate how to
use MATLAB.

Computer Exercises

The text contains a section of computing exercises at the
end of each chapter. These exercises are based on the
software package MATLAB. The MATLAB Appendix in
the book explains the basics of using the software.
MATLAB has the advantage that it is a powerful tool for
matrix computations, yet it is easy to learn. After reading
the Appendix, students should be able to do the
computing exercises without having to refer to any other
software books or manuals. To help students get started,
we recommend a one 50-minute classroom
demonstration of the software. The assignments can be
done either as ordinary homework assignments or as
part of a formally scheduled computer laboratory course.

Although the course can be taught without any reference
to a computer, we believe that computer exercises can
greatly enhance student learning and provide a new



dimension to linear algebra education. One of the
recommendations of the LASCG is that technology
should be used in a first course in linear algebra. That
recommendation has been widely accepted, and it is now
common to see mathematical software packages used in
linear algebra courses.
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Chapter 1 Matrices and
Systems of Equations

| —

1

4
Full Alternative Text
One of the most important problems in mathematics is
that of solving a system of linear equations. Well over 75
percent of all mathematical problems encountered in
scientific or industrial applications involve solving a
linear system at some stage. By using the methods of
modern mathematics, it is often possible to take a
sophisticated problem and reduce it to a single system of
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linear equations. Linear systems arise in applications to
such areas as business, economics, sociology, ecology,
demography, genetics, electronics, engineering, and
physics. Therefore, it seems appropriate to begin this
book with a section on linear systems.



1.1 Systems of Linear
Equations

A linear equation in n unknowns is an equation of the

form

ai1r1 +asxy + -+ apx, = b
where ai, as, . .., a, and b are real numbers and
T1,T9, ..., I, arevariables. A linear system of m

equations in n unknowns is then a system of the form

a1121 + appa + - - + a1Ty, = by
a21%1 + Ao + -+ - + 2, Ty = by

Am1®1 + Qa2 + -+ + Gy = bm
(€))
where the a;;’s and the b;’s are all real numbers. We will

refer to systems of the form (1) as ™ X 7 linear systems.
The following are examples of linear systems:

T+ 29 =05
221 + 329 =8

T — Ty + 23 =2
201 +x9 —x3 =4

3.
T, + Ty = 2
2131—1)2:1
Iy =4

System (@) is a 2 X 2 system, (b) isa 2 X 3 system, and
(c)isa 3 X 2 system.

By a solution of an m X n system, we mean an ordered
n-tuple of numbers (1, 2, . . . , T ) that satisfies all



the equations of the system. For example, the ordered
pair (1, 2) is a solution of system (a), since

(1) +2-(2)

1- 5
2.(1)+3-(2) =8

The ordered triple (2, 0, 0) is a solution of system (b),
since

1-(2)—=1-(0)+1-(0)=2

2.(2)+1-(0)—1-(0) =4
Actually, system (b) has many solutions. If «¢ is any real
number, it is easily seen that the ordered triple (2, c, )
is a solution. However, system (c) has no solution. It
follows from the third equation that the first coordinate
of any solution would have to be 4. Using 1 = 4 in the
first two equations, we see that the second coordinate
must satisfy

4+ x9=2
4—1}2:1

Since there is no real number that satisfies both of these
equations, the system has no solution. If a linear system
has no solution, we say that the system is inconsistent. If
the system has at least one solution, we say that it is
consistent. Thus, system (c) is inconsistent, while
systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the
solution set of the system. If a system is inconsistent, its
solution set is empty. A consistent system will have a
nonempty solution set. To solve a consistent system, we
must find its solution set.

2 X 2 Systems

Let us examine geometrically a system of the form

a11%1 + apxs = by
a21T1 + G222 = by



Each equation can be represented graphically as a line in
the plane. The ordered pair (21, ) will be a solution of
the system if and only if it lies on both lines. For
example, consider the three systems

T+ Ty = 2
.’131—.’172:2

1+ 9 =2
T +a=1
3.
T+ a9 = 2
—.’171—.’122:—2

The two lines in system (i) intersect at the point (2, 0).
Thus, {(2, 0)} is the solution set of (i). In system (ii), the
two lines are parallel. Therefore, system (ii) is
inconsistent and hence its solution set is empty. The two
equations in system (iii) both represent the same line.
Any point on this line will be a solution of the system
(see Figure 1.1.1).

Figure 1.1.1.

o) o)

\\

A J

20)




(1) Unique Solution: Intersecting Lines (i) No Solution; Parallel Lings
Intersecting Point (2,0)

v

(i) Infinite Solutions: Same Line

Figure 1.1.1. Full Alternative Text

In general, there are three possibilities: the lines
intersect at a point, they are parallel, or both equations
represent the same line. The solution set then contains
either one, zero, or infinitely many points.

The situation is the same for m X n systems. Anm X n
system may or may not be consistent. If it is consistent, it
must have either exactly one solution or infinitely many
solutions. These are the only possibilities. We will see
why this is so in Section 1.2 when we study the row
echelon form. Of more immediate concern is the
problem of finding all solutions of a given system. To
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tackle this problem, we introduce the notion of
equivalent systems.

Equivalent Systems

Consider the two systems

1

3r1 +2x2s — x3 = —2
I == 3
2:1}3 = 4

3x1 + 229 —x3 = —2
—3x1— x9+x3= 5
3x1 + 229 + 3= 2

System (@) is easy to solve because it is clear from the
last two equations that £y = 3 and 3 = 2. Using these
values in the first equation, we get

3z +2-3—-2 = -2
Iy = -2

Thus, the solution of the system is (—2, 3, 2). System
(b) seems to be more difficult to solve. Actually, system
(b) has the same solution as system (a). To see this, add
the first two equations of the system:

3x1 + 229 —x3 = —2
—3x1— X2+ 2x3= 5
) = 3

If (21, x2, x3) is any solution of (b), it must satisfy all
the equations of the system. Thus, it must satisfy any
new equation formed by adding two of its equations.
Therefore, £2 must equal 3. Similarly, (x1, T2, 3:3) must
satisfy the new equation formed by subtracting the first
equation from the third:

3x1 +2x2+ x3= 2
3x1 + 229 — 3 = —2
2$3 = 2



Therefore, any solution of system (b) must also be a

solution of system (a). By a similar argument, it can be
shown that any solution of (a) is also a solution of (b).
This can be done by subtracting the first equation from

the second:
) = 3
3x1 4+ 229 —x3 = —2
—3x1— X9+ 2x3= 5

Then add the first and third equations:

3z + 229 — 23 = —2
2:173 = 4
3r1 + 229 + 3= 2

Thus, (21, 22, £3) is a solution of system (b) if and only
if it is a solution of system (a). Therefore, both systems
have the same solution set, {(—2, 3, 2)}.

Definition

Two systems of equations involving the same variables
are said to be equivalent if they have the same solution
set.

If we interchange the order in which two equations of a
system are written, this will have no effect on the
solution set. The reordered system will be equivalent to
the original system. For example, the systems

T+ 229 =4 dz1 + 29 =06
31— Ty =2 and 3x1 — 9 =2
41+ T2 =06 r1+ 2z =4

both involve the same three equations and, consequently,
they must have the same solution set.

If one equation of a system is multiplied through by a
nonzero real number, this will have no effect on the
solution set, and the new system will be equivalent to the
original system. For example, the systems



T1+xo+ x3=3 2z1 + 229 + 223 = 6

d
—2x1 — a9 + 423 =1 an —2x1 — T2 +4x3 =1

are equivalent.

If a multiple of one equation is added to another
equation, the new system will be equivalent to the
original system. This follows since the n-tuple
(21, ..., x,) will satisfy the two equations

a;1Ty + -+ ATy = b
a;1%1 + e 4 Ajn Ty = b]‘

if and only if it satisfies the equations

an®1+ -+ an®, =b;
(ajl =+ aail)wl 4+ e 4 (ajn + aam)wn = bj + ab;

To summarize, there are three operations that can be
used on a system to obtain an equivalent system:

1. The order in which any two equations are written may be
interchanged.

2. Both sides of an equation may be multiplied by the same nonzero
real number.

3. A multiple of one equation may be added to (or subtracted from)
another.

Given a system of equations, we may use these
operations to obtain an equivalent system that is easier
to solve.

N X 1 Systems

Let us restrict ourselves to . X 7 systems for the
remainder of this section. We will show thatifann X n
system has exactly one solution, then operations I and
ITII can be used to obtain an equivalent “strictly
triangular system.”



Definition

A system is said to be in strict triangular form if, in
the kth equation, the coefficients of the first k — 1
variables are all zero and the coefficient of . is nonzero

(k=1,...,n).

Example 1

The system

3x1 + 229+ 23 =1
Lo — I3 =2
2:133 =4

is in strict triangular form, since in the second equation
the coefficients are 0, 1, — 1, respectively, and in the
third equation the coefficients are 0, 0, 2, respectively.
Because of the strict triangular form, the system is easy
to solve. It follows from the third equation that 3 = 2.
Using this value in the second equation, we obtain

To—2=2 or To =4

Using £9 = 4, x3 = 2 in the first equation, we end up
with
3r1+2-44+2 =1
ry = -3

Thus, the solution of the system is (—3, 4, 2).

Any n X n strictly triangular system can be solved in the
same manner as the last example. First, the nth equation
is solved for the value of x,,. This value is used in the

(n — 1)st equation to solve for x,, 1. The values x,, and
Z,,_1 are used in the (n — 2)nd equation to solve for

T, _2, and so on. We will refer to this method of solving a
strictly triangular system as back substitution.



Example 2
Solve the system
201 — 29 + 323 — 224 =1
Ty — 2x3 + 3x4 = 2
dx3 4+ 34 =3
4.’E4 =4

SOLUTION

Using back substitution, we obtain

4174:4 T4 = 1

4drs+3-1=3 x23= 0

9 —2-043:-1=2 z29=-1

21— (-1)+3-0-2-1=1 ;= 1

Thus, the solution is (1, —1,0, 1).

In general, given a system of n linear equations in n
unknowns, we will use operations I and III to try to
obtain an equivalent system that is strictly triangular.
(We will see in the next section of the book that it is not
possible to reduce the system to strictly triangular form
in the cases where the system does not have a unique
solution.)

Example 3

Solve the system
ml + 2x2 + $3 = 3
3z — Ty —3T3 =

2$1+3IE2+ T3 = 4

Solution

Subtracting 3 times the first row from the second row
yields

—Txy — 623 = —10



Subtracting 2 times the first row from the third row
yields

—&Ly — L3 — —2

If the second and third equations of our system,
respectively, are replaced by these new equations, we
obtain the equivalent system

1+ 224+ 23 = 3
*7332 — 6:133 =-10
—x9 — T3 — -2

If the third equation of this system is replaced by the
sum of the third equation and — = times the second

equation, we end up with the following strictly triangular

system:
T+ 29+ x3 = 3
—Txy — 6x3 = —10
ta - -

Using back substitution, we get
:2324, $2=—2, 31'1:3

Let us look back at the system of equations in the last
example. We can associate with that system a 3 X 3
array of numbers whose entries are the coefficients of the
x;’s:

|’1 2 1]
13 -1 =3
la 3 1

We will refer to this array as the coefficient matrix of the
system. The term matrix means a rectangular array of
numbers. A matrix having m rows and n columns is said
to be m X m. A matrix is said to be square if it has the
same number of rows and columns, that is, if m = n.

If we attach to the coefficient matrix an additional
column whose entries are the numbers on the right-hand
side of the system, we obtain the new matrix



rro2 1 3
'3 —1 —3|-1.
l2 3 1| 4]

We will refer to this new matrix as the augmented
matrix. In general, when an m X 7 matrix B is attached
to an ™ X n matrix A in this way, the augmented matrix

is denoted by (A|B). Thus, if

[ a1 a1z ... a1 [ b b2 ... bir]
asr Gz ... Qp ‘ bar by ... by
|. am1 aAm2 ... aan |. bml bm2 ... bmrJ
then
|' ail ... Qip | b1 ... blr'l
(A|B) =| : |
| ami ... amnlby ... meJ

With each system of equations, we may associate an
augmented matrix of the form

|'a11 ... Qlp bl'l
| o

| ami ... amn bmJ

The system can be solved by performing operations on
the augmented matrix. The x;’s are placeholders that
can be omitted until the end of the computation.
Corresponding to the three operations used to obtain
equivalent systems, the following row operations may be
applied to the augmented matrix:

Elementary Row Operations

1. Interchange two rows.
2. Multiply a row by a nonzero real number.

3. Replace a row by the sum of that row and a multiple of another
Tow.



Returning to the example, we find that the first row is
used to eliminate the elements in the first column of the
remaining rows. We refer to the first row as the pivotal
row. For emphasis, the entries in the pivotal row are all
in bold type and the entire row is color shaded. The first
nonzero entry in the pivotal row is called the pivot.

molgg=l) {11 1) 3] e puolrow
eresiobechmmed | {3 -1 3|
padmdm=) | (D3|

1.1-1 Full Alternative Text
By using row operation III, 3 times the first row is

subtracted from the second row and 2 times the first row
is subtracted from the third. When this is done, we end
up with the matrix

I 2 | 3
0 -7 —6|—10]| < pivotal row
0 -1 —-1| =2

At this step, we choose the second row as our new pivotal
row and apply row operation III to eliminate the last
element in the second column. This time the pivot is —7
and the quotient :—% = % is the multiple of the pivotal
row that is subtracted from the third row. We end up
with the matrix

|'1 2 1 3]
10 =7 —6[/—10)

lo o —%|-2]

This is the augmented matrix for the strictly triangular
system, which is equivalent to the original system. The
solution of the system is easily obtained by back
substitution.
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Example 4

Solve the system

— Ty — T3+ T4 = 0
T+ To+ XT3+ T4 = 6
201 +4x9 + 3 — 214 = —1
31+ X2 — 223+ 224 = 3

SOLUTION

The augmented matrix for this system is

[0 -1 -1 1| 0
|1 1 1 1| 6
2 4 1 —2/-1
ls 1 -2 2| 3

Since it is not possible to eliminate any entries by using o
as a pivot element, we will use row operation I to
interchange the first two rows of the augmented matrix.
The new first row will be the pivotal row and the pivot
element will be 1:

(pmotay = 1) 0| « potalow

1
1

- |-
2

1.1-3 Full Alternative Text

Row operation III is then used twice to eliminate the two
nonzero entries in the first column:
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I
0
0
0

1.1-4 Full Alternative Text

I
-1
2
-2

|
-1
-1
-5

|
1
—4
—1

6
0
—13
—15

Next, the second row is used as the pivotal row to

eliminate the entries in the second column below the

pivot element —1:

I
0
0
0

I
—1
0
0

|
-1
-3
-3

1
1
-2
-3

6
0
—13
—135

1.1-5 Full Alternative Text

Finally, the third row is used as the pivotal row to
eliminate the last element in the third column:

|’1 1 1 1 6'|

|o—1 1 1 0|
0 0 —3 —2[-13
lo o o —1| -2l

This augmented matrix represents a strictly triangular
system. Solving by back substitution, we obtain the

solution (2, — 1, 3, 2).

In general, if an 7 X 7 linear system can be reduced to
strictly triangular form, then it will have a unique
solution that can be obtained by performing back
substitution on the triangular system. We can think of
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the reduction process as an algorithm involving n — 1
steps. At the first step, a pivot element is chosen from
among the nonzero entries in the first column of the
matrix. The row containing the pivot element is called
the pivotal row. We interchange rows (if necessary) so
that the pivotal row is the new first row. Multiples of the
pivotal row are then subtracted from each of the
remaining . — 1 rows so as to obtain 0’s in the first
entries of rows 2 through n. At the second step, a pivot
element is chosen from the nonzero entries in column 2,
rows 2 through n, of the matrix. The row containing the
pivot is then interchanged with the second row of the
matrix and is used as the new pivotal row. Multiples of
the pivotal row are then subtracted from the remaining
n — 2 rows so as to eliminate all entries below the pivot
in the second column. The same procedure is repeated
for columns 3 through n — 1. Note that at the second
step row 1 and column 1 remain unchanged, at the third
step the first two rows and first two columns remain
unchanged, and so on. At each step, the overall
dimensions of the system are effectively reduced by 1
(see Figure 1.1.2).

Figure 1.1.2.
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0
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1 x|l
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Figure 1.1.2. Full Alternative Text

o o o == — O D e

O o e

If the elimination process can be carried out as

described, we will arrive at an equivalent strictly
triangular system after n — 1 steps. However, the
procedure will break down if, at any step, all possible
choices for a pivot element are equal to 0. When this
happens, the alternative is to reduce the system to
certain special echelon, or staircase-shaped, forms.

These echelon forms will be studied in the next section.
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They will also be used for m X n systems, where m # n



Section 1.1 Exercises

1. Use back substitution to solve each of the following systems of

equations:
1
2131*3:132 = 2
2$2 = 6
2.
T+ To+ 3 = 8
209+ 3 = b
3%3 =9
3.
T1+ 229 + 223+ x4 = 5
3+ a3 — 214 =
—x3+2x4 = —
431‘4
4.

1+ 22+ T3+ x4+ T = O
200+ x3—2x4+ x5 = 1
dxs+ x4 —2x5 = 1

rs—3x5 = 0

2:35 = 2

2. Write out the coefficient matrix for each of the systems in Exercise
1.

3. In each of the following systems, interpret each equation as a line
in the plane. For each system, graph the lines and determine
geometrically the number of solutions.

T+ = 4
r1 — Ty = 2
2.
1+ 2y = 4
—2x1 —4xy = 4
3.

2£E1— Lo = 3
—4x1 + 229 = —6



T+ oy = 1
1 — Ty = 1
—x1+3x = 3

4. Write an augmented matrix for each of the systems in Exercise 3.

5. Write out the system of equations that corresponds to each of the
following augmented matrices:

_[3 28

11 5|7

5 —2 1|3
2.

2 3 —4lo
|'2 14—1'|
3.1 4 —2 3| 4
ls 2 6/-1l
(4 -3 1 24
|3 1 -5 6|5
11 1 2 48
ls 1 3 —2|7]

6. Solve each of the following systems:

r1 — 2:132 5

31+ T2 1
2.

21 + x9 8

4x1 — 39 6
3.

1+ 3z = 4

%331 +4zy, = 3
4.

T1+2x— 23 = 1
201 — x2+ x3 = 3
—x1+2x9+3x3 = 7

5.
2¢1 + a9+ 3x3 = 1
421 + 32 + by = 1
6x1 + 522 + 523 = —3
6.

31+ 222+ x3 = 0
—2x1+ xy— T3 = 2

201 — x9+2x3 = —1



1 2
gt T2 F 23 =
3
T + 229 + STy =

1 12
51 + 29 + Tr3 =

Sl’“m|w ,l_.

T2+ T3+ 4
3z + 3x3 — 4xy
1+ T+ x3+ 224

2x1 4+ 3x2 + 3+ 374

I
S O N O

7. The two systems

221+ a9 =3 an 21 + 9 = —1
4z1 + 329 =5 4z + 329 = 1

have the same coefficient matrix but different right-hand sides.
Solve both systems simultaneously by eliminating the first entry in
the second row of the augmented matrix:

2 113 -1
4 3|5 1

and then performing back substitutions for each of the columns
corresponding to the right-hand sides.

8. Solve the two systems

T+ 2x9 — 223 =1 21+ 229 — 223 = 9
221 + 522+ x3 =9 221+ 5x0+ 3= 9
r1+3xy+4x3 =9 1+ 3x9+4x3= —2

by doing elimination on a 3 X 5 augmented matrix and then
performing two back substitutions.

9. Given a system of the form

—miz1 +xy =by
—max1 + 3 = by

where m1, ms, b1, and by are constants:
1. Show that the system will have a unique solution if
ma 75 ma.

2. Show that if m; = myg, then the system will be
consistent only if by = bs.

3. Give a geometric interpretation of parts (a) and (b).

10. Consider a system of the form

a1171 + ajpxy =0
a1 + azpxs =0



where a11, @12, @21, and ag are constants. Explain why a system
of this form must be consistent.

11. Give a geometrical interpretation of a linear equation in three
unknowns. Give a geometrical description of the possible solution
sets for a 3 X 3 linear system.



1.2 Row Echelon Form

In Section 1.1, we learned a method for reducing an

n X m linear system to strict triangular form. However,
this method will fail if, at any stage of the reduction
process, all the possible choices for a pivot element in a
given column are 0.

Example 1

Consider the system represented by the augmented
matrix

[ 11

| -

-1
|

L) « pivotal row

-

|
1]

1.3-6 Full Alternative Text

2 — D D —
T D D e —

If row operation III is used to eliminate the nonzero
entries in the last four rows of the first column, the
resulting matrix will be
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1
I & pivotal row
)
1

o = p—
_ O == P
et e ~— | — —
e T a2 O Do —_—
— o = —

00 1

\ }

1.3-7 Full Alternative Text

At this stage, the reduction to strict triangular form
breaks down. All four possible choices for the pivot
element in the second column are 0. How do we proceed
from here? Since our goal is to simplify the system as
much as possible, it seems natural to move over to the
third column and eliminate the last three entries:

[T R B B
0 0 I 1
0 0 0 0
00 0 0
00 0 0

\ 4

— e N

1.3-8 Full Alternative Text

In the fourth column, all the choices for a pivot element
are 0; so again, we move on to the next column. If we use
the third row as the pivotal row, the last two entries in
the fifth column are eliminated and we end up with the
matrix
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W o —

o O O =
o O O e
O O = =
o O = —
< | b —

—4
00 0 0 0]-3

1.3-9 Full Alternative Text

The coefficient matrix that we end up with is not in strict
triangular form; it is in staircase, or echelon, form. The
horizontal and vertical line segments in the array for the
coefficient matrix indicate the structure of the staircase
form. Note that the vertical drop is 1 for each step, but
the horizontal span for a step can be more than 1. The
equations represented by the last two rows are

0x1 + Ox9 + O0z3 + Ozy + Ox5 = —4
0z1 + Oz + O0z3 + Oxqy + Oz5 = —3

Since there are no 5-tuples that could satisfy these
equations, the system is inconsistent.

Suppose now that we change the right-hand side of the
system in the last example so as to obtain a consistent
system. For example, if we start with

1 111 1] 1
1 -1 0 0 1[/-1
2 200 3/ 1
0 011 33

| 1 12 2 4| 4]

then the reduction process will yield the echelon-form
augmented matrix
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o O O
o O O e
O O =
o OO e =
S| = o =
o O L O —

00 0 0 0

1.3-10 Full Alternative Text

The last two equations of the reduced system will be
satisfied for any 5-tuple. Thus, the solution set will be the
set of all 5-tuples satisfying the first three equations.

T+ Tot+r3trs+ 5 =1
3+ x4+ 225 =0
Ty =3

(6))]

The variables corresponding to the first nonzero
elements in each row of the reduced matrix will be
referred to as lead variables. Thus, x1, 3, and x5 are
the lead variables. The remaining variables
corresponding to the columns skipped in the reduction
process will be referred to as free variables. Hence, T2
and x4 are the free variables. If we transfer the free
variables over to the right-hand side in (1), we obtain the

system
r1+ax3+ x5 =1—29— 24
T3 +2x5 = —x4
Ty = 3

(2)

System (2) is strictly triangular in the unknowns x1, x3,
and x5. Thus, for each pair of values assigned to x5 and
T4, there will be a unique solution. For example, if
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x9 = x4 = 0,thenxs = 3,23 = —6,and 1 = 4, and
hence (4,0, —6, 0, 3) is a solution of the system.

Definition
A matrix is said to be in row echelon form if

1. The first nonzero entry in each nonzero row is 1.

2, If row k does not consist entirely of zeros, the number of leading
zero entries in row k + 1 is greater than the number of leading
zero entries in row k.

3. If there are rows whose entries are all zero, they are below the
rows having nonzero entries.

Example 2

The following matrices are in row echelon form:

|'142'| |'123'| |'1310‘|
0 1 3, 0 0 1., 0 0 1 3
lo o 1] lo o ol lo 0o 0 o

Example 3

The following matrices are not in row echelon form:

TR

The first matrix does not satisfy condition (i). The
second matrix fails to satisfy condition (iii), and the
third matrix fails to satisfy condition (ii).

Definition



The process of using row operations I, II, and III to
transform a linear system into one whose augmented
matrix is in row echelon form is called Gaussian
elimination.

Note that row operation II is necessary in order to scale
the rows so that the leading coefficients are all 1. If the
row echelon form of the augmented matrix contains a
row of the form

0 0 ... 0[1

the system is inconsistent. Otherwise, the system will be
consistent. If the system is consistent and the nonzero
rows of the row echelon form of the matrix form a strictly
triangular system, the system will have a unique
solution.

Overdetermined Systems

A linear system is said to be overdetermined if there are
more equations than unknowns. Overdetermined
systems are usually (but not always) inconsistent.

Example 4

Solve each of the following overdetermined systems:

T+ T = 1
r1 — Ty =
—x1 + 229 = —2

x1+ 222+ x3 1
201 — X2+ x3 =2
41 +3x9+ 323 =4
2¢1 — x2+3x3 =5



’ To + 2z + T3 1
201 — o+ T3 =2
41 +3x9+ 323 =4
31+ a2+ 2x3 =3

SOLUTION

Gaussian elimination was applied to put these systems
into row-echelon form (steps not shown). Thus, we may

write
|' 1 1 1'| |'1 1 1]
System (a) : 1 -1 3+ — +0 1|-1.
-1 2|-2] lo of 1l

The last row of the reduced matrix tells us that

Ox1 + Ox2 = 1. Since this is never possible, the system
must be inconsistent. The three equations in system (a)
represent lines in the plane. The first two lines intersect
at the point (2, —1). However, the third line does not
pass through this point. Thus, there are no points that lie
on all three lines (see Figure 1.2.1).

Figure 1.2.1.



No Solution: Inconsistent System

Figure 1.2.1. Full Alternative Text

12 11 [1 2 111

2 —1 1|2 01 10

System (b) : 4 3 34| - ‘0 0 13
2

l2 —1 3|5 lo o o|o]

Using back substitution, we see that system (b) has
exactly one solution (0.1, —0.3, 1.5). The solution is
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unique because the nonzero rows of the reduced matrix
form a strictly triangular system.

12 11 (12 11
2 -1 12 01 L0
System (c) : |4 3 3l4] ‘0 0 80‘
l2 -1 23] lo o olo]

Solving for x5 and x in terms of T3, we obtain

o = —0.2:1,‘3
171:1—2172—173:1—0.6173

It follows that the solution set consists of all ordered
triples of the form (1 — 0.6, —0.2¢x, ), where avis a
real number. This system is consistent and has infinitely
many solutions because of the free variable x3.

Underdetermined Systems

A system of m linear equations in n unknowns is said to
be underdetermined if there are fewer equations than
unknowns (m < n). Although it is possible for
underdetermined systems to be inconsistent, they are
usually consistent with infinitely many solutions. It is not
possible for an underdetermined system to have a unique
solution. The reason for this is that any row echelon form
of the coefficient matrix will involve » < 1m nonzero
rows. Thus, there will be r lead variables and n — 7 free
variables, where n — r > n — m > 0. If the system is
consistent, we can assign the free variables arbitrary
values and solve for the lead variables. Therefore, a
consistent underdetermined system will have infinitely
many solutions.

Example 5

Solve the following underdetermined systems:



Ty +2x+ 23 =1
2x1 +4xs + 223 =3

T1+ a0+ a3+ T4+ TH; =2
Ty + Ty + 23+ 224 + 225 =3
Ty + Ty + 23+ 224 + 35 = 2

SOLUTION

System (a) : B i ;‘1] — [1 2 1‘1}

3 0 0 01
System (a) is inconsistent. We can think of the two
equations in system (a) as representing planes in 3-
space. Usually, two planes intersect in a line; however, in
this case the planes are parallel.

1 111 12'| |'1 1 111 2'|
System (b) : 1111 2 231 — 0 00 1 1] 1.
111 2 3|2 lo o 00 1|-1]

System (b) is consistent, and since there are two free
variables, the system will have infinitely many solutions.
In cases such as these, it is convenient to continue the
elimination process and simplify the form of the reduced
matrix even further. We continue eliminating until all
the terms above the leading 1 in each column have been
eliminated. Thus, for system (b), we will continue and
eliminate the first two entries in the fifth column and
then the first element in the fourth column.



REERINI IR
00011 I[-[00010 2
D000 Lt {00001]-
11100
100071 0] 2
00001

If we put the free variables over on the right-hand side, it
follows that

1.3-11 Full Alternative Text

I = 1 — Ty — X3
Ty = 2
Iry5 — —1

Thus, for any real numbers « and 3, the 5-tuple

(1_a_ﬂaa7/6727_1)

is a solution of the system.

In the case where the row echelon form of a consistent
system has free variables, the standard procedure is to
continue the elimination process until all the entries
above the leading 1 in each column have been eliminated,
as in system (b) of the previous example. The resulting
reduced matrix is said to be in reduced row echelon
form.

Reduced Row Echelon Form
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Definition
A matrix is said to be in reduced row echelon form if

1. The matrix is in row echelon form.

2. The first nonzero entry in each row is the only nonzero entry in its
column.

The following matrices are in reduced row echelon form:

10 1 00 3 |'0120'| |'1201]
[0 J, '0 102, 0001, 00 1 3
lo o1 1l lo o o ol lo o 0 ol

The process of using elementary row operations to
transform a matrix into reduced row echelon form is
called Gauss—Jordan reduction.

Example 6
Use Gauss—Jordan reduction to solve the system

—x1+x2— x3+3x4 =0
3z1+x9— 23— x4 =0
2:131—332—231‘3— T4 =0

SOLUTION



2
(0101
il

If we set x4 equal to any real number o, then

|
0
0

) |
|
) |

0
0

T = a,Ty = —a, and £3 = a. Thus, all ordered 4-

tuples of the form (a, —a, o, @) are solutions of the

system.

Application 1

Traffic Flow
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In the downtown section of a certain city, two sets of
one-way streets intersect as shown in Figure 1.2.2. The
average hourly volume of traffic entering and leaving this
section during rush hour is given in the diagram.
Determine the amount of traffic between each of the four
intersections.

Figure 1.2.2.



4

610 it

40

30

3

b40

o0l




Figure 1.2.2. Full Alternative Text

Solution

At each intersection, the number of automobiles entering
must be the same as the number leaving. For example, at
intersection A, the number of automobiles entering is
1 + 450 and the number leaving is 5 + 610. Thus,

x1 + 450 = x5 + 610 (intersection A)
Similarly,

Ty + 520 = x5 + 480 (intersection B)

x5 + 390 =z, + 600 (intersection C)

x, + 640 = z; + 310 (intersection D)

The augmented matrix for the system is

1 -1 0 0] 160]
| 0 1 -1 0| —40
0 0 1 —1| 210
1 0 o0 1/-330]

The reduced row echelon form for this matrix is

[10 0 —1/330]
|o 10 —1/170
001 —1[210
lo oo o ol

The system is consistent, and since there is a free
variable, there are many possible solutions. The traffic
flow diagram does not give enough information to
determine 1, 2, T3, and x4 uniquely. If the amount of
traffic were known between any pair of intersections, the
traffic on the remaining arteries could easily be
calculated. For example, if the amount of traffic between
intersections C and D averages 200 automobiles per
hour, then £, = 200. Using this value, we can then solve
for ¢, 9, and x3:
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1 = x4 + 330 = 530
Ty = x4+ 170 = 370
T3 = x4 + 210 = 410

Application 2

Electrical Networks

In an electrical network, it is possible to determine the
amount of current in each branch in terms of the
resistances and the voltages. An example of a typical
circuit is given in Figure 1.2.3.

Figure 1.2.3.
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Figure 1.2.3. Full Alternative Text

The symbols in the figure have the following meanings:

A path along which current may flow

|. An electrical source

/\/\/\/\ Aresisor

1.3-13 Full Alternative Text
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The electrical source is usually a battery with a voltage
(measured in volts) that drives a charge and produces a
current. The current will flow out from the terminal of
the battery that is represented by the longer vertical line.
The resistances are measured in ohms. The letters
represent nodes and the 7’s represent the currents
between the nodes. The currents are measured in
amperes. The arrows show the direction of the currents.
If, however, one of the currents, say, 29, turns out to be
negative, this would mean that the current along that
branch is in the direction opposite that of the arrow.

To determine the currents, the following rules are used.

Kirchhoff’s Laws

1. At every node, the sum of the incoming currents equals the sum of
the outgoing currents.

2. Around every closed loop, the algebraic sum of the voltage gains
must equal the algebraic sum of the voltage drops.

The voltage drops E for each resistor are given by Ohm’s
law:
E=1iR

where 1 represents the current in amperes and R the
resistance in ohms.

Let us find the currents in the network pictured in Figure
1.2.3. From the first law, we have

i1 — iy +1i3 =0 (node A)
—i1 41y —13=0 (node B)

By the second law,

4iy +2iy =8 (top loop)
2i9+5i3 =9 (bottom loop)

The network can be represented by the augmented
matrix



[ 1 -1 1o
-1 1 -1)0

| 4 2 08|

l o 2 59l

This matrix is easily reduced to the row echelon form

(1 -1 1oy

24
0 1 —3/3
0 o0 1|1
lo o ool

Solving by back substitution, we see that 1 = 1, 19 = 2,
and i3 = 2.

Homogeneous Systems

A system of linear equations is said to be homogeneous if
the constants on the right-hand side are all zero.
Homogeneous systems are always consistent. It is
straightforward to find a solution; just set all the
variables equal to zero. Thus, if an m X n homogeneous
system has a unique solution, it must be the trivial
solution (0,0, . . ., 0). The homogeneous system in
Example 6 consisted of m = 3 equationsinn = 4
unknowns. In the case that n > m, there will always be
free variables and, consequently, additional nontrivial
solutions. This result has essentially been proved in our
discussion of underdetermined systems, but, because of
its importance, we state it as a theorem.

Theorem 1.2.1

An m X n homogeneous system of linear equations has
a nontrivial solution if n > m.

Proof



A homogeneous system is always consistent. The row
echelon form of the matrix can have at most m nonzero
rows. Thus, there are at most m lead variables. Since
there are n variables altogether and n > m, there must
be some free variables. The free variables can be assigned
arbitrary values. For each assignment of values to the
free variables, there is a solution of the system.

Application 3

Chemical Equations

In the process of photosynthesis, plants use radiant
energy from sunlight to convert carbon dioxide (CO2)
and water (H20) into glucose (C¢H12056) and oxygen
(O2). The chemical equation of the reaction is of the
form

21C09 + 29H20 — 2305 + 24CsH120¢

To balance the equation, we must choose x1, T2, 3, and
x4 so that the numbers of carbon, hydrogen, and oxygen
atoms are the same on each side of the equation. Since
carbon dioxide contains one carbon atom and glucose
contains six, to balance the carbon atoms we require that

T, = 6124
Similarly, to balance the oxygen, we need
2x1 + T2 = 223 + 624
and finally, to balance the hydrogen, we need
2x9 = 1214

If we move all the unknowns to the left-hand sides of the
three equations, we end up with the homogeneous linear
system



T — 6zy =0
21 + 9 — 223 — 624 =0
2.’172 - 12334 =0

By Theorem 1.2.1, the system has nontrivial solutions. To
balance the equation, we must find solutions (x1, T2, 3,
x4) whose entries are nonnegative integers. If we solve
the system in the usual way, we see that x4 is a free
variable and

:131::112:133:6:1}4
In particular, if we take x4 = 2, then

T1 = 9 = x3 = 6 and the equation takes the form

6CO5 + 6H50O — 605 + CgH1204

Application 4

Economic Models for Exchange of Goods

Suppose that in a primitive society the members of a
tribe are engaged in three occupations: farming,
manufacturing of tools and utensils, and weaving and
sewing of clothing. Assume that initially the tribe has no
monetary system and that all goods and services are
bartered. Let us denote the three groups by F, M, and C,
and suppose that the directed graph in Figure 1.2.4
indicates how the bartering system works in practice.

Figure 1.2.4.



Figure 1.2.4. Full Alternative Text
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The figure indicates that the farmers keep half of their
produce and give one-fourth of their produce to the
manufacturers and one-fourth to the clothing producers.
The manufacturers divide the goods evenly among the
three groups, one-third going to each group. The group
producing clothes gives half of the clothes to the farmers
and divides the other half evenly between the
manufacturers and themselves. The result is summarized
in the following table:

~
<
9

F
M
C

The first column of the table indicates the distribution of

l— = -
LI = I = LI
= sl—= =

the goods produced by the farmers, the second column
indicates the distribution of the manufactured goods,
and the third column indicates the distribution of the
clothing.

As the size of the tribe grows, the system of bartering
becomes too cumbersome and, consequently, the tribe
decides to institute a monetary system of exchange. For
this simple economic system, we assume that there will
be no accumulation of capital or debt and that the prices
for each of the three types of goods will reflect the values
of the existing bartering system. The question is how to
assign values to the three types of goods that fairly
represent the current bartering system.



The problem can be turned into a linear system of
equations using an economic model that was originally
developed by the Nobel Prize—winning economist
Wassily Leontief. For this model, we will let &1 be the
monetary value of the goods produced by the farmers, x5
be the value of the manufactured goods, and 3 be the
value of all the clothing produced. According to the first
row of the table, the value of the goods received by the
farmers amounts to half the value of the farm goods
produced, plus one-third the value of the manufactured
products, and half the value of the clothing goods. Thus,
the total value of goods received by the farmer is
%2131 + %wz + %xg. If the system is fair, the total value
of goods received by the farmers should equal 1, the
total value of the farm goods produced. Hence, we have
the linear equation

1

51 + 32 + 5T =1

Using the second row of the table and equating the value
of the goods produced and received by the
manufacturers, we obtain a second equation:

1

74 + 322 + 70T 12

Finally, using the third row of the table, we get

1a:+1m+1m—m
41 32 43—3

These equations can be rewritten as a homogeneous
system:

1 1 1 -
—sx1t 3T+ 523 = 0

1 2 1
TT1— 372 + T3
1 1 3
Ih T g¥ gt =
The reduced row echelon form of the augmented matrix
for this system is



[10 —3|0]
10 1 —1/01
lo o o |0]

There is one free variable: x3. Setting 3 = 3, we obtain
the solution (5, 3, 3), and the general solution consists of
all multiples of (5, 3, 3). It follows that the variables x,
T, and x3 should be assigned values in the ratio

T1:xo:2x3=5:3:3

This simple system is an example of the closed Leontief
input—output model. Leontief’s models are fundamental
to our understanding of economic systems. Modern
applications would involve thousands of industries and
lead to very large linear systems. The Leontief models

will be studied in greater detail later in Section 6.8 of the
book.



Section 1.2 Exercises

1. Which of the matrices that follow are in row echelon form? Which
are in reduced row echelon form?

(1001 2
2 4.
lo o1 3 6l

o
[y
o

[0 13 4
3
lo 0o o ol

o
Ju—y

2. The augmented matrices that follow are in row echelon form. For
each case, indicate whether the corresponding linear system is
consistent. If the system has a unique solution, find it.



——
o o o =

3. The augmented matrices that follow are in reduced row echelon
form. In each case, find the solution set to the corresponding

linear system.

4.

1 201
0013

1)

o

—1.

(=

0 13

3/8]
1 2|7
0 1|2
0 ool

—

==
|

[\

2]
3

1)

o
[y

-3 0 2'|
0 1/ -2
0 o ol

|



(15 —2 03]
|00 016|
00 0 00
lo o o o|ol

6.

[0 1 0] 2
10 0 1]—1
Lo o o ol

4. For each of the systems in Exercise 3, make a list of the lead
variables and a second list of the free variables.

5. For each of the systems of equations that follow, use Gaussian
elimination to obtain an equivalent system whose coefficient
matrix is in row echelon form. Indicate whether the system is
consistent. If the system is consistent and involves no free
variables, use back substitution to find the unique solution. If the
system is consistent and there are free variables, transform it to
reduced row echelon form and find all solutions.

Ir1 — 2172 = 3
2%1 — X2 = 9
2.
2¢1— 39 = 5
—4x1 4+ 6y = 8
3.
1+ 3y = 0
2014+ 3z = 0

3:171— 2$2 =0

31+ 2x9— x3 =

|
=

T1 — 2z + 223
11z + 229+ z3 = 14

201 +3x0+ x3 = 1
T+ o+ x3
31 +4x9+ 223 = 4

T1— X9+ 213
201+ 39— x3 =
Txy1+ 3o + 4as

N



T+ To+ a3+ x4
201+ 329 — 3 — T4
3x1+ 2x9 + 3+ T4
3z1+ 619 — X3 — T4

|
= Ot N O

Tr1 — 2$2 =
2x1 + T9
—5x1 4 8x9

Il
[N

—x1 4 229 — 23
—2x1 + 229+ x3
3r1+ 2x9 + 223 =
—3z;+ 8xy+ bxy = 17

|
SN

10.
T+ 229 — 313+ T4
—x1 — o+ 4x3— 14
72:131 — 4332 + 7133 — T4

|
—_ o =

11.
1+ 32 +x3+ T4 = 3
2¢1 — 2x9 + x3+ 214
T1 — by + x4 = 5

Il
o

12.
r1— 32+ x3 =
201+ Ty — x3 =

r1 + 4xy — 213

5x1 — 8xy + 223

Il
[ G R

6. Use Gauss—Jordan reduction to solve each of the following
systems:

T+ o = —1
4z — 3z = 3
2.
T1+ 30+ x34+ T4 = 3
21 — 2x0+ x3+ 214 = 8
3x1+ o+ 2x3— 24 = —1
3.
r1t+axy+x3 = 0
r1 — L9 — X3 = 0
4.

T1+ xot+ax3+ 4 = 0
201+ xy— 13+ 314
T —2x0+x3+ 4 = 0

|
=



7. Give a geometric explanation of why a homogeneous linear system
consisting of two equations in three unknowns must have
infinitely many solutions. What are the possible numbers of
solutions of a nonhomogeneous 2 X 3 linear system? Give a
geometric explanation of your answer.

8. Consider a linear system whose augmented matrix is of the form

12 1
L —1 4 3|2
| 2 —2 a3l

For what values of a will the system have a unique solution?

9. Consider a linear system whose augmented matrix is of the form

1 2 10'|
2 5 30
-1 1 Blol

1. Is it possible for the system to be inconsistent? Explain.

2. For what values of 3 will the system have infinitely many
solutions?

10. Consider a linear system whose augmented matrix is of the form

113
' 102 4(3
l1 3 alpl

1. For what values of a and b will the system have infinitely
many solutions?

2. For what values of a and b will the system be
inconsistent?

11. Given the linear systems

1+ 29 = 2
3x1+Txy = 8
2,
T+ 22 = 1
31+ Txo

solve both systems by incorporating the right-hand sides into a
2 X 2 matrix B and computing the reduced row echelon form of

w7 ]

12. Given the linear systems



1+ 220+ x3 = 2

—x1— To+2x3 = 3
221+ 34 =0
2,
1+ 220+ x3 = —1
—x1 — o+ 2x3 = 2
2z; + 3z, = -2

solve both systems by computing the row echelon form of an
augmented matrix (A|B) and performing back substitution twice.

13. Given a homogeneous system of linear equations, if the system is
overdetermined, what are the possibilities as to the number of
solutions? Explain.

14. Given a nonhomogeneous system of linear equations, if the system
is underdetermined, what are the possibilities as to the number of
solutions? Explain.

15. Determine the values of 1, T2, T3, T4 for the following traffic flow
diagram:



3 1

DT .

I 4

420 410
|

1.4-15 Full Alternative Text

16. Consider the traffic flow diagram that follows, where a1, a9, as, a4
, b1, by, b3, by are fixed positive integers. Set up a linear system in
the unknowns 1, T3, 3, £4 and show that the system will be
consistent if and only if
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a1+ az+az+ag=0by +by+ b3+ by

What can you conclude about the number of automobiles entering
and leaving the traffic network?

1.4-16 Full Alternative Text

17. Let (¢, ¢2) be a solution of the 2 X 2 system
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18.

19.

20.

21.

anzri+apzry = 0
a1+ axzry = 0

Show that for any real number «, the ordered pair (ccy, a02) is
also a solution.

In Application 3, the solution (6, 6, 6, 1) was obtained by setting
the free variable z4 = 1.

1. Determine the solution corresponding to €4 = 0. What
information, if any, does this solution give about the
chemical reaction? Is the term “trivial solution”
appropriate in this case?

2. Choose some other values of 4, such as 2, 4, or 5, and
determine the corresponding solutions. How are these
nontrivial solutions related?

Liquid benzene burns in the atmosphere. If a cold object is placed
directly over the benzene, water will condense on the object and a
deposit of soot (carbon) will also form on the object. The chemical
equation for this reaction is of the form

21C¢Hg + 2209 — 23C + z4,H50
Determine values of 1, T3, T3, and 4 to balance the equation.

Nitric acid is prepared commercially by a series of three chemical
reactions. In the first reaction, nitrogen (Nz) is combined with
hydrogen (Hj) to form ammonia (NHj3). Next, the ammonia is
combined with oxygen (02) to form nitrogen dioxide (NO2) and
water. Finally, the NO, reacts with some of the water to form nitric
acid (HNOj3) and nitric oxide (NO). The amounts of each of the
components of these reactions are measured in moles (a standard
unit of measurement for chemical reactions). How many moles of
nitrogen, hydrogen, and oxygen are necessary to produce eight
moles of nitric acid?

In Application 4, determine the relative values of 1, o, and x3 if
the distribution of goods is as described in the following table:



C

&
<

M
¢ 2

22. Determine the amount of each current for the following networks:

1
3
1
6
1

D= L= i
= = W=

1

<] ||
2 ohms
] 2 ohms
A— W\ i

3 ohms

i

1.4-18 Full Alternative Text
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. 20 volts 4 ohms

A®

?I;W\,

2 ohms

.,

1.4-19 Full Alternative Text
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[Ovolts
Y

R

1.4-20 Full Alternative Text
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1.3 Matrix Arithmetic

In this section, we introduce the standard notations used
for matrices and vectors and define arithmetic
operations (addition, subtraction, and multiplication)
with matrices. We will also introduce two additional
operations: scalar multiplication and transposition. We
will see how to represent linear systems as equations
involving matrices and vectors and then derive a
theorem characterizing when a linear system is
consistent.

The entries of a matrix are called scalars. They are
usually either real or complex numbers. For the most
part, we will be working with matrices whose entries are
real numbers. Throughout the first five chapters of the
book, the reader may assume that the term scalar refers
to a real number. However, in Chapter 6 there will be
occasions when we will use the set of complex numbers
as our scalar field.

Matrix Notation

If we wish to refer to matrices without specifically
writing out all their entries, we will use uppercase A, B,
C, and so on. In general, a;; will denote the entry of the
matrix A that is in the ith row and the jth column. We
will refer to this entry as the (i, j) entry of A. Thus, if A is
an m X m matrix, then

[ a1 a2 ... an]

a1 @ ... Q2

I.aml am2 .. a'an



We will sometimes shorten this to A = (a;;). Similarly,
a matrix B may be referred to as (bij), a matrix C as (¢;5),

and so on.

Vectors

Matrices that have only one row or one column are of
special interest, since they are used to represent
solutions of linear systems. A solution of a system of m
linear equations in n unknowns is an n-tuple of real
numbers. We will refer to an n-tuple of real numbers as a
vector. If an n-tuple is represented in terms ofal X n
matrix, then we will refer to it as a row vector.
Alternatively, if the n-tuple is represented by ann x 1
matrix, then we will refer to it as a column vector. For
example, the solution of the linear system

1tz =
Tr1 — Ty = 1

can be represented by the row vector (2, 1) or the column

. 2
vector | |

In working with matrix equations, it is generally more
convenient to represent the solutions in terms of column
vectors (n X 1 matrices). The set of all n X 1 matrices
of real numbers is called Euclidean n-space and is
usually denoted by R™. Since we will be working almost
exclusively with column vectors in the future, we will
generally omit the word “column” and refer to the
elements of R™ as simply vectors, rather than as column
vectors. The standard notation for a column vector is a
boldface lowercase letter, as in

[ #1]

T2

| ]



(€Y}

For row vectors, there is no universal standard notation.
In this book, we will represent both row and column
vectors with boldface lowercase letters and to distinguish
a row vector from a column vector we will place a
horizontal arrow above the letter. Thus, the horizontal
arrow indicates an horizontal array (row vector) rather
than a vertical array (column vector). For example,

[Y1]
_ y2|
Y3

|.y4J

X = (21,22,23,24) and y

are row and column vectors, respectively, with four
entries each.

Given an m X 1 matrix A, it is often necessary to refer
to a particular row or column. The standard notation for
the jth column vector of A is a;. There is no universally
accepted standard notation for the ith row vector of a
matrix A. In this book, since we use horizontal arrows to
indicate row vectors, we denote the ith row vector of A by
a;.

If A is an m X m matrix, then the row vectors of A are
given by
52' = (aﬂ,aiz,...,am) 7= 1,...,m

and the column vectors are given by

[ 1]

agj

The matrix A can be represented in terms of either its
column vectors or its row vectors:



A= (aj,as,...,a,) or A=

Similarly, if B is an » X 7 matrix, then

|
ol ol
N =

—

B = (by,by,...,b,) =

,_
=

3

—_

Example 1
If

a3
then

and

a; = (3,2,5), a,=(-1,8,4)

Equality

For two matrices to be equal, they must have the same
dimensions and their corresponding entries must agree.

Definition

Two m X m matrices A and B are said to be equal if
a;j = b;j for eachiand .



Scalar Multiplication

If A is a matrix and « is a scalar, then aA is the matrix
formed by multiplying each of the entries of A by a.

Definition
If Ais an m X n matrix and « is a scalar, then aA is the

m X n matrix whose (i, j) entry is aa;.

For example, if

48 2
A_[fi 8 10}

then

1 2 4 1 12 24 6
74= [3 4 5] and 34 = [18 24 30]

Matrix Addition

Two matrices with the same dimensions can be added by
adding their corresponding entries.

Definition

If A = (ai;) and B = (b;;) are both m X n matrices,
then the sum A + B is the m X n matrix whose (4, )
entry is a;; + b;; for each ordered pair (4, j).

For example,

R e I
(21 181 [

v 1+ 30 =0 4

10

Lel L 2] L 10



If we define A — Btobe A + (—1)B, then it turns out
that A — B is formed by subtracting the corresponding
entry of B from each entry of A. Thus,

2 4 4
B ﬂ_[; 2] E 1}+(_1)[2 g}
- 5 5
24 4-5
T 13-2 1—3]
2 -1
1 —2]

If O represents the matrix, with the same dimensions as
A, whose entries are all 0, then

A+0=0+A=4

We will refer to O as the zero matrix. It acts as an
additive identity on the set of all 7 X 1 matrices.
Furthermore, each m X n matrix A has an additive
inverse. Indeed,

A+ (-1)A=0=(-1)A+A

It is customary to denote the additive inverse by — A.
Thus,

~A=(-1)4

Matrix Multiplication and
Linear Systems

We have yet to define the most important operation: the
multiplication of two matrices. Much of the motivation
behind the definition comes from the applications to
linear systems of equations. If we have a system of one
linear equation in one unknown, it can be written in the
form

ar=b

(2)



We generally think of a, x, and b as being scalars;
however, they could also be treated as 1 X 1 matrices.
Our goal now is to generalize equation (2) so that we can
represent an m X m linear system by a single matrix
equation of the form

Ax=Db

where A is an m X m matrix, x is an unknown vector in
R™, and b is in R™. We consider first the case of one
equation in several unknowns.

Case 1. One Equation in Several Unknowns

Let us begin by examining the case of one equation in
several variables. Consider, for example, the equation

3x1 4+ 2x9 + bxry =4

If we set

[#1]
A=[3 2 5] and x=1 1y
2133J

and define the product Ax by

:131]
Ax=1[3 2 5] 1 xz91 = 3x1 + 229 + b3
|.:173

then the equation 3z + 2x9 + bx3 = 4 can be written
as the matrix equation

Ax =14
For a linear equation with n unknowns of the form

a1r1 +asxs +---+apT, = b

if we let

A=la1 a2 ... ay] and x=




and define the product Ax by
Ax = a1z + asxs + -+ - + apz,

then the system can be written in the form Ax = b.

For example, if

= N W
—_— e

A=[2 1 -3 4 and x=

—_— —_——

then
Ax=2-34+1-2+(-3)-1+4-(-2)=-3

Note that the result of multiplying a row vector on the
left by a column vector on the right is a scalar.
Consequently, this type of multiplication is often referred
to as a scalar product.

Case 2. M Equations in N Unknowns

Consider now an m X m linear system

a;1Ty +a1Ty + o+ apT, = b
0Ty + ATy + -+ ay,T, = b
Ay 17 + Q)2 Lo + A+ ATy = bm

(3)

It is desirable to write the system (3) in a form similar to
(2), that is, as a matrix equation

Ax=b
(@)
where A = (aij) is known, x is an . X 1 matrix of

unknowns, and b is an m X 1 matrix representing the
right-hand side of the system. Thus, if we set



[an1 a2 ... Gin] [ 21] [ b1]

a1 agzn ... Qp

Lans amz - L2, b
and define the product Ax by

[ @@ + apx2 + -+ + a1y |
a1 + a2 + - -+ + 2Ty

Ax =
|- Am1%1 + Qa2 + -+ - + amnan

(5)

then the linear system of equations (3) is equivalent to
the matrix equation (4).

Given an m X n matrix A and a vector x in R", it is
possible to compute a product Ax by (5). The product Ax
will be an m X 1 matrix, that is, a vector in R™. The rule
for determining the ith entry of Ax is

;121 + @22 + -+ + ATy

which is equal to &;X, the scalar product of the ith row
vector of A and the column vector x. Thus,

Example 2

a3 =i

Ax — 4z + 229 + x3
o 521 + 329 + Tx3

Example 3



A:{‘i 5 <[]

4 2] 4
[—3-2+1-4) -2
Ax =1 2-245-41 = 24,
|l 4.2+2.4] | 16l
Example 4

Write the following system of equations as a matrix
equation of the form Ax = b:

3r1 + 222 + x3 = 5
T1 — 229 + 53 = —2
2x1 + X9 — 33 = 1

SOLUTION

[ 2 1 (=] [ 9
] 51 1 xgr =1 —21

Lo 1 =3l Lzl | 4l

An alternative way to represent the linear system (3) as a
matrix equation is to express the product Ax as a sum of
column vectors:

[ auZi + a®2 + -+ + a1aZn |
2121 + a22T2 + + -+ + ATy

|. am1®1 + Qpmae + -+ - + amnan

|' 1111'| |' 012] |' aln]
a1 az
+...+xn

+ X9

T
I- amIJ I- am2J I- aan
Thus, we have

Ax = z1a; + z2ay + - - - + x4,
©)
Using this formula, we can represent the system of

equations (3) as a matrix equation of the form

ria; +x0as +---+z,a, = b



@

Example 5

The linear system

221 + 3x9 — 223 =5
5x1 — 4xo 4+ 223 =6

can be written as a matrix equation

s vl e[ = [

Definition

Ifay,as,...,a, are vectors in R™ and ¢y, ¢o, ..., ¢, are
scalars, then a sum of the form

cia; + coaz + -+ + cra,
is said to be a linear combination of the vectors

A1yA2y .+« .y Aip.

It follows from equation (6) that the product Ax is a
linear combination of the column vectors of A. Some
books even use this linear combination representation as
the definition of matrix vector multiplication.

If Ais an m X n matrix and x is a vector in R", then

Ax = zja; + T2y + - -+ + zpa,

Example 6

If we choose £1 = 2, 2 = 3, and 3 = 4 in Example 5,
then



Thus, the vector [ 6] is a linear combination of the three

column vectors of the coefficient matrix. It follows that
the linear system in Example 5 is consistent and

[ 2]
x =131

| 4

is a solution of the system.

The matrix equation (7) provides a nice way of
characterizing whether a linear system of equations is
consistent. Indeed, the following theorem is a direct
consequence of (7).

Theorem 1.3.1 Consistency
Theorem for Linear Systems

A linear system Ax = b is consistent if and only if b
can be written as a linear combination of the column
vectors of A.

Example 7

The linear system

1+ 2x9 =1
2z + 4o =1

is inconsistent since the vector 1 cannot be written as

1 2
a linear combination of the column vectors [ 2} and { ]

4
. Note that any linear combination of these vectors would
be of the form

- 1 . 2 B 1 + 2x2
L9 214 7 |22 + day



and hence the second entry of the vector must be double
the first entry.

Matrix Multiplication

More generally, it is possible to multiply a matrix A times
a matrix B if the number of columns of A equals the
number of rows of B. The first column of the product is
determined by the first column of B; that is, the first
column of AB is Aby, the second column of AB is Abs,
and so on. Thus, the product AB is the matrix whose

columns are Ab;, Ab,, ..., Ab,,.
AB = (Aby, Ab,, ..., Ab,)

The (i, j) entry of AB is the ith entry of the column vector
Ab ;- It is determined by multiplying the ith row vector
of A times the jth column vector of B.

Definition

If A = (ai;) isanm X n matrix and B = (b;;) is an
n X 7 matrix, then the product AB = C' = (c;;) is the
m X 7 matrix whose entries are defined by

n
cij = a;bj = E Qikbrj
k=1

Example 8

If
[3 =2 _
A=12 41 and B:|:Zi z:|
L1 —3l

then



Ab

11
e
L . —r

11
— La

11
>
[
T
—

-l -1 -1)

1.5-21 Full Alternative Text

The shading indicates how the (2, 3) entry of the product
AB is computed as a scalar product of the second row
vector of A and the third column vector of B. It is also
possible to multiply B times A; however, the resulting
matrix BA is not equal to AB. In fact, AB and BA do not
even have the same dimensions.

—2.3+41-2+3-1 —2-(-2)+1-4+3-(-3)
4.341-2+46-1 4-(—=2)+1-4+46-(-3)

-1 -2
~ |20 -2

B - |

Example 9
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It

1 2]
Azﬁ ;1] and B=14 5.
L3 6l

then it is impossible to multiply A times B, since the
number of columns of A does not equal the number of
rows of B. However, it is possible to multiply B times A.

1 2] 3 4 [5 8]
BA—:14 5 — 17 26
|3 6l [1 2} 15 24]

If A and B are both n X m matrices, then AB and BA will
also be n X n matrices, but, in general, they will not be
equal. Multiplication of matrices is not commutative.

Example 10

If
11 11
AP wa m [
then
117 [1 1 3 3
AB:[O 0] [2 2]:{0 o]
and

Hence, AB # BA.

Application 1

Production Costs



A company manufactures three products. Its production
expenses are divided into three categories. In each
category, an estimate is given for the cost of producing a
single item of each product. An estimate is also made of
the amount of each product to be produced per quarter.
These estimates are given in Tables 1.3.1 and 1.3.2. At its
stockholders’ meeting the company would like to present
a single table showing the total costs for each quarter in
each of the three categories: raw materials, labor, and
overhead.

Table 1.3.1 Production Costs
per Item (dollars)

Product
Expenses ABC

Raw materials 0.10 0.30 0.15
Labor 0.30 0.40 0.25

Overhead and miscellaneous 0.10 0.20 0.15

Table 1.3.2 Amount Produced
per Quarter

Season

Productg,, \merFallWinterSpring

A 4000 4500 4500 4000
B 2000 2600 2400 2200

C 5800 6200 6000 6000



Solution

Let us consider the problem in terms of matrices. Each of
the two tables can be represented by a matrix, namely,

[0.10 0.30 0.15]
M=1030 040 0.25:
[ 0.10 0.20 0.15)

and

[4000 4500 4500 4000
P =12000 2600 2400 2200:
| 5800 6200 6000 6000]

If we form the product MP, the first column of MP will
represent the costs for the summer quarter:

Raw materials: (0.10)(4000) + (0.30)(2000) + (0.15)(5800) = 1870
Labor: (0.30)(4000) + (0.40)(2000) + (0.25)(5800) = 3450
Overhead and miscellaneous: (0.10)(4000) + (0.20)(2000) + (0.15)(5800) = 1670

The costs for the fall quarter are given in the second

column of MP:
Raw materials: (0.10)(4500) + (0.30)(2600) + (0.15)(6200) = 2160
Labor: (0.30)(4500) + (0.40)(2600) + (0.25)(6200) = 3940

Overhead and miscellaneous: (0.10)(4500) + (0.20)(2600) + (0.15)(6200) = 1900

Columns 3 and 4 of MP represent the costs for the winter
and spring quarters.

[1870 2160 2070 1960]
MP =1 3450 3940 3810 35801
l 1670 1900 1830 1740]

The entries in row 1 of MP represent the total cost of raw
materials for each of the four quarters. The entries in
rows 2 and 3 represent the total cost for labor and
overhead, respectively, for each of the four quarters. The
yearly expenses in each category may be obtained by
adding the entries in each row. The numbers in each of
the columns may be added to obtain the total production
costs for each quarter. Table 1.3.3 summarizes the total
production costs.



Table 1.3.3

Season
SummerFallWinterSpringYear

187 216 207 196

Raw materials o o o o 8060
345 394 381 358 14,78
Labor pd o o o o
Overhead and 167 190 183 174 140
miscellaneous o) o) 0 0 714

699 800 771 728 29,08

Total production costs o o o o o

Application 2

Management Science—Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a common
technique that is used for analyzing complex decisions.
The technique was developed by T. L. Saaty during the
1970s. AHP is used in a wide variety of areas including
business, industry, government, education, and health
care. The technique is applied to problems with a specific
goal and a fixed number of alternatives for achieving the
goal. The decision as to which alternative to pick is based
on a list of evaluation criteria. In the case of more
complex decisions, each evaluation criterion could have a
list of subcritera and these, in turn, could also have
subcriteria, and so on. Thus for complex decisions, one
could have a multilayered hierarchy of decision criteria.

To illustrate how AHP actually works, we consider a
simple example. A search and screen committee in the
Mathematics Department of a state university is
conducting a screening process to fill a full professor
position in the department. The committee does a



preliminary round of screening and narrows the pool

down to three candidates: Dr. Gauss, Dr. O’Leary, and

Dr. Taussky. After interviewing the finalists, the

committee must pick the candidate best qualified for the

position. To do this, they must evaluate each of the

candidates in terms of the following criteria: Research,

Teaching Ability, and Professional Activities. The

hierarchal structural of the decision-making process is

illustrated in Figure 1.3.1.

Objective

(riteria

Alternafives

Figure 1.3.1.

Pick a Candidate

Research

Teaching

Professional
Activties

Dr, Gaus
D, O'Leary
Dr. Taussky

Dr, Gauss
Dr. 0'Leary
Dr. Tausky

Dr, Gauss
Dr. 0'Leary
Dr Taussky




Analytic Hierarchy Process

Figure 1.3.1. Full Alternative Text

The first step of the AHP process is to determine the
relative importance of the three areas of evaluation. This
can be done using pairwise comparisons. Suppose, for
example, that the committee decides that Research and
Teaching should be given equal importance and that
both of these categories are twice as important as the
category of Professional Activities. These relative ratings
can be expressed mathematically by assigning the
weights 0.40, 0.40, and 0.20 to the respective categories
of evaluation. Note that the weights of the first two
evaluation criteria are equal and have double the weight
of the third. Note also that the weights are chosen so that
they all add up to 1. The weight vector

0.40)
w =1 0.40:
| 0.20]

provides a numerical representation of the relative
importance of the search criteria.

The next step in the process is to assign relative ratings
or weights to the three candidates for each of the criteria
in our list. Methods for assigning these weights may be
either quantitative or qualitative. For example, one could
do a quantitative evaluation of research using weights
based on the total number of pages published by the
candidates in research journals. Thus if Gauss has
published 500 pages, O’Leary 250 pages, and Taussky
250 pages, then one could obtain weights by dividing
each of these page counts by 1000 (the combined page
count for all three individuals). Thus, the quantitative
weights produced in this manner would be 0.50, 0.25,
and 0.25. The quantitative method does not factor in
differences in the quality of the publications.
Determining qualitative weights involves making some
judgments, but the process need not be entirely
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subjective. Later in the text (in Chapters 5 and 6), we will
revisit this example and discuss how to determine
qualitative weights. The methods we will consider
involve making pairwise comparisons and then using
advanced matrix techniques to assign weights based on
those comparisons.

Another way the committee could refine the search
process would be to break up the research criteria into
two subclasses, quantitative research and qualitative
research. In this case, one would add a subcriteria row to
Figure 1.3.1 directly below the row for criteria. We will
incorporate this refinement later when we revisit the
AHP application in Section 3 of Chapter 5.

For now, let us assume that the search committee has
determined the relative weights for each of the three
criteria and that those weights are specified in Figure
1.3.2. The relative ratings for the candidates for research,
teaching, and professional activities are given by the

vectors
[0.50] [0.20] [0.25]
a; =10.251, ap=10.501, a3 =1 0.501
| 0.25] l 0.30] | 0.25]

Figure 1.3.2.



Objective

(Criferia

Alternafives

Figure 1.3.2. Full Alternative Text

Pick a Candidat

L0
Research | | Teaching %ﬁﬁﬂ?
040 040 0
Dr.Gauss | | Dr.Gauss | | Dr.Gaus
IN 020 03
Dr, O'Leary | | Dr.O'Leary | | Dr. O'Leary
023 IN N
Dr Taussky | | Dr. Taussky | | Dr. Taussky
023 Xl 0]

To determine the overall ranking for the candidates, we

multiply each of these vectors by the corresponding

weights w1, wo, wg and add.
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0.50] [0.20] [0.25]

[ 0.33]

r = wia; + weas + wsag = 0.40+ 0.25+ +0.40 0.50 4+ 0.20 0.50+ =1 0.40+

[ 0.25] [ 0.30] [ 0.25]

Note thatif weset A = [a; as ag], then the vector r
of relative ratings is determined by multiplying the
matrix A times the vector w.

[0.50 0.20 0.25] [0.40'| [0.33]
r=Aw=10.25 050 0.501 10.401 = 0.40
lo.25 0.30 0.25] L0.20] [o0.27]

In this example, the second candidate has the highest
relative rating, so the committee eliminates Gauss and
Taussky and offers the position to O’Leary. If O’Leary
refuses the offer, then next in line is Gauss, the candidate
with the second highest rating.

Reference

o 1. Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, 1980

Notational Rules

Just as in ordinary algebra, if an expression involves
both multiplication and addition and there are no
parentheses to indicate the order of the operations,
multiplications are carried out before additions. This is
true for both scalar and matrix multiplications. For
example, if

SRR

then

and

| 0.27]



sdp_ [0 12] L 8] _[0 15
Th=1s 6l T2 1|7 |5 7

The Transpose of a Matrix

Given an m X T matrix A, it is often useful to form a
new 1 X m matrix whose columns are the rows of A.

Definition
The transpose of an m X 1 matrix Aisthen X m
matrix B defined by
bji = aij
®

forj=1,...,nand? = 1, ..., m. The transpose of A
is denoted by AT

It follows from (8) that the jth row of AT has the same
entries, respectively, as the jth column of A, and the ith
column of AT has the same entries, respectively, as the
ith row of A.

Example 11

1 4
1.IfA:[£11 2 2],thenAT:|2 51.
3 6l
|'—3 2 1 |'—3 4 1'|
2IfB=1 4 3 21,thenBT =1 2 3 2.
l 125 l 1 2 sl
IfC = L2 hen CT = L2
3. = |9 3,ten =19 3|

The matrix C in Example 11 is its own transpose. This
frequently happens with matrices that arise in



applications.

Definition
Ann X n matrix A is said to be symmetric if AT = A.

The following are some examples of symmetric matrices:

234 0 1 2
b 515 1 1 2
la 5 3] L2 —2 —3

Application 3

Information Retrieval

The growth of digital libraries on the Internet has led to
dramatic improvements in the storage and retrieval of
information. Modern retrieval methods are based on
matrix theory and linear algebra.

In a typical situation, a database consists of a collection
of documents and we wish to search the collection and
find the documents that best match some particular
search conditions. Depending on the type of database, we
could search for such items as research articles in
journals, Web pages on the Internet, books in a library,
or movies in a film collection.

To see how the searches are done, let us assume that our
database consists of m documents and that there are n
dictionary words that can be used as keywords for
searches. Not all words are allowable since it would not
be practical to search for common words such as articles
or prepositions. If the key dictionary words are ordered
alphabetically, then we can represent the database by an
m X n matrix A. Each document is represented by a
column of the matrix. The first entry in the jth column of



A would be a number representing the relative frequency
of the first key dictionary word in the jth document. The
entry ay; represents the relative frequency of the second
word in the jth document, and so on. The list of
keywords to be used in the search is represented by a
vector x in R™. The ith entry of x is taken to be 1 if the
ith word in the list of keywords is on our search list;
otherwise, we set &; = 0. To carry out the search, we
simply multiply A” times x.

Simple Matching Searches

The simplest type of search determines how many of the
key search words are in each document; it does not take
into account the relative frequencies of the words.
Suppose, for example, that our database consists of these
book titles:

« Bi1. Applied Linear Algebra

« B2. Elementary Linear Algebra

« B3. Elementary Linear Algebra with Applications
o B4. Linear Algebra and Its Applications

« B5. Linear Algebra with Applications

« B6. Matrix Algebra with Applications

« B7. Matrix Theory

The collection of keywords is given by the following
alphabetical list:

« algebra, application, elementary, linear, matrix, theory

For a simple matching search, we just use 0’s and 1’s,
rather than relative frequencies, for the entries of the
database matrix. Thus, the (i, j) entry of the matrix will
be 1 if the ith word appears in the title of the jth book and
o if it does not. We will assume that our search engine is
sophisticated enough to equate various forms of a word.
So, for example, in our list of titles the words applied and



applications are both counted as forms of the word
application. The database matrix for our list of books is
the array defined by Table 1.3.4.

Table 1.3.4 Array
Representation for Database
of Linear Algebra Books

Books
Keywordsg {poB3B4B5B6B7

algebra 1 1 1 1 1 1 o]
application 1 o 1 1 1 1 0

elementary o0 1 1 O O o0 o

linear 1 1 1 1 1 0 o)
matrix o) 0 0 o) 0 1 1
theory o O O O o o0 1

If the words we are searching for are applied, linear, and
algebra, then the database matrix and search vector are,
respectively, given by

O O - M= O K
O O K =
O O = O = =
O O = O = =
O H O O = K

Ifwesety = ATx, then



e R G S s S
O O O O = = O
==
= - O O O O
o O O O O

The value of y; is the number of search word matches in
the title of the first book, the value of y2 is the number of
matches in the second book title, and so on. Since

Y1 = Y3 = Y4 = Y5 = 3, the titles of books B1, B3, B4,
and B5 must contain all three search words. If the search
is set up to find titles matching all search words, then the
search engine will report the titles of the first, third,
fourth, and fifth books.

Relative Frequency Searches

Searches of noncommercial databases generally find all
documents containing the key search words and then
order the documents based on the relative frequency. In
this case, the entries of the database matrix should
represent the relative frequencies of the keywords in the
documents. For example, suppose that in the dictionary
of all keywords of the database, the sixth word is algebra
and the eighth word is applied, where all words are listed
alphabetically. If, say, document 9 in the database
contains a total of 200 occurrences of keywords from the
dictionary, and if the word algebra occurred 10 times in
the document and the word applied occurred 6 times,
then the relative frequencies for these words would be
% and % , and the corresponding entries in the
database matrix would be

agg = 0.05 and agg = 0.03

To search for these two words, we take our search vector
x to be the vector whose entries &g and xg are both equal



to 1 and whose remaining entries are all 0. We then
compute

y=ATx
The entry of y corresponding to document 9 is
Y9 :a69-1+a89-1 = 0.08

Note that 16 of the 200 words (8 percent of the words) in
document 9 match the key search words. If y; is the
largest entry of y, this would indicate that the jth
document in the database is the one that contains the
keywords with the greatest relative frequencies.

Advanced Search Methods

A search for the keywords linear and algebra could
easily turn up hundreds of documents, some of which
may not even be about linear algebra. If we were to
increase the number of search words and require that all
search words be matched, then we would run the risk of
excluding some crucial linear algebra documents. Rather
than match all words of the expanded search list, our
database search should give priority to those documents
which match most of the keywords with high relative
frequencies. To accomplish this, we need to find the
columns of the database matrix A that are “closest” to the
search vector x. One way to measure how close two
vectors are is to define the angle between the vectors.
We will do this later in Section 5.1 of the book.

The information retrieval application will also be
revisited after we have learned about the singular value
decomposition (Section 6.5) This decomposition can be
used to find a simpler approximation to the database
matrix, which will speed up the searches dramatically.
Often it has the added advantage of filtering out noise;
that is, using the approximate version of the database
matrix may automatically have the effect of eliminating



documents that use keywords in unwanted contexts. For
example, a dental student and a mathematics student
could both use calculus as one of their search words.
Since the list of mathematics search words does not
contain any other dental terms, a mathematics search
using an approximate database matrix is likely to
eliminate all documents relating to dentistry. Similarly,
the mathematics documents would be filtered out in the
dental student’s search.

Web Searches and Page
Ranking

Modern Web searches could easily involve billions of
documents with hundreds of thousands of keywords.
Indeed, as of July 2008, there were more than 1 trillion
Web pages on the Internet, and it is not uncommon for
search engines to acquire or update as many as 10
million Web pages in a single day. Although the database
matrix for pages on the Internet is extremely large,
searches can be simplified dramatically, since the
matrices and search vectors are sparse; that is, most of
the entries in any column are 0’s.

For Internet searches, the better search engines will do
simple matching searches to find all pages matching the
keywords, but they will not order them on the basis of
the relative frequencies of the keywords. Because of the
commercial nature of the Internet, people who want to
sell products may deliberately make repeated use of
keywords to ensure that their Web site is highly ranked
in any relative-frequency search. In fact, it is easy to
surreptitiously list a keyword hundreds of times. If the
font color of the word matches the background color of
the page, then the viewer will not be aware that the word
is listed repeatedly.



For Web searches, a more sophisticated algorithm is
necessary for ranking the pages that contain all of the key
search words. In Chapter 6, we will study a special type
of matrix model for assigning probabilities in certain
random processes. This type of model is referred to as a
Markov process or a Markov chain. In Section 6.3, we
will see how to use Markov chains to model Web surfing
and obtain rankings of webpages.

Reference

« 1. Berry, Michael W., and Murray Browne, Understanding Search
Engines: Mathematical Modeling and Text Retrieval, SIAM,
Philadelphia, 1999.

« 2, Langville, Amy N., and Carl D. Meyer, Google’s PageRank and
Beyond: The Science of Search Engine Rankings, Princeton
University Press, 2012.



Section 1.3 Exercises

1 If

4'| |' 1 0 2'|
1+ and B=1:1 -3 1 1
2l l 2 —4 1l

compute

1. 24

2. A+ B

3.2A - 3B

4. (24)" = 3B)"
5. AB

6. BA

7. ATBT

8. (BA)T

2. For each of the pairs of matrices that follow, determine whether it
is possible to multiply the first matrix times the second. If it is
possible, perform the multiplication.

35 171211
HEEE
4 —2'|
6 —4 [1 2 3]
s —6l

-
[u—y
=

3] |'3 2'|
4, 1 1
ol L4 sl

|1
el

6.1 —11 [3 2 4 5]

o
S =

N

|
N

_= o = o



3. For which of the pairs in Exercise 2 is it possible to multiply the
second matrix times the first, and what would the dimension of
the product matrix be?

4. Write each of the following systems of equations as a matrix
equation:

1
3x1+ 2z = 1
21‘1 - 3:172 =

T+ T2 = 5
21+ Ty — x3
3r1 —2x9+ 223 = 7

I
o

3.
201+ xo+ x3 = 4

r1— X9+ 2x3 = 2
3371—2:132— ry = 0
5. If
[3 4]
A=11 1.
L2 7l
verify that
1. 5A=34+2A4
2. 64 = 3(24)
5 (AT)T = A
6. If

verify that

1A+B=B+ A
2.3(A+ B) =3A+3B
3. (A+ BT = AT 4+ BT

7. If
|' 21
A= 6 31 and B—E é]
| —2 4]

verify that



1. 3(AB) = (34)B = A(3B),
> (AB)T = BTAT

8. If

verify that

L(A+B)+C=A+(B+C)
2. (AB)C = A(BC)

3. A(B+C) = AB+ AC

4. (A+ B)C = AC + BC

9. Let

a=fy 3] =[] <= [

1. Write b as a linear combination of the column vectors a;
and as.

2. Use the result from part (a) to determine a solution of
the linear system Ax = b. Does the system have any
other solutions? Explain.

3. Write ¢ as a linear combination of the column vectors a;

and as.

10. For each of the choices of A and b that follow, determine whether
the system Ax = b is consistent by examining how b relates to
the column vectors of A. Explain your answers in each case.

a2 e

el gl

|'3 2 1'| [ 1'|
3A=13 2 11, b=1 01
ls 2 1l [ -1

11. Let Abe a 5 X 3 matrix. If

b=a;+a;=ay+ ajg

then what can you conclude about the number of solutions of the
linear system Ax = b? Explain.

12. Let Abe a 3 X 4 matrix. If



b=a;+aytaz+ay

then what can you conclude about the number of solutions to the
linear system Ax = b? Explain.

13. Let Ax = b be a linear system whose augmented matrix (A| b)
has reduced row echelon form

(120 3 1-2)
|001245
00000 0
lo o oo o o

1. Find all solutions to the system.

2. If

[1] [ 2]
w3 o] ]

| 4 L 3l

determine b.

14. Suppose in the search and screen example in Application 2 the
committee decides that research is actually 1.5 times as important
as teaching and 3 times as important as professional activities. The
committee still rates teaching twice as important as professional
activities. Determine a new weight vector w that reflects these
revised priorities. Determine also a new rating vector r. Will the
new weights have any effect on the overall rankings of the
candidates?

15. Let A be an m X m matrix. Explain why the matrix multiplications
AT A and AAT are possible.

16. A matrix A is said to be skew symmetric if AT = — A. Show that
if a matrix is skew symmetric, then its diagonal entries must all be
0.

17. In Application 3, suppose that we are searching the database of
seven linear algebra books for the search words elementary,
matrix, algebra. Form a search vector x, and then compute a
vector y that represents the results of the search. Explain the
significance of the entries of the vector y.

18. Let Abe a 2 X 2 matrix with a;; # 0 and let & = ag1/a11. Show
that A can be factored into a product of the form

1 0] [ann a2
a 1 0 b

What is the value of b?



1.4 Matrix Algebra

The algebraic rules used for real numbers may or may
not work when matrices are used. For example, if a and b
are real numbers, then

at+b=b+a and ab=ba

For real numbers, the operations of addition and
multiplication are both commutative. The first of these
algebraic rules works when we replace a and b by square
matrices A and B, that is,

A+B=B+A

However, we have already seen that matrix
multiplication is not commutative. This fact deserves
special emphasis.

WARNING: In general, AB # BA. Matrix
multiplication is not commutative.

In this section, we examine which algebraic rules work
for matrices and which do not.

Algebraic Rules

The following theorem provides some useful rules for
doing matrix algebra.

Theorem 1.4.1

Each of the following statements is valid for any scalars
a and P and for any matrices A, B, and C for which the
indicated operations are defined.



LA+B=B+A
2.(A+B)+C=A+(B+C)
3.(AB)C = A(BC)

4. A(B+C)=AB+ AC

5 (A+ B)C = AC + BC

6. (0f)A = a(BA)

7.a(AB) = (0A)B = A(aB)
8 (a+pB)A=aA+ pA
9.a¢(A+ B) =aA+aB

We will prove two of the rules and leave the rest for the
reader to verify.

Proof of Rule 4

Assume that A = (a4j) isan m X n matrix and
B = (b;;) and C = (c;;) are both n X 7 matrices. Let
D= A(B+C)and E = AB + AC. It follows that

dij = Z a;r(brj + cij)

k=1
and
n n
€;j = Z irbr; + Z QikClj
=1 =1
But

n n n
E a;r(brj + crj) = E a;kbrj + E @ik Chj
k=1 k=1 k=1

so that d;; = e;; and hence A(B+ C) = AB + AC.

Proof of Rule 3

Let A be an m X m matrix, Ban n X r matrix, and C an
r X s matrix. Let D = ABand F = BC. We must



show that DC' = AE. By the definition of matrix
multiplication,

dy = Z aikby and ey = Z brici;
=1 =1
The ijth term of DC is
Z dilclj = Z <Z aikbkl) Cij
=1 =1 \ k=1

and the (i, j) entry of AE is

n n T
E Qiperj = E ik E brici;
=1 =1 =1

Since

T T

> (Z aikbkl> cy = < aikbklclj) => an (Z bklclj)
h=1 =1 \k=1 k=1 =1

=1
it follows that

(AB)C = DC = AE = A(BC)

The algebraic rules given in Theorem 1.4.1 seem quite
natural, since they are similar to the rules that we use
with real numbers. However, there are important
differences between the rules for matrix algebra and the
algebraic rules for real numbers. Some of these
differences are illustrated in Exercises 1 through 5 at the
end of this section.

Example 1

It

1 2 21 10
A=y il B=]3 5} ma o=[5



verify that A(BC) = (AB)C and
A(B+C)=AB+ AC.

SOLUTION
1 2][4 1 6 5
A(BC) = [3 4} [1 2] - [16 11]

(AB)C = [_2 1ﬂ B (1)] - [12 1?]

Thus,
A(BC) = :12 1?] = (4B)0
AB+0C) = ; Z] {_i’ ;,] - [é 13
AB+ AC = _:2 1?] * [1? ﬂ - [; 12]
Therefore,
A(B+C)=AB+ AC
Notation

Since (AB)C = A(BC), we may simply omit the
parentheses and write ABC. The same is true for a
product of four or more matrices. In the case where an
n X n matrix is multiplied by itself a number of times, it
is convenient to use exponential notation. Thus, if k is a
positive integer, then

AP =A4---4

ST T
k times

Example 2

It

A=l



then

S [E
SRR

and, in general,

n—1 n—1
An:F 2 ]

2n71 2n71

Application 1

A Simple Model for Marital Status Computations

In a certain town, 30 percent of the married women get
divorced each year and 20 percent of the single women
get married each year. There are 8000 married women
and 2000 single women. Assuming that the total
population of women remains constant, how many
married women and how many single women will there
be after one year? After two years?

Solution

Form a matrix A as follows: The entries in the first row of
A will be the percentages of married and single women,
respectively, who are married after one year. The entries
in the second row will be the percentages of women who
are single after one year. Thus,

0.70 0.20
A= {0.30 0.80]
8000 : .
Ifweletx = 2000 |’ the number of married and single

women after one year can be computed by multiplying A
times x.



Ax — 0.70 0.207] [8000 B 6000
x= 0.30 0.80| |2000| ~— {4000

After one year, there will be 6000 married women and

4000 single women. To find the number of married and

single women after two years, compute

A’x = A(Ax) = [0'70 0-20] [6000] B [5000]

0.30 0.80| [4000 5000

After two years, half of the women will be married and
half will be single. In general, the number of married and
single women after n years can be determined by
computing A"x.

Application 2

Ecology: Demographics of the Loggerhead Sea Turtle

The management and preservation of many wildlife
species depend on our ability to model population
dynamics. A standard modeling technique is to divide
the life cycle of a species into a number of stages. The
models assume that the population sizes for each stage
depend only on the female population and that the
probability of survival of an individual female from one
year to the next depends only on the stage of the life cycle
and not on the actual age of an individual. For example,
let us consider a four-stage model for analyzing the
population dynamics of the loggerhead sea turtle (see
Figure 1.4.1).

Figure 1.4.1.



At each stage, we estimate the probability of survival

over a one-year period. We also estimate the ability to
reproduce in terms of the expected number of eggs laid

parentheses next to the stage description.

Table 1.4.1 Four-Stage Model
for Loggerhead Sea Turtle
Demographics

Stage Description (age in  Annual Eggs Laid per
Number  years) Survivorship Year
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1 Eggs, hatchlings (<1) 067 0
2 Juveniles and subadults (1—21) 0.74 0
3 Novice breeders (22) 0.81 127

4  Mature breeders (23—54) 0.81 79

If d; represents the duration of the ith stage and s; is the
annual survivorship rate for that stage, then it can be
shown that the proportion remaining in stage i the
following year will be

®

and the proportion of the population that will survive
and move into stage ¢ + 1 the following year will be

si(1 - s)

di
1—s;

qi =

(2)

If we let e; denote the average number of eggs laid by a
member of stage ¢ (¢ = 2, 3, 4) in one year and form the
matrix

D1 €2 €3 €4
L — |1 P2 0 0
0 g p3 O

[0 0 g3 P4J

(3)

then L can be used to predict the turtle populations at
each stage in future years. A matrix of the form (3) is
called a Leslie matrix, and the corresponding population
model is sometimes referred to as a Leslie population
model. Using the figures from Table 1.4.1, the Leslie
matrix for our model is



0 0 127 79
0.67 0.7394 0 0

0 0.006 O 0

0 0 0.81 0.8097

Suppose that the initial populations at each stage were
200,000, 300,000, 500, and 1500, respectively. If we
represent these initial populations by a vector X, the
populations at each stage after one year are determined
by computing

0 0 127 79 200, 000 182,000
0.67 0.7394 0 0 “ [300, OOO} _ [355, 820}
0 0.0006 0 0 500 180

0 0 0.81 0_8097J [ 1500 1620J

x=Lx,=

(The computations have been rounded to the nearest
integer.) To determine the population vector after two
years, we multiply again by the matrix L.

X9 = LX1 = L2X0

In general, the population after k years is determined by
computing X; = L¥xq. To see longer-range trends, we
compute X10, X25, X50, and X100. The results are
summarized in Table 1.4.2. The model predicts that the
total number of breeding-age turtles will decrease by
approximately 95 percent over a 100-year period.

Table 1.4.2 Loggerhead Sea
Turtle Population Projections

Stage Initial

Number Population 10 Years25 Years50 Years100 Years

1 200,000 115,403 75,768 37,623 9276
B 300,000 331,274 217,858 108,178 26,673
3 500 215 142 70 17

4 1500 1074 705 350 86



A seven-stage model describing the population dynamics
is presented in reference [1] that follows. We will use the
seven-stage model in the computer exercises at the end
of this chapter. Reference [2] is the original paper by
Leslie.

References
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Stage-Based Population Model for Loggerhead Sea Turtles and
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The Identity Matrix

Just as the number 1 acts as an identity for the
multiplication of real numbers, there is a special matrix I
that acts as an identity for matrix multiplication; that is,

JTA=AI=A
4)

for any n X n matrix A. It is easy to verify that, if we
define I to be an n X m matrix with 1’s on the main
diagonal and 0’s elsewhere, then I satisfies equation (4)
for any n X m matrix A. More formally, we have the
following definition.

Definition

The n X n identity matrix is the matrix I = (J;;),
where

5 1 ifi=j
Y0 if i # g



As an example, let us verify equation (4) in the case
n=3:

and

lo18/ oo [or1 s

In general, if B is any m X m matrix and Cisany n X r
matrix, then

BI =B and IC=C

The column vectors of the n X n identity matrix I are
the standard vectors used to define a coordinate system
in Euclidean n-space. The standard notation for the jth
column vector of I is €4, rather than the usual ij. Thus,
the n X n identity matrix can be written

I=(eyeq...,e,)

Matrix Inversion

A real number a is said to have a multiplicative inverse if
there exists a number b such that ab = 1. Any nonzero
number a has a multiplicative inverse b = % We
generalize the concept of multiplicative inverses to
matrices with the following definition.

Definition

An 1 X n matrix A is said to be nonsingular or
invertible if there exists a matrix B such that

AB = BA = I.The matrix Bis said to be a
multiplicative inverse of A.



If B and C are both multiplicative inverses of A, then
B = BI = B(AC) = (BA)C = IC = C

Thus, a matrix can have at most one multiplicative
inverse. We will refer to the multiplicative inverse of a
nonsingular matrix A as simply the inverse of A and
denote itby A~ L.

Example 3

The matrices
2 4 -3
[3 1] and l 3

are inverses of each other, since

> a4 2
31 3 1
0 5

—_
o

S ENS )
—_

and

_1l 2
[ 10 5
3 _1

5

Example 4

The 3 X 3 matrices

"1 2 3-| "1 -2 5-|
01 4 and 0 1 -4

0 0 1] o o 1

are inverses, since

and



Example 5

The matrix
1 0
4= o o
has no inverse. Indeed, if Bis any 2 X 2 matrix, then
bii bi2][1 O by O
BA = [bm b22] [0 O] N [521 0}

Thus, BA cannot equal I.

Definition

An n X n matrix is said to be singular if it does not
have a multiplicative inverse.

Note

Only square matrices have multiplicative inverses. One
should not use the terms singular and nonsingular when
referring to nonsquare matrices.

Often we will be working with products of nonsingular
matrices. It turns out that any product of nonsingular
matrices is nonsingular. The following theorem
characterizes how the inverse of the product of a pair of
nonsingular matrices A and B is related to the inverses of
A and B:



Theorem 1.4.2

If A and B are nonsingular n X n matrices, then AB is
also nonsingular and (AB) 1=pt41

Proof
(B'AYAB=B'(A'A)B=B'B=1
(AB)(B1A™)) = A(BB)A 1= AA =1
It follows by induction that, if Ay, ..., A are all

nonsingular 1 X 1 matrices, then the product
A1As ... Ajgisnonsingular and

(A14y. . Ap) Tt =AU AJIAT

In the next section, we will learn how to determine
whether a matrix has a multiplicative inverse. We will
also learn a method for computing the inverse of a
nonsingular matrix.

Algebraic Rules for
Transposes

There are four basic algebraic rules involving transposes.

Algebraic Rules for
Tra nsposes

1(A)

(ad)T = aAT
(A+B)T =AT" + BT
(

4 (AB)T = BT AT

N

w



The first three rules are straightforward. We leave it to
the reader to verify that they are valid. To prove the
fourth rule, we need only show that the (i, j) entries of
(AB)T and BT AT are equal. If A is an m X n matrix,
then, for the multiplications to be possible, B must have
n rows. The (i, j) entry of (AB)T is the (j, 1) entry of AB.
It is computed by multiplying the jth row vector of A
times the ith column vector of B:

b1

bai
ajb; = (aj1,a5,...,ajn) | . | = ajbu +apby + -+ ajnbu;

[0
(5)
The (i, j) entry of BT AT is computed by multiplying the
ith row of BT times the Jjth column of AT Since the ith
row of BT is the transpose of the ith column of B and the
jth column of AT is the transpose of the jth row of 4, it
follows that the (i, j) entry of BT AT is given by

ajl

a2

7T J
b;a; = (b1, b2, .-, bni) | . | =buaj + byaj + -+ + bpiajn

o
©)

It follows from (5) and (6) that the (i, j) entries of
(AB)T and BT AT are equal.

The next example illustrates the idea behind the last
proof.

Example 6

Let



Note that, on the one hand, the (3, 2) entry of AB is
computed taking the scalar product of the third row of A
and the second column of B.

1[I0 |
B=335[[2 11
41 [5 4]

1.7-28 Full Alternative Text

1
—_— L. —

When the product is transposed, the (3, 2) entry of AB
becomes the (2, 3) entry of (AB)7.

"10 34 15-‘
6 23 8

|5 14 9|

On the other hand, the (2, 3) entry of BT AT ig
computed taking the scalar product of the second row of
BT and the third column of AT

1151130 (1
P10 1424
BEIIER

/ / \
1.7-29 Full Alternative Text

(4B)T =

11
R A —

In both cases, the arithmetic for computing the (2, 3)
entry is the same.

Symmetric Matrices and
Networks
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Recall that a matrix A is symmetric if AT = A. One type
of application that leads to symmetric matrices is
problems involving networks. These problems are often
solved using the techniques of an area of mathematics
called graph theory.

Application 3

Networks and Graphs

Graph theory is an important area of applied
mathematics. It is used to model problems in virtually all
the applied sciences. Graph theory is particularly useful
in applications involving communications networks.

A graph is defined to be a set of points called vertices,
together with a set of unordered pairs of vertices, which
are referred to as edges. Figure 1.4.2 gives a geometrical
representation of a graph. We can think of the vertices
Vi1, Vs, Vi, V4, and Vi as corresponding to the nodes in a
communications network.

Figure 1.4.2.



Vs V,

Figure 1.4.2. Full Alternative Text

The line segments joining the vertices correspond to the
edges:

i, o}, {Va, s}, {Vs, Va}, {Vs, V5}, {Vu, V5}

Each edge represents a direct communications link
between two nodes of the network.

An actual communications network could involve a large
number of vertices and edges. Indeed, if there are
millions of vertices, a graphical picture of the network
would be quite confusing. An alternative is to use a
matrix representation for the network. If the graph
contains a total of n vertices, we can defineann X n
matrix A by


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig01-04-002.xhtml#la_fig01-04-002

(1 if{V;, V;}is an edge of the graph
%ij 0 if there is no edge joining V; and V

The matrix A is called the adjacency matrix of the graph.
The adjacency matrix for the graph in Figure 1.4.2 is

given by
01000
10001
A=1(0 0 0 1 1
00101
[O 1 11 OJ

Note that the matrix A is symmetric. Indeed, any
adjacency matrix must be symmetric, for if {V;, V;} is
an edge of the graph, then a;; = a;; = 1 and

a;; = aj; = 0 ifthere is no edge joining V; and V. In
either case, a;; = aj;.

We can think of a walk in a graph as a sequence of edges
linking one vertex to another. For example, in Figure
1.4.2 the edges { V1, V2} , {V2, V5} represent a walk
from vertex V7 to vertex V5. The length of the walk is
said to be 2 since it consists of two edges. A simple way
to describe the walk is to indicate the movement between
vertices by arrows. Thus, V1 — Vo — V5 denotes a walk
of length 2 from V; to V5. Similarly,

Vi — V5 — Vo — V1 represents a walk of length 3
from Vj to V1. It is possible to traverse the same edges
more than once in a walk. For example,

Vs — V3 — V5 — V3 is a walk of length 3 from V5 to
V3. In general, by taking powers of the adjacency matrix,
we can determine the number of walks of any specified
length between two vertices.

Theorem 1.4.3

IfAis ann X n adjacency matrix of a graph and a

(k)

ij

(k)
ij

represents the (i, j) entry of A¥, then a;"’ is equal to the



number of walks of length k from V; to V.
Proof

The proof is by mathematical induction. In the case

k = 1, it follows from the definition of the adjacency
matrix that a;; represents the number of walks of length
1 from V; to V. Assume for some m that each entry of
A™ is equal to the number of walks of length m between

the corresponding vertices. Thus, aglm) is the number of
walks of length m from V; to V;. Now on the one hand, if
there is an edge {W, VJ}, then agn) ajj = al(.lm) is the
number of walks of length m + 1 from V; to Vj of the
form

Vi oo =2 ViV

On the other hand, if {V}, V;} is not an edge, then there
are no walks of length m + 1 of this form from V; to Vj
and

ooy = ol -0 =0

It follows that the total number of walks of length m + 1
from V; to V} is given by

af.;”)alj + az(-;n)azj +oet az(-:?)am’

But this is just the (i, j) entry of A™ 1,

Example 7

To determine the number of walks of length 3 between
any two vertices of the graph in Figure 1.4.2, we need
only compute



A% =

—_ =N O
N e = ]
W N =
N W ==

= ks kO

L 2|

Thus, the number of walks of length 3 from V3 to V is

3 . . . .
a:(,)5) = 4. Note that the matrix A3 is symmetric. This
reflects the fact that there are the same number of walks

of length 3 from V; to Vj as there are from Vj to V;.



Section 1.4 Exercises

1. Explain why each of the following algebraic rules will not work, in
general, when the real numbers a and b are replaced by n X n
matrices A and B:

1 (a—i—b)2 =a®+ 2ab+b?
2. (a+b)(a—0b) =a®— b
2. Will the rules in Exercise 1 work if a is replaced by ann X n
matrix A and b is replaced by the n X n identity matrix I?
3. Find nonzero 2 X 2 matrices A and B such that AB = O.

4. Find nonzero matrices A, B, and C such that

AC=BC and A#B

1 -1
A =
1 -1
has the property that A2 = O. Is it possible for a nonzero
symmetric 2 X 2 matrix to have this property? Prove your answer.

5. The matrix

6. Prove the associative law of multiplication for 2 X 2 matrices; that

is, let
e [an a12], B [bu b12]7 C— [011 612]
as  a b1 b2 Ca1 €2
and show that
(AB)C = A(BC)
7. Let

Compute A% and A3. What will A™ turn out to be?

8. Let

o= = = ro|=

S
I
[N N ] (] P

= o= po)= b=

[N N E Y [ ] P



Compute A% and A3. What will A?” and A" turn out to be?

9. Let
0100
0010
A=100 0 1
[ooooj

Show that A™ = O forn > 4.

10. Let A and B be symmetric X n matrices. For each of the
following, determine whether the given matrix must be symmetric
or could be nonsymmetric:

.LC=A+B
2. D = A?
3. E=AB
4. F = ABA

11. Let Cbe a nonsymmetric 7 X n matrix. For each of the following,
determine whether the given matrix must necessarily be
symmetric or could possibly be nonsym-metric:

LtA=C+C7T
2. B=C-CT
3.D=CTC

4. E=CTCc-cc”
5 F=(I+C)(I+C7)
6.G=(I+C)(I-c7)

12. Let

A {au al2:|

a1 a2

Show thatif d = a11a99 — as1a1s 75 0, then

e i[ az —a12]

d|—an an

13. Use the result from Exercise 12 to find the inverse of each of the
following matrices:

o7



14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

3 5
2, 9 3
4 3
312 2
Let A and B be n X n matrices. Show that if

AB=A and B#1

then A must be singular.

Let A be a nonsingular matrix. Show that A~ is also nonsingular

and (1‘171)’1 = A

Prove that if A is nonsingular, then AT is nonsingular and
(AT)—l _ (A—l)T

Hint: (AB)T = BT AT,

Let Abe ann X n matrix and let x and y be vectors in R”. Show
that if Ax = Ay and x # Yy, then the matrix A must be singular.

Let A be a nonsingular n X n matrix. Use mathematical induction
to prove that A™ is nonsingular and

(Am)—l _ (A—l)m
form =1,2,3,....

Let A be an . X 1 matrix. Show thatif A2 = O, then I — A is
nonsingular and (I — A)_1 =1+ A.

Let A be an n X n matrix. Show that if A¥*1 = O, then I — A is
nonsingular and

I-A)'=T+A+A+...+ 4

Given

sin 6 cos 0

[cos # —sin 0}

show that R is nonsingular and R~! = RT.

Ann X n matrix A is said to be an involution if A> = I. Show
that if G is any matrix of the form

_ |cos 0 sin 6
" |sin & —cos 6

then G is an involution.

Let u be a unit vector in R” (i.e., uTu = 1) and let

H = I — 2uu’. Show that H is an involution.

A matrix A is said to be idempotent if A2 = A. Show that each of
the following matrices are idempotent:



1 0
1
1 0
2 1
3 3
2. 2 1
|3 3
r1o1 1
4 4 4
1011
317 4 7
11 LJ
| 2 2 2

25. Let A be an idempotent matrix.

1. Show that I — A is also idempotent.

2. Show that I + A is nonsingular and

(I+A)'=1- %A.

26. Let D be an n X mn diagonal matrix whose diagonal entries are
either o or 1.
1. Show that D is idempotent.

2. Show that if X is a nonsingular matrix and
A = XDX! then A is idempotent.

27. Let A be an involution matrix and let

1 1

Show that B and C are both idempotent and BC' = O.

28. Let A be an m X n matrix. Show that AT A and AAT are both
symmetric.

29. Let A and B be symmetric 7 X m matrices. Prove that AB = BA
if and only if AB is also symmetric.

30. Let A be an n X 1 matrix and let
B=A+ AT and C=A4- AT

1. Show that B is symmetric and C is skew symmetric.

2. Show that every n X m matrix can be represented as a
sum of a symmetric matrix and a skew-symmetric
matrix.

31. In Application 1, how many married women and how many single
women will there be after 3 years?

32. Consider the matrix



O R Rk O
O O R O
O O =
=

o]

1. Draw a graph that has A as its adjacency matrix. Be sure
to label the vertices of the graph.

2. By inspecting the graph, determine the number of walks
of length 2 from V5 to V3 and from V5 to V.

3. Compute the second row of A3 and use it to determine
the number of walks of length 3 from V5 to V3 and from
Vato Vs.

33. Consider the graph

V) V;
0

¢
Vi Vy

1.8-30 Full Alternative Text

1. Determine the adjacency matrix A of the graph.

2. Compute A2, What do the entries in the first row of A2
tell you about walks of length 2 that start from V;?

3. Compute A3. How many walks of length 3 are there
from V5 to V4? How many walks of length less than or
equal to 3 are there from V3 to Vj?

For each of the conditional statements that follow, answer true if
the statement is always true and answer false otherwise. In the
case of a true statement, explain or prove your answer. In the
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case of a false statement, give an example to show that the
statement is not always true.

34. If Ax = Bx for some nonzero vector x, then the matrices A and
B must be equal.

35. If A and B are singular n X n matrices, then A + B is also
singular.

36. If A and B are nonsingular matrices, then (AB)7 is nonsingular
and

(AB)") ™ = (4B



1.5 Elementary Matrices

In this section, we view the process of solving a linear
system in terms of matrix multiplications rather than
row operations. Given a linear system Ax = b, we can
multiply both sides by a sequence of special matrices to
obtain an equivalent system in row echelon form. The
special matrices we will use are called elementary
matrices. We will use them to see how to compute the
inverse of a nonsingular matrix and also to obtain an
important matrix factorization. We begin by considering
the effects of multiplying both sides of a linear system by
a nonsingular matrix.

Equivalent Systems

Given an m X m linear system Ax = b, we can obtain
an equivalent system by multiplying both sides of the
equation by a nonsingular m X m matrix M:

Ax=Db
(@)
MAx = Mb
(2)

Clearly, any solution of (1) will also be a solution of (2).
However, if X is a solution of (2), then

MY (MAR) = M~'(Mb)
A% = b

and it follows that the two systems are equivalent.

To obtain an equivalent system that is easier to solve, we
can apply a sequence of nonsingular matrices



E4, ..., Ej; toboth sides of the equation Ax = b to
obtain a simpler system of the form

Ux=c

whereU = Ei---FE1Aandc = Ei - -- EsE1b. The
new system will be equivalent to the original, provided
that M = EJ - - - E7 is nonsingular. However, M is
nonsingular since it is a product of nonsingular matrices.

We will show next that any of the three elementary row
operations can be accomplished by multiplying A on the
left by a nonsingular matrix.

Elementary Matrices

If we start with the identity matrix I and then perform
exactly one elementary row operation, the resulting
matrix is called an elementary matrix.

There are three types of elementary matrices
corresponding to the three types of elementary row
operations.

Type

An elementary matrix of type I is a matrix obtained by
interchanging two rows of I.

Example 1

The matrix

[0 1 0]
E;=11 0 0.
lo o 1)



is an elementary matrix of type I since it was obtained by
interchanging the first two rows of . If Aisa 3 X 3
matrix, then

[ 01 0] |' a1 a2 a13] |' a1 Q2 1123]
EiA=11 0 0 1ag azp a3’ =1a;; app a3

I. 00 1J I. asy Qas2 a33J I. as] agz ass

[an a2 a] | 01 0] [a12 an ai3]
AE; =1va2 a2 azg' +1 0 0 =1azp az a3

I.(L31 asn 0,33J I.O 0 1J |.a32 aszy ass

Multiplying A on the left by F; interchanges the first and
second rows of A. Right multiplication of A by Fj is
equivalent to the elementary column operation of
interchanging the first and second columns.

Type I

An elementary matrix of type II is a matrix obtained by
multiplying a row of I by a nonzero constant.

Example 2

is an elementary matrix of type II. If Ais a 3 X 3 matrix,
then

[ 10 0] [a11 a2 a13] [ a1 a2 a3
EA = 0 1 00 vay axp apy' = 1 axn Gp 63!

I. 00 3J I. asy as2 a33J I. 3&31 3(132 3(133]

[au1 a2 a] [1 0 0] [an a2 3a13)
AEy = 1a9 agp axpt 10 1 0r = 1ay axp 3axs:

|. asy ass a33J I. 00 3J I. az; as2 3a23J

Multiplication on the left by E5 performs the elementary
row operation of multiplying the third row by 3, while
multiplication on the right by Es performs the



elementary column operation of multiplying the third
column by 3.

Type lll

An elementary matrix of type III is a matrix obtained
from I by adding a multiple of one row to another row.

Example 3
|'1 0 3]
Es=10 1 0.
lo o 1l

is an elementary matrix of type IIl. IfAisa 3 X 3
matrix, then

[ a1 + 3as1 aip +3a3 aiz+ 3a33]

EsA = 1ay as as3 '
| as; as? ass ]
[au a1 3ai1 + a13]

AE3 = 1ay az 3ay + ax;:

| asi a3z 3as + assl

Multiplication on the left by F/5 adds 3 times the third
row to the first row. Multiplication on the right adds 3
times the first column to the third column.

In general, suppose that E is an n X 1 elementary
matrix. We can think of E as being obtained from I by
either a row operation or a column operation. If A is an
n X 7 matrix, premultiplying A by E has the effect of
performing that same row operation on A. If B is an
m X m matrix, postmultiplying B by E is equivalent to
performing that same column operation on B.

Theorem 1.5.1



If E is an elementary matrix, then E is nonsingular and
E~1is an elementary matrix of the same type.

Proof

If E is the elementary matrix of type I formed from I by
interchanging the ith and jth rows, then E can be
transformed back into I by interchanging these same
rows again. Therefore, ¥ = I and hence E is its own
inverse. If E is the elementary matrix of type II formed
by multiplying the ith row of I by a nonzero scalar «,
then E can be transformed into the identity matrix by
multiplying either its ith row or its ith column by 1/ .
Thus,

[1 ]

El= 1/a ith row

L Y

Finally, if E is the elementary matrix of type III formed
from I by adding m times the ith row to the jth row, that
is,

[1 ]

: 0
0 1 ith row
E=|: .
0 - m --- 1 Jthrow
|_0 B | I § N 1J

then E can be transformed back into I either by
subtracting m times the ith row from the jth row or by
subtracting m times the jth column from the ith column.
Thus,



: 0]
0 1
El=
0 —-m 1
| 0 0 0 1]
Definition

A matrix B is row equivalent to a matrix A if there
exists a finite sequence E1, Es, . .., E}, of elementary
matrices such that

B=E.E, .- -EA

In other words, B is row equivalent to A if B can be
obtained from A by a finite number of row operations. In
particular, if two augmented matrices (A|b) and (B|c)
are row equivalent, then Ax = b and Bx = c are
equivalent systems.

The following properties of row equivalent matrices are
easily established:

1. If A is row equivalent to B, then B is row equivalent to A.

2. If A is row equivalent to B, and B is row equivalent to C, then A is
row equivalent to C.

Property (I) can be proved using Theorem 1.5.1. The
details of the proofs of (I) and (IT) are left as an exercise
for the reader.

Theorem 1.5.2 Equivalent
Conditions for Nonsingularity



Let A be an n x n matrix. The following are equivalent:

1. A is nonsingular.
2. Ax = 0 has only the trivial solution 0.

3. A is row equivalent to I.

Proof

We prove first that statement (a) implies statement (b).
If A is nonsingular and X is a solution of Ax = 0, then

x=Ix=(A"4)x=A"(4x)=4"0=0

Thus, Ax = 0 has only the trivial solution. Next, we
show that statement (b) implies statement (c). If we use
elementary row operations, the system can be
transformed into the form Ux = 0, where U is in row
echelon form. If one of the diagonal elements of U were
0, the last row of U would consist entirely of 0’s. But then
Ax = 0 would be equivalent to a system with more
unknowns than equations and hence, by Theorem 1.2.1,
would have a nontrivial solution. Thus, U must be a
strictly triangular matrix with diagonal elements all
equal to 1. It then follows that I is the reduced row
echelon form of A and hence A is row equivalent to I.

Finally, we will show that statement (c¢) implies
statement (a). If A is row equivalent to I, there exist
elementary matrices F1, E2, ..., E} such that

A=EyE, 1---E1l =EE; 1---E;

But since F; is invertible, 2 = 1, .. ., k, the product
ELE; ;... FEisalsoinvertible. Hence, A is
nonsingular and

A = (EBLEy 1B = EflEz_l .. .Ek—l



Corollary 1.5.3

The system Ax = b of n linear equations in n
unknowns has a unique solution if and only if A is
nonsingular.

Proof

If A is nonsingular, and X is any solution of Ax = b,
then

Ax =D

Multiplying both sides of this equation by A1 we see
that X must be equal to A~ 1b.

Conversely, if Ax = 0 has a unique solution X, then we
claim that A cannot be singular. Indeed, if A were
singular, then the equation Ax = 0 would have a
solution z # 0. But this would imply thaty = X + z is
a second solution of Ax = b, since

Ay =A(X+2z)=AX+Az=Db+0=Db

Therefore, if Ax = b has a unique solution, then A
must be nonsingular.

If A is nonsingular, then A is row equivalent to I and
hence there exist elementary matrices F1, . . ., F such
that

EwEy ,---EnIA=1

Multiplying both sides of this equation on the right by
A1, we obtain

EyEy 1---E I = A1

Thus, the same series of elementary row operations that
transforms a nonsingular matrix A into I will transform I
into A~!. This gives us a method for computing A~ *. If



we augment A by I and perform the elementary row
operations that transform A into I on the augmented
matrix, then I will be transformed into A 1. That is, the
reduced row echelon form of the augmented matrix

(A|T) willbe (I|A7Y).

Example 4

Compute A1 if

1 43]
A= -1 -2 0O
l 2 2 3]
SOLUTION
14 310 0 14 3100
-1 -2 000 1 00 — 0 2 3 11 0
l 2 2 3/0 0 1] lo -6 —3/—2 0 1l
(14 310 0 [1 4 03 -3 —3]
—10 231 1 00 — 102021 L _1
lo o 6/1 3 1l lo o671 3 1l
(oot b H 1o 3 4
1 1 1
_>|020%_%—%|_>|01(1)Z_I—z|
1 1 1
loos6 1 3 1l (o001 1L 1 1]
Thus,
1 1 1
[-3 —3 2]
]
1 1 1
L5 3 3l
Example 5
Solve the system
1 +4x9 + 3,3 = 12
—$1—2J)2 = —12

21 + 2x9 + 33 = 8



SOLUTION

The coefficient matrix of this system is the matrix A of
the last example. The solution of the system is then

(=3 =5 3l 127 [ 4
x=Ab=| 1 1 1|, 13, = 4
L 1 1l sl (-2

Diagonal and Triangular
Matrices

An 1 X n matrix A is said to be upper triangular if

ajj = 0fore > jand lower triangular if a;; = 0 for

1 > 7. Also, A is said to be triangular if it is either upper
triangular or lower triangular. For example, the 3 X 3

matrices
|'3 2 1'| |'1 0 O'|
0 2 1. and 16 0 O
lo o 5] l1 4 3]

are both triangular. The first is upper triangular and the
second is lower triangular.

A triangular matrix may have 0’s on the diagonal.
However, for a linear system Ax = b to be in strict
triangular form, the coefficient matrix A must be upper
triangular with nonzero diagonal entries.

Ann X n matrix A is diagonal if a;; = 0 whenever
i # j. The matrices

[10],!0301
021" 1901l Lo o ol

are all diagonal. A diagonal matrix is both upper
triangular and lower triangular.



Triangular Factorization

If an n X m matrix A can be reduced to strict upper
triangular form using only row operation III, then it is
possible to represent the reduction process in terms of a
matrix factorization. We illustrate how this is done in the
next example.

Example 6
Let
2 4 2]
A=11 5 21
la -1 o

and let us use only row operation III to carry out the
reduction process. At the first step, we subtract % times
the first row from the second and then we subtract twice
the first row from the third.

[2 42 (2 42
11 5 21 =10 3 1
la =1 9] lo —9 5l

To keep track of the multiples of the first row that were
subtracted, we set [y = % and l3; = 2. We complete
the elimination process by eliminating the —9 in the
(3, 2) position.

|'2 4 2'| |'2 4 2'|
' 0 3 1 —:+0 3 1.
lo —9 51 Lo o sl
Let [33 = —3, the multiple of the second row subtracted

from the third row. If we call the resulting matrix U and
set



then it is easily verified that

[1 00772 4 2 2 4 2]
LU=1%7 101103 1Li=11 52 =A
L2 —3 1llo o sl l4 -1 o

The matrix L in the previous example is lower triangular
with 1’s on the diagonal. We say that L is unit lower
triangular. The factorization of the matrix A into a
product of a unit lower triangular matrix L times a
strictly upper triangular matrix U is often referred to as
an LU factorization.

To see why the factorization in Example 6 works, let us
view the reduction process in terms of elementary
matrices. The three row operations that were applied to
the matrix A can be represented in terms of
multiplications by elementary matrices

E;E,E1A=U
3
where
[100] |'100'| |'100'|
Er=1-%+ 101, o=+ 010/, Eg=10 1 0.
L o0 o0 1l |l 2 0 1] lo 3 1l

correspond to the row operations in the reduction
process. Since each of the elementary matrices is
nonsingular, we can multiply equation (3) by their
inverses.

A=E'E;'E;'U

[We multiply in reverse order because

(EgEzEl)*l = EflEglE?:l.] However, when the
inverses are multiplied in this order, the multipliers l51,
[31, I35 fill in below the diagonal in the product:

0 0] |'1 0 0'| rl 0 0'|
1 0t +O01 0 0 1 0 =L
0

E'E,'E;" =
1l L2 01l Lo -3 1l

1
1
2
0

[
|



In general, if an 1 X T matrix A can be reduced to strict
upper triangular form using only row operation III, then
A has an LU factorization. The matrix L is unit lower
triangular, and if ¢ > j, then [;; is the multiple of the jth
row subtracted from the ith row during the reduction
process.

The LU factorization is a very useful way of viewing the
elimination process. We will find it particularly useful in
Chapter 7 when we study computer methods for solving
linear systems. Many of the major topics in linear algebra
can be viewed in terms of matrix factorizations. We will
study other interesting and important factorizations in
Chapters 5 through 7.



Section 1.5 Exercises

1. Which of the matrices that follow are elementary matrices?
Classify each elementary matrix by type.

1'01
10
2'20
"0 3
1 0 0]
.10 10
5 0 1)
[1 0 0]
410 50
[0 0 1]

2. Find the inverse of each matrix in Exercise 1. For each elementary
matrix, verify that its inverse is an elementary matrix of the same
type.

3. For each of the following pairs of matrices, find an elementary
matrix E such that EA = B:

2 -1 -4 2
s ae [

13'|
1 4
3 4 5]

‘4—23] [4—23]
3A=1]1 0 2 B:[1 0 2

0 3 5

4. For each of the following pairs of matrices, find an elementary
matrix E such that AE = B:

[413-| [314-|
1A=12 1 41, B=14 1 2

)

132J [231J

2 4 2 2
Q'A:[l 6}’ B_[l 3]



5. Let

1 2

1 2 4 1 2 4
A=1|2 1 3|, B=1|2 1 3|, C={(0 -1 -3
1 0 2 2 26

2 2

1. Find an elementary matrix E such that EA = B.
2. Find an elementary matrix F such that F'B = C.

3. Is C row equivalent to A? Explain.
6. Let
[2 1 1-|
A=16 4 5
[4 1 3J

. Find elementary matrices F1, s, F3 such that

Ju

EsEsE1A=U
where U is an upper triangular matrix.

2. Determine the inverses of F/1, Fy, F3 and set
L= EflEglEgl. What type of matrix is L? Verify
that A = LU.

7. Let
2 1
A =
6 4
1. Express A lasa product of elementary matrices.

2, Express A as a product of elementary matrices.

8. Compute the LU factorization of each of the following matrices:

NER
1o 5
(2 4
2._721
'111]
3.1 356
7—227J

4

6



9. Let

1. Verify that

1 2 -3
Atl=]-1 1 -1
0 -2 3

2. Use A~ ! to solve Ax = b for the following choices of b:

1b=(1,1,1)T
2.b=(1,2,3)7
3.b = (—2,1,0)7

10. Find the inverse of each of the following matrices:

1'—11
110
2'25‘
"1 3]
o 6]
313 s
—
* 1o 3
(1 1 1]
5 (0 1 1
[0 0 1]
(2 0 5
6.0 3 0
1 0 3]
[—1 —3 —3]
21 2 6 1
| 3 8 3]
1 0 1
g l-1 1 1
-1 —2 -3]




11.

12.

13.

14.

15.

16.

17.

18.

19.

Given

31 1 2
A—L,) 2] and B—[g 4}

compute A~1and use it to:

1. find a 2 X 2 matrix X such that AX = B.

2. finda 2 X 2 matrix Ysuchthat YA = B.

Let
5 3 6 2 4 -2
B R e

Solve each of the following matrix equations:

LAX+B=C
2 XA+B=C
3. A X+B=X
4. XA+C=X

Is the transpose of an elementary matrix an elementary matrix of
the same type? Is the product of two elementary matrices an
elementary matrix?

Let Uand R be n X n upper triangular matrices and set T' = UR
. Show that T'is also upper triangular and that ¢;; = u;;7;; for
j=1,...,n

Let Abe a 3 X 3 matrix and suppose that
2a; +ay —4a3 =0

How many solutions will the system Ax = 0 have? Explain. Is A
nonsingular? Explain.

Let Abe a 3 X 3 matrix and suppose that
a; = 3ay — 2a3

Will the system Ax = 0 have a nontrivial solution? Is A
nonsingular? Explain your answers.

Let A and Bbe n X n matrices and let C = A — B. Show that if
Axy = Bxgand xg # 0, then C must be singular.

Let A and Bbe n X n matrices and let C = AB. Prove that if B is
singular, then C must be singular. Hint: Use Theorem 1.5.2.

Let Ube an n X n upper triangular matrix with nonzero diagonal
entries.

1. Explain why U must be nonsingular.



2. Explain why U ! must be upper triangular.

20. Let A be a nonsingular n X n matrix and let Bbeann X r
matrix. Show that the reduced row echelon form of (A|B) is
(I|C), where C = A™1B.

21. In general, matrix multiplication is not commutative (i.e.,
AB # BA). However, in certain special cases the commutative
property does hold. Show that

1. if D1 and D5 are n X n diagonal matrices, then
DDy = DyDs.

2.if Aisan n X n matrix and
B=agl +a;A+ayA* +--- + a, AF

where ag, a, . . ., ay are scalars, then AB = BA.

22. Show that if A is a symmetric nonsingular matrix, then A tisalso
symmetric.

23. Prove that if A is row equivalent to B, then B is row equivalent to
A.

24. 1. Prove that if A is row equivalent to B and B is row
equivalent to C, then A is row equivalent to C.

2. Prove that any two nonsingular X n matrices are row
equivalent.

25. Let A and B be an m X m matrix. Prove that if B is row equivalent
to A and U is any row echelon form of A, then B is row equivalent
to U.

26. Prove that B is row equivalent to A if and only if there exists a
nonsingular matrix M such that B = M A.

27. Is it possible for a singular matrix B to be row equivalent to a
nonsingular matrix A? Explain.

28. Given a vector x € R"*1 | the (n+1) x (n+ 1) matrix V
defined by

1 ifj=1
v = i
Y xgl forj=2,...,n+1

is called the Vandermonde matrix.
1. Show that if
Ve=y
and

p(z) =c1+cox+ -+ cpprz”



then
p(z;) =, 1=1,2,...,n+1

2. Suppose that 1, 2, . . ., T+1 are all distinct. Show
that if ¢ is a solution of Vx = 0, then the coefficients
C1,C2, ..., Ccy, must all be zero, and hence V must be
nonsingular.

For each of following, answer true if the statement is always true
and answer false otherwise. In the case of a true statement,
explain or prove your answer. In the case of a false statement,
give an example to show that the statement is not always true.

29. If A is row equivalent to T and AB = AC, then B must equal C.

30. If E and F are elementary matrices and G = EF, then G is
nonsingular.

31. If Aisa4 X 4 matrix and a; + as = a3 + 2ay4, then A must be
singular.

32. If A is row equivalent to both B and C, then A is row equivalent to

B+ C.



1.6 Partitioned Matrices

Often it is useful to think of a matrix as being composed
of a number of submatrices. A matrix C can be
partitioned into smaller matrices by drawing horizontal
lines between the rows and vertical lines between the
columns. The smaller matrices are often referred to as
blocks. For example, let

—2

I
ORI CRSENN
|
BN W

1
3
6

If lines are drawn between the second and third rows and
between the third and fourth columns, then C will be
divided into four submatrices, C'1, C12, Ca1, and Cos.

i 3

[ =2 4] 1 3
O G| |2
(r Gy |3

4

\

TN o
>
[
o

\ }

1.11-31 Full Alternative Text

One useful way of partitioning a matrix is to partition it
into columns. For example, if

5|2 5]
| 14 1

we can partition B into three column submatrices:


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_unfig01-017.xhtml#la_unfig01-017

2
3
4

B = (b; by by) = [_; ﬂ

| 1laf

Suppose that we are given a matrix A with three

columns; then the product AB can be viewed as a block
multiplication. Each block of B is multiplied by A and the
result is a matrix with three blocks: Ab;, Abs, and Abs
; that is,

AB = A(b; by by) = [Ab; Ab, Abs]

For example, if

then

6 15 5
e e e S

and hence
6| 155
A(b; by bg) = [_2‘_1‘1]

In general, if A is an m X n matrixand Bisann X r
matrix that has been partitioned into columns

[by --- b,], then the block multiplication of A times
Bis given by

AB = (4b; Ab, --- Ab,)
In particular,
(a7 -+ a,)=A=AI=(Ae; --- Ae,)

Let A be an X n matrix. If we partition A into rows,
then



If Bis an nn X 7 matrix, the ith row of the product AB is
determined by multiplying the ith row of A times B.
Thus, the ith row of AB is &; B. In general, the product
AB can be partitioned into rows as follows:

a,B
AB — a,B
a,B
To illustrate this result, let us look at an example. If
5l
3 2 -3

|1 7]

then

aB= [1 9 —I]
@B= [5 10 —5
@B= [-4 9 4]

These are the row vectors of the product AB:
aB) (19 -1
AB= | B y 10 -5
R

Next, we consider how to compute the product AB in

E

terms of more general partitions of A and B.

Block Multiplication

Let A be an m X m matrix and B an n X r matrix. It is
often useful to partition A and B and express the product
in terms of the submatrices of A and B. Consider the
following four cases.



Case1.If B = [B; Bs], where By isann X t matrix
and By isann X (r — t) matrix, then
AB — A(b1 bt7bt+1 b )
— (Aby,...,Ab,, Aby.4,..., Ab,)
= (A(by...by),A(bti1...b,))
_ [AB, 4B
Thus,

A[Bl BQ] = [AB] ABQ]

A
Case2.If A = {Al} , where A7 is a k X n matrix and
2

Asisan (m — k) X n matrix, then

[ & | [ B |
A - .
[ 1} B _‘ak B _ _’akB
Ay Ak+1 ap1 B
K | @B |
o ;
| B
B ay - {AlB]
ayq 4B
: B
- 5m .

Thus,

Case3.Let A = [A; As]and B = [gll , where A
2

isanm X s matrix, Az isanm X (n — s) matrix, B;
isan s X 7 matrix, and Ba is an (n — s) X 7 matrix. If

C = AB, then

Cij = Z azlbl] = Z azlbl] + Z azlbl]

l=s+1



Thus, ¢;; is the sum of the (3, j) entry of A; B; and the
(2, j) entry of Ay By. Therefore,

AB=C=A1B) + A2B;

and it follows that

By

4 4 [

] = A1B; + AyBy

Case 4. Let A and B both be partitioned as follows:
A A | By | By |

by | Ap | WV By | By 11
§on-s [or-f

Let

A11:| |:A12:|

A - 3 A = ,

' {Au 2 A

B, = [Bin Bia], Ba= [Ba Ba]

It follows from case 3 that
B,
AB = [Al Az] |:B :| = AB; + AsBy
12

It follows from cases 1 and 2 that

An] |:A11-Bl:| [Aan A11312}
. [Am ! Ay By A21Bi1 AnBis
A12] |:A12BZ:| [AlzBu A12BZZ:|

202 [A22 2 A2 By A2y By Az B

Therefore,

[An A12] [311 Bl2:| _ [AHBM + A12By; Ay By +A1zB22}
Ay Ag By By A1 By + A By A Bia + Ap B

In general, if the blocks have the proper dimensions, the
block multiplication can be carried out in the same
manner as ordinary matrix multiplication, that is, if



A - Ap By -+ By

A= | and B=|:
Aa -+ Asg By -+ By
then
’7011 e Clr-‘
AB=|
[Csl tee Cer
where

t
Cij = Z Air By
k=1
The multiplication can be carried out in this manner only
if the number of columns of A;;, equals the number of
rows of By for each k.

Example 1
Let
1111
A=12 2 1 1
332 2}
and
rl 1 3
i 3




Partition A into four blocks and perform the block

multiplication.

SOLUT

ION

Since each Bj,; has two rows, the A;;’s must each have

two columns. Thus, we have one of two possibilities:

in which case

|

¥
ik

||

1
) ]

or

A Ap
Ay Ay

11

) )

3]

b

b T
0 1]




L1
) 2|1 |
33021

Ay Ap

(1
Ay Ap

in which case

L1
LI § 64 ]
A2
VU |f——
Y

11
=
~
=~
—

]
3|11 815710 12
31

\

Example 2

Let A be an n X n matrix of the form

A11 O
O Ay

where A7 isa k X k matrix (k < m). Show that A is
nonsingular if and only if A;; and A5 are nonsingular.

SOLUTION

If A11 and Agg are nonsingular, then
Al o [An 0] B [Ik o ] g
0O A,| 1O Ax O I,




and

Fﬂ o} A7l o
O An|| 0 A,

so A is nonsingular and

; [0 In—k] -

Al A7 O
O Ay

Conversely, if A is nonsingular, then let B = A~! and
partition B in the same manner as A. Since

BA=1I=AB
it follows that
[Bn Bl?] [An 0] _ |:Ik 0] _ [An 0] [311 By,
BQl B22 O A22 O In—k O A22 BZl 322
|:B11A11 Bl2A22:| _ |:Ik O:| _ |:A11B11 A11B12:|
B21A11 BQQAQQ O Infk A22B21 A22B22

Thus,

BllAll = Ik:AllBll
B22A22 = Infk :A22B22

Hence, A1 and Ass are both nonsingular with inverses
By1 and Bss, respectively.

Outer Product Expansions

Given two vectors x and y in R", it is possible to perform
a matrix multiplication of the vectors if we transpose one
of the vectors first. The matrix product x7Y is the
product of a row vector (a 1 X m matrix) and a column
vector (an X 1 matrix). The result willbeal x 1
matrix, or simply a scalar:

xly=[z1 22 ... o) | .| =291 + 222+ + 0y

|



This type of product is referred to as a scalar product or
an inner product. The scalar product is one of the most
commonly performed operations. For example, when we
multiply two matrices, each entry of the product is
computed as a scalar product (a row vector times a
column vector).

It is also useful to multiply a column vector times a row
vector. The matrix product xyT is the product of an

1 X 1 matrix times a 1 X n matrix. The result is a full
T X 1 matrix.

T T1Yyr Z1Y2 ... TiYn
T ) T2Y1r LT2Y2 ... T2Yn
xy = | .| [ p .. wl=
LwnJ anlh TnlY2 ... wnynJ

The product Xy is referred to as the outer product of x
and y. The outer product matrix has special structure in
that each of its rows is a multiple of yT and each of its
column vectors is a multiple of x. For example, if

4 3
x= |1 and y= |5
3 2

then

xyl = [ﬂ 3 5 2] = [122’) 22 z-l

B | 9 15 6

Note that each row is a multiple of (3, 5, 2) and each
column is a multiple of x.

We are now ready to generalize the idea of an outer
product from vectors to matrices. Suppose that we start
with an m X n matrix X and a £ X n matrix Y. We can
then form a matrix product XY 7. If we partition X into
columns and Y7 into rows and perform the block
multiplication, we see that XY 7 can be represented as a
sum of outer products of vectors:



yi

ys

v

This representation is referred to as an outer product

XYT=[x1 x2 -+ %] =X,y +Xy3 4+ +X,y0

expansion. These types of expansions play an important
role in many applications. In Section 6.5, we will see how
outer product expansions are used in digital imaging and
in information retrieval applications.

Example 3

Given

[3 1-| [1 2-|
X=12 4 and Y =12 4

|1 2] |5 1]

compute the outer product expansion of XY 7.

SOLUTION
31 -
XYT:24;£21§)
1 2 -
3 1
= 2[123]+4}[241]
1 2
(3 6 9 2 41
= |2 4 6|+1|8 16 4
(1 2 3 4 8 2




Section 1.6 Exercises

1. Let A be a nonsingular n X n matrix. Perform the following
multiplications:

LATT[A T
4]

5[4 I [A I
4]A I (A IT
5 [AI_I] A 1]

2. Let B = AT A. Show that bij = a;a]-.

3. Let
1 1 21
A — B =
1. Calculate Ab; and Ab,.
2. Calculate 8; B and a5 B.
3. Multiply AB and verify that its column vectors are the
vectors in part (a) and its row vectors are the vectors in
part (b).
4. Let

and



Perform each of the following block multiplications:

== = o o e~
2

MR A AN g8

Fd A4 88 44

~Q 00U O~ OR
O~ VO AQ MO

) <

5. Perform each of the following block multiplications:




00
00

| e L ]
| e | e

o | = L ]
| e | e

{em—
{m—T
[R—
_

= OO e O OO
= O o e OO
= O O D —
_— ] = D D
= D D O
L
s

6. Given
2 15 1 2 4
X e 5 Y =
4 2 3 2 31
1. Compute the outer product expansion of XY 7.
2. Compute the outer product expansion of Y X”. How is
the outer product expansion of Y X7 related to the outer
product expansion of XY T?
7. Let

T T
All A21

A:{AH A12] and AT — n
Ajy Ay

Ag An




Is it possible to perform the block multiplications of AAT and
AT A? Explain.

8. Let Abe an m X m matrix, X ann X r matrix,and Banm X r
matrix. Show that

AX =B
if and only if
Axj=bj, j=1,...,r
9. Let Abe an n X n matrix and let D be an n X n diagonal matrix.

1. Show that D = (duel, dgses, . . ., dmen)

2. Show that AD = (d11a1, dgpas, .. ., d,man)

10. Let Ube an m X m matrix, let Vbe an n X n matrix, and let

b
I
0]
where X7 is an n X n diagonal matrix with diagonal entries
01,02, ..., 0y and Ois the (m — n) X n zero matrix.

1. Show that if U = (Uy, Us), where Uy has n columns,
then

U =U%,

2. Show that if A = UX VT, then A can be expressed as an
outer product expansion of the form

T T T
A =oywmv] +oougvy + - 4 opu, vy,

11. Let

A A
4= [0 AZZ]

where all four blocks are n X m matrices.

1. If Aqq and Ass are nonsingular, show that A must also
be nonsingular and that A" must be of the form

Al C
O | A,

2. Determine C.



12. Let A and B be n X m matrices and let M be a block matrix of the
form

m=[o 3

Use condition (b) of Theorem 1.5.2 to show that if either A or B is
singular, then M must be singular.

13. Let
O 1
=[5 o

where all four submatrices are k X k. Determine A% and A*.

14. Let I denote the n X m identity matrix. Find a block form for the
inverse of each of the following 2n X 2n matrices:

(7]
5 9

15. Let O be the k X k matrix whose entries are all 0, I be the k X k

identity matrix, and B be a k X k matrix with the property that
B*=0.1f

=7

determine the block form of A1 + A2 + A3

16. Let A and B be n X m matrices and define 2n X 2n matrices S
and M by

I A AB O
=lo i m=[" 9

Determine the block form of S~! and use it to compute the block
form of the product S~ MS.

17. Let

An A12:|
A=
[AZI Az

where A17 isa k X k nonsingular matrix. Show that A can be
factored into a product

I O] [Au A
B I o C
where

B=AnAj' and C = Ap — Ay AjlAp,



(Note that this problem gives a block matrix version of the
factorization in Exercise 18 of Section 1.3.)

18. Let A, B, L, M, S, and T be n X m matrices with A, B, and M
nonsingular and L, S, and T singular. Determine whether it is
possible to find matrices X and Y such that

RS E -
NS

N QOO TO
QOO OO~
QO OO ~O0
QOO ~0QO0
QO ~QQO0
Q=< OQOQOO

If so, show how; if not, explain why.
19. Let Abe ann X n matrix and x € R".
1. A scalar ¢ can also be considered asa 1 X 1 matrix
C = (C), and a vector b € R can be considered as an
n X 1 matrix B. Although the matrix multiplication CB

is not defined, show that the matrix product BC is equal
to cb, the scalar multiplication of ¢ times b.

2. Partition A into columns and x into rows and perform
the block multiplication of A times x.

3. Show that
Ax = xz1a; + a3 + - - - + Tpa,
20. If Ais an n X m matrix with the property that Ax = O for all
x € R", showthat A = O. Hint: Letx = ejforj=1,...,n.

21. Let Band Cbe m X m matrices with the property that Bx = Cx
for all x € R™. Show that B = C.

22. Consider a system of the form

Lf; 2] Lt] - [bl';]

where A is a nonsingular n X 1 matrix and a, b, and ¢ are vectors

in R™.
1. Multiply both sides of the system by

A1 0
—cfAa 1t 1

to obtain an equivalent triangular system.

2. Sety = A 'aand z = A~'b. Show that if
68— cTy = 0, then the solution of the system can be
determined by letting



bni1 — c'z

Tpi1
n-+ ‘B— CTy

and then setting

X =2 — Tpily



Chapter 1 Exercises

MATLAB Exercises

The exercises that follow are to be solved
computationally with the software package MATLAB,
which is described in the appendix of this book. The
exercises also contain questions that are related to the
underlying mathematical principles illustrated in the
computations. Save a record of your session in a file.
After editing and printing out the file, you can fill in the
answers to the questions directly on the printout.

MATLAB has a help facility that explains all its
operations and commands. For example, to obtain
information on the MATLAB command rand, you need
only type help rand. The commands used in the
MATLAB exercises for this chapter are inv, floor,
rand, tic, toc, rref, abs, max, round, sum, eye,
triu, ones, zeros, and magic. The operations
introduced are +, — , *, ! ,and\. The + and —
represent the usual addition and subtraction operations
for both scalars and matrices. The * corresponds to
multiplication of either scalars or matrices. For
matrices whose entries are all real numbers, the ’
operation corresponds to the transpose operation. If A
is a nonsingular n x n matrix and B is any n x r matrix,
the operation A\B is equivalent to computing A'B.

1. Use MATLAB to generate random 4 X 4 matrices A and B. For
each of the following, compute A1, A2, A3, and A4 as indicated and
determine which of the matrices are equal (you can use MATLAB
to test whether two matrices are equal by computing their
difference).



1.

Al = A* B, A2 = B* A, A3 — (Ar* Bi)i, Ad — (Br* Ay

2.
Al = Ar*B1,A2 = (A*B),A3 = Br* A1, A4 = (B* A)/
3.
Al =inv(A* B), A2 = inv(A) *inv(B), A3 = inv(B* A), A4 = inv(B) *inv(A)
4

. Al =inv((A* B)), A2 = inv(Ar * Br), A3 = inv(A/) *inv(Br) A4 = (inv(A) *inv(B))/

2. Set n = 200 and generate an n. X n matrix and two vectors in R"
, both having integer entries, by setting

A= floor(10 * rand(n));
b= sum(A4/)r,
z = ones(n,1);

(Since the matrix and vectors are large, we use semicolons to
suppress the printout.)

1. The exact solution of the system Ax = b should be the
vector z. Why? Explain. One could compute the solution
in MATLAB using the “\” operation or by computing
A" and then multiplying A~ times b. Let us compare
these two computational methods for both speed and
accuracy. One can use MATLAB’s tic and toc
commands to measure the elapsed time for each
computation. To do this, use the commands

tic,x = A\b; toc
tic,y = inv(A) * b; toc
Which method is faster?

To compare the accuracy of the two methods, we can
measure how close the computed solutions x and y are to
the exact solution z. Do this with the commands

max(abs(x — z))
max(abs(y — z))
Which method produces the most accurate solution?

2. Repeat part (a), using n = 500 and n = 1000.

3. Set A = floor(10 * rand(6)). By construction, the matrix A will
have integer entries. Let us change the sixth column of A so as to
make the matrix singular. Set

B=Ar A(:,6)=—sum(B(1:5,:))

1. Set x = ones(6, 1) and use MATLAB to compute Ax.
Why do we know that A must be singular? Explain.



Check that A is singular by computing its reduced row
echelon form.

2. Set
B=x*[1:6]

The product AB should equal the zero matrix. Why?
Explain. Verify that this is so by computing AB with the
MATLAB operation *.

3. Set
C = floor(10 * rand(6))
and
D=B+C

Although C' # D, the products AC and AD should be
equal. Why? Explain. Compute A * C'and A * D, and
verify that they are indeed equal.

4. Construct a matrix as follows: Set
B = eye(10) — triu(ones(10), 1)
Why do we know that B must be nonsingular? Set
C =inv(B) and x=C(:;10)

Now change B slightly by setting B(10,1) = —1/256. Use
MATLAB to compute the product Bx. From the result of this
computation, what can you conclude about the new matrix B? Is it
still nonsingular? Explain. Use MATLAB to compute its reduced
row echelon form.

5. Generate a matrix A by setting
A = floor(10 * rand(6))
and generate a vector b by setting

b = floor(20 * rand(6, 1)) — 10

1. Since A was generated randomly, we would expect it to
be nonsingular. The system Ax = b should have a
unique solution. Find the solution using the “\”
operation. Use MATLAB to compute the reduced row
echelon form U of [A  b]. How does the last column of
U compare with the solution x? In exact arithmetic, they
should be the same. Why? Explain. To compare the two,
compute the difference U(:, 7) — x or examine both
using format long.

2. Let us now change A so as to make it singular. Set

A(5,3) = A(:;,1:2)*[43)



Use MATLAB to compute rref([A b]). How many
solutions will the system Ax = b have? Explain.

3. Set
y = floor(20 * rand(6,1)) — 10
and
c=A*y

Why do we know that the system Ax = ¢ must be
consistent? Explain. Compute the reduced row echelon
form U of [A ¢]. How many solutions does the system
Ax = chave? Explain.

4. The free variable determined by the echelon form should
be z3. By examining the system corresponding to the
matrix U, you should be able to determine the solution
corresponding to £3 = 0. Enter this solution into
MATLARB as a column vector w. To check that Aw = ¢,
compute the residual vector ¢ — Aw.

5.Set U(:, 7) = zeros(6, 1). The matrix U should now
correspond to the reduced row echelon form of (4 | 0).
Use U to determine the solution of the homogeneous
system when the free variable 3 = 1 (do this by hand)
and enter your result as a vector z. Check your answer by
computing A * z.

6. Set v.= w + 3 * z. The vector v should be a solution of
the system Ax = c¢. Why? Explain. Verify that vis a
solution by using MATLAB to compute the residual
vector ¢ — Av. What is the value of the free variable 3
for this solution? How could we determine all possible
solutions of the system in terms of the vectors w and z?
Explain.

6. Consider the graph



o
Vs

1. Determine the adjacency matrix A for the graph and
enter it in MATLAB.

2. Compute A? and determine the number of walks of

length 2 from (i) V7 to V7,(i1) V4 to Vg, (iii) Vi to Vi, and
(iv) Vg to Va.

3. Compute A%, A6 and A® and answer the questions in

part (b) for walks of lengths 4, 6, and 8. Make a
conjecture as to when there will be no walks of even
length from vertex V; to vertex V.

4. Compute A3, A5 and A7 and answer the questions from

part (b) for walks of lengths 3, 5, and 77. Does your
conjecture from part (c) hold for walks of odd length?
Explain. Make a conjecture as to whether there are any
walks of length k from V; to V) based on whether

i+ 7 + kis odd or even.

5. If we add the edges { V3, V5 }, { Vs, Vs } to the graph, the

adjacency matrix B for the new graph can be generated
by setting B = A and then setting



B(3,6)=1, B(6,3)=1,
1
b

B(5,8) =

Compute B¥ for k = 2, 3, 4, 5. Is your conjecture from
part (d) still valid for the new graph?

6. Add the edge { V5, V3} to the figure and construct the
adjacency matrix C for the resulting graph. Compute
powers of C to determine whether your conjecture from
part (d) will still hold for this new graph.

7. In Application 1 of Section 1.4, the numbers of married and single
women after 1 and 2 years were determined by computing the
products AX and A%X for the given matrices A and X. Use
format long and enter these matrices in MATLAB. Compute A*
and A*X for k = 5,10, 15, 20. What is happening to A as k
gets large? What is the long-run distribution of married and single
women in the town?

8. The following table describes a seven-stage model for the life cycle
of the loggerhead sea turtle:

Seven-Stage Model for Loggerhead Sea Turtle

Demographics

Stage Description (age Annual Eggs Laid per
Number in years) Survivorship Year

1 Eggs, hatchlings (<1) 0.6747 0

2 Small juveniles (1-7) 0.7857 0

3 Large juveniles (8—15) 0.6758 0

4 Subadults (16—21) 0.7425 0

5 Novice breeders (22) 0.8091 127

6 First-year remigrants (23) 0.8091 4

7 Mature breeders (24—54) 0.8091 80

The corresponding Leslie matrix is



[0 0 0 0o 127 4 80 1
0.6747 0.7370 0 0 0 0 0
0  0.0486 0.6610 0 0 0 0
L=| 0 0  0.0147 0.6907 0 0 0
0 0 0 00518 0 0 0
0 0 0 0 08091 0 0

L o 0 0 0 0  0.8091 0.8089)

Suppose that the number of turtles in each stage of the initial
turtle population is described by the vector

xo = (200,000 130,000 100,000 70,000 500 400 1100)T

1. Enter L into MATLAB and then set
x0 = [200000, 130000, 100000, 70000, 500, 400, 1100}/
Use the command

x50 = round(L.50 * x0)

to compute X5g. Compute also the values of x99, X150,
X200, X250, and X300

2. Loggerhead sea turtles lay their eggs on land. Suppose
that conservationists take special measures to protect
these eggs and, as a result, the survival rate for eggs and
hatchlings increases to 77 percent. To incorporate this
change into our model, we need only change the (2,1)
entry of L to 0.77. Make this modification to the matrix L
and repeat part (a). Has the survival potential of the
loggerhead sea turtle improved significantly?

3. Suppose that, instead of improving the survival rate for
eggs and hatchlings, we could devise a means of
protecting the small juveniles so that their survival rate
increases to 88 percent. Use equations (1) and (2) from
Application 2 of Section 1.4 to determine the proportion
of small juveniles that survive and remain in the same
stage and the proportion that survive and grow to the
next stage. Modify your original matrix L accordingly
and repeat part (a), using the new matrix. Has the
survival potential of the loggerhead sea turtle improved
significantly?

9. Set A = magic(8) and then compute its reduced row echelon
form. The leading 1’s should correspond to the first three variables
1, T2, and 3, and the remaining five variables are all free.

1. Set ¢ = [1 : 8]/ and determine whether the system
Ax = cis consistent by computing the reduced row
echelon form of [A c]. Does the system turn out to be
consistent? Explain.



10. Set

and

2. Set

b=[8 -8-8 8 8 —8 —8 8J;;

and consider the system Ax = b. This system should be
consistent. Verify that it is by computing

U = rref([A b]). We should be able to find a solution
for any choice of the five free variables. Indeed, set

x2 = floor(10 * rand(5, 1)). If x2 represents the last
five coordinates of a solution of the system, then we
should be able to determine x1 = (1, Za, z3) in
terms of x2. To do this, set U = rref([A b]). The
nonzero rows of U correspond to a linear system with
block form

I v] [g] _p

®

To solve equation (1), set
V=U(1:3,4:8), ¢c=U(1:3,9)

and use MATLAB to compute x1 in terms of x2, ¢, and V.
Setx = [x1; x2]and verify that x is a solution of the
system.

B=[-1,-1: 1,1]

A = [zeros(2), eye(2); eye(2), B]

and verify that B2 = O.

11.

1. Use MATLAB to compute A%, A% A and A%. Make a
conjecture as to what the block form of A%k will be in
terms of the submatrices I, O, and B. Use mathematical
induction to prove that your conjecture is true for any
positive integer k.

2. Use MATLAB to compute A®, A%, A7, and A°. Make a

conjecture as to what the block form of A%=1 yill be in
terms of the submatrices I, O, and B. Prove your
conjecture.

1. The MATLAB commands

A = floor(10 *rand(6)), B= Ar* A



will result in a symmetric matrix with integer entries.
Why? Explain. Compute B in this way and verify these
claims. Next, partition B into four 3 X 3 submatrices. To
determine the submatrices in MATLAB, set

Bll1=DB(1:3,1:3), Bl2=DB(1:3, 4:6)

and define B21 and B22 in a similar manner using rows 4
through 6 of B.

. Set C' = inv(B11). It should be the case that CT = C'
and BZlTy = B12. Why? Explain. Use the MATLAB
operation to compute the transposes and verify these
claims. Next, set

E=DB21*C and F = B22— B21*C* B2l/

and use the MATLAB functions eye and zeros to
construct

L_[1 O] ,_[B1oO
“|lE I T |0 F

Compute H = L * D * Lt and compare H with B by
computing H — B. Prove that if all computations had
been done in exact arithmetic, LD LT would equal B
exactly.



Chapter Test A True or False

This chapter test consists of true or false questions. In
each case, answer true if the statement is always true and
false otherwise. In the case of a true statement, explain
or prove your answer. In the case of a false statement,
give an example to show that the statement is not always
true. For example, consider the following statements
about . X m matrices A and B:

1A+B=B+A
2. AB = BA

Statement (i) is always true. Explanation: The (i, j) entry
of A+ Bis a;j + b;; and the (i, j) entry of B + A is

bij + a;;. Since a;; + b;; = b;; + a;jfor each i andj, it
follows that A + B = B + A.

The answer to statement (ii) is _false. Although the
statement may be true in some cases, it is not always
true. To show this, we need only exhibit one instance in
which equality fails to hold. For example, if

o nef

31 11
then
4 5 11 7
AB = [7 10] and BA = { 4 3]

This proves that statement (ii) is false.

. If the row reduced echelon form of A involves free variables, then
the system Ax = b will have infinitely many solutions.

Ju

2. Every homogeneous linear system is consistent.

3. Ann X 1 matrix A is nonsingular if and only if the reduced row
echelon form of A is I (the identity matrix).

4. If A is nonsingular, then A can be factored into a product of
elementary matrices.

5. If A and B are nonsingular 7 X n matrices, then A + B is also
nonsingular and (A + B)f1 =A1+BL



6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

If A = A~ then A must be equal to either I or — I.

If A and B are n X n matrices, then

(A - B)2 = A’ 2AB+ B
If AB = AC and A # O (the zero matrix), then B = C.
If AB = O, then BA = O.

IfAisa 3 X 3 matrix and a; + 2as — ag = 0, then A must be
singular.

IfAisa4 X 3 matrixand b = a; + ag, then the system Ax = b
must be consistent.

Let Abe a4 X 3 matrix with as = a3. If b = a; + as + as, then
the system Ax = b will have infinitely many solutions.

If E is an elementary matrix, then F/ T'is also an elementary
matrix.

The product of two elementary matrices is an elementary matrix.

If x and y are nonzero vectors in R” and A = xy7, then the row
echelon form of A will have exactly one nonzero row.



Chapter Test B

1. Find all solutions of the linear system

r1— o+ 3x3+ 224 = 1
—x1+ Ty — 223+ x4 = —2
2¢1 — 2x9 + Txs+Tey = 1

1. A linear equation in two unknowns corresponds to a line
in the plane. Give a similar geometric interpretation of a
linear equation in three unknowns.

2. Given a linear system consisting of two equations in
three unknowns, what is the possible number of
solutions? Give a geometric explanation of your answer.

3. Given a homogeneous linear system consisting of two
equations in three unknowns, how many solutions will it
have? Explain.

3. Let Ax = b be a system of n linear equations in n unknowns and
suppose that x; and X3 are both solutions and x; # X.

1. How many solutions will the system have? Explain.

2. Is the matrix A nonsingular? Explain.

4. Let A be a matrix of the form

o« B
A= e 54

where a and [ are fixed scalars not both equal to 0.

1. Explain why the system

o]

must be inconsistent.

2. How can one choose a nonzero vector b so that the
system Ax = b will be consistent? Explain.

5. Let
|'213'| |'213'| 013‘|
A=+4 2 7, B=:13 5, C=+ 0 2 7
l1 3 5] la 2 7] |l -5 3 5l

1. Find an elementary matrix E such that FA = B.



6.

7.

10.

11.

12.

2. Find an elementary matrix F such that AF' = C.

Let Abe a3 X 3 matrix and let
b = 3a; + as + 4a3
Will the system Ax = b be consistent? Explain.
Let Abe a 3 X 3 matrix and suppose that
a; — 3ay + 2a3 = 0 (the zero vector)

Is A nonsingular? Explain.

. Given the vector

=

is it possible to find 2 X 2 matrices A and B so that A # B and
Axy = Bxg? Explain.

. Let A and B be symmetric 7 X n matrices and let C = AB.IsC

symmetric? Explain.

Let E and Fbe n X n elementary matrices and let C = EF.1s C
nonsingular? Explain.

Given

I O O]
O I O
o B Il

A=
|
where all of the submatrices are n X n, determine the block form
of AL

Let A and B be 10 x 10 matrices that are partitioned into
submatrices as follows:

A Ar B By
A - B =
[Am Azz] ’ {321 B22]

1. If Aq1isa 6 X 5 matrix, and Bqq is a k X 7 matrix, what
conditions, if any, must k and r satisfy in order to make
the block multiplication of A times B possible?

2. Assuming that the block multiplication is possible, how
would the (2, 2) block of the product be determined?



Chapter 2 Determinants
B(1)
T(1)

Full Alternative Text

With each square matrix, it is possible to associate a real
number called the determinant of the matrix. The value
of this number will tell us whether the matrix is singular.

In Section 2.1, the definition of the determinant of a
matrix is given. In Section 2.2, we study properties of
determinants and derive an elimination method for
evaluating determinants. The elimination method is
generally the simplest method to use for evaluating the


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_co-02.xhtml#la_co-02

determinant of an n X n matrix whenn > 3. In Section
2.3, we see how determinants can be applied to solving

n X n linear systems and how they can be used to
calculate the inverse of a matrix. Two applications of
determinants are presented in Section 2.3. Additional
applications will also be presented later in Chapters 3
and 6.



2.1 The Determinant of a
Matrix

With each n X n matrix A, it is possible to associate a
scalar, det(A), whose value will tell us whether the matrix
is nonsingular. Before proceeding to the general
definition, let us consider the following cases.

Case 1.1 X 1 MatricesIf A = (a)isal X 1 matrix,
then A will have a multiplicative inverse if and only if
a # 0. Thus, if we define

det(4) =a

then A will be nonsingular if and only if det(A) # 0.

Case 2. 2 X 2 Matrices Let

A [au alz]

az1 a2

By Theorem 1.5.2, A will be nonsingular if and only if it is
row equivalent to I. Then, if a1; # 0, we can test
whether A is row equivalent to I by performing the
following operations:

1. Multiply the second row of A by a11:
[ an ap }
a11021 11022

2. Subtract ao; times the first row from the new second row:

ai a12
0  araz —azar

Since a1 # 0, the resulting matrix will be row
equivalent to I if and only if

aiia — anaiz # 0

)



If a;; = 0, we can switch the two rows of A. The
resulting matrix

a1 a2
0 ap
will be row equivalent to I if and only if as; a2 7 0. This

requirement is equivalent to condition (1) when a1; = 0.
Thus, if A is any 2 X 2 matrix and we define

det(A) = a11Qa92 — Q12021

then A is nonsingular if and only if det(A) # 0.

Notation

We can refer to the determinant of a specific matrix by
enclosing the array between vertical lines. For example,

if
3 4
a=[3 3]
then
3 4
2 1

represents the determinant of A.

Case 3. 3 X 3 Matrices We can test whethera 3 X 3
matrix is nonsingular by performing row operations to
see if the matrix is row equivalent to the identity matrix
I. To carry out the elimination in the first column of an
arbitrary 3 X 3 matrix A, let us first assume that

a11 # 0. The elimination can then be performed by
subtracting as; / a1 times the first row from the second
and ag; / a1 times the first row from the third:

|_ a @ a13] [ ail a12 a13

12 0 Q1102 —a2n012 411023 — A1013

I a az a3l — | ail ail |

as] as2 ass I- 0 a11a32a_ as31a12 a11a33a_ as1a13 J
11 11




The matrix on the right will be row equivalent to I if and
only if

a11Q22 — A21Q12  G11023 — A21A13
a ajl ar 4
Hlaiag —asia12  aniass — asgiaig
ajl a

Although the algebra is somewhat messy, this condition
can be simplified to

(11022033 — A11A32023 — A12021033 + Q12031023
+ a13a21a32 — ai3asiaz 7# 0
(2)
Thus, if we define
det(A) = ai1aa33 — a11a32a23 — a12021033
+a12a31023 + @13a21032 — A13G31A22
(3)

then, for the case a;; # 0, the matrix will be
nonsingular if and only if det(A) # 0. What if
a1 = 07 Consider the following possibilities:

1L aj; = 0,@21 75 0
2.Q11 = Q91 = 0,&31 75 0

3.a11 =az =az =0

In case (i), one can show that A is row equivalent to I if
and only if

—12021033 + A12431023 + A13G21032 — (13031022 7 0

But this condition is the same as condition (2) with
a1 = 0. The details of case (i) are left as an exercise for
the reader (see Exercise 7 at the end of the section).

In case (ii), it follows that

[ 0 ap a13)
A=1 0 ax» a3
|- asy  as2 a33J

is row equivalent to I if and only if



as1(@a12a23 — azzai3) # 0

Again, this is a special case of condition (2) with
aj; = az = 0.

Clearly, in case (iii) the matrix A cannot be row
equivalent to I and hence must be singular. In this case,
if we set a1, as1, and as; equal to 0 in formula (3), the
result will be det(A) = 0.

In general, then, formula (2) gives a necessary and
sufficient condition for a 3 X 3 matrix A to be
nonsingular (regardless of the value of a11).

We would now like to define the determinant of an
n X n matrix. To see how to do this, note that the
determinant of a 2 X 2 matrix

s [au an]

az1 a2z

can be defined in terms of the two 1 X 1 matrices
My = (ag2) and M = (an1)

The matrix M7 is formed from A by deleting its first
row and first column, and M2 is formed from A by
deleting its first row and second column.

The determinant of A can be expressed in the form

det(A) = a11Q922 — Q12021 = A11 det(Mu) — a12 det(Mlg)
@

For a 3 X 3 matrix A, we can rewrite equation (3) in the
form

det(A) = ai1(agass — asagz) — aia(aziass — asiass) + a13(azases — asiaz)

For j = 1, 2, 3, let M denote the 2 X 2 matrix formed
from A by deleting its first row and jth column. The
determinant of A can then be represented in the form

det(A) — all det(Mll) - a12 det(Mlz) + a13 det(M13)



a1 a2
M =
s {am a32]
To see how to generalize (4) and (5) to the case n > 3, we

introduce the following definition.

Definition

Let A = (aij) be an n X m matrix and let Mij denote
the (n — 1) X (n — 1) matrix obtained from A by
deleting the row and column containing a;;. The
determinant of Mij is called the minor of a;;. We
define the cofactor A;; of a;; by

Ay = (—1)" det (M)

In view of this definition, for a 2 X 2 matrix A, we may
rewrite equation (4) in the form

det(A) =an A1 + apdps (n = 2)
(6)

Equation (6) is called the cofactor expansion of det(A)
along the first row of A. Note that we could also write

det(A) = azi(—a12) + aznair = a1 A + azn Az
@

Equation (7) expresses det(A) in terms of the entries of
the second row of A and their cofactors. Actually, there is
no reason that we must expand along a row of the
matrix; the determinant could just as well be represented
by the cofactor expansion along one of the columns:

det(A) = aina + az(—aiz)
a1 A + a1 Aa (first column)
ar2(—a9) + azai;
a12A12 + axnAxn (second column)

det(A)



For a 3 X 3 matrix A, we have

det(A) = a1 A1 + apdiz + ai3Aiz
(8)

Thus, the determinant of a 3 X 3 matrix can be defined
in terms of the elements in the first row of the matrix and
their corresponding cofactors.

Example 1

If
|'2 5 4'|
A=13 1 2,
l5 4 6]
then

det(4) = a1 dir + a12di2 + a12413
= (—1)2(111 det(Mn) =+ (—1)3a12 det(Mlz) + (—1)4(113 det(Mlg)

12 32 |31
- 2‘4 6’5 6 +4‘5 4‘
— 2(6—8) — 5(18 — 10) + 4(12 - 5)
~ 16

As in the case of 2 X 2 matrices, the determinant of a

3 X 3 matrix can be represented as a cofactor expansion
using any row or column. For example, equation (3) can
be rewritten in the form

det(A) = ai2a31a23 — a13031a22 — Q11032023 + Q13021032 + A11A22033 — Q12021033
az1(a12a23 — a13a2) — asz(ai1az3 — aizaz) + ass(aiaze — ai2as)
= a3 A3 + asAsy + aszAss

This is the cofactor expansion along the third row of A.

Example 2

Let A be the matrix in Example 1. The cofactor expansion
of det(A) along the second column is given by



det(4) = _5‘3 2 2 4 2 4‘

5 6 5 6 3 2
= —5(18 — 10) 4+ 1(12 — 20) — 4(4 — 12) = —16

15 o4

The determinant of a 4 X 4 matrix can be defined in
terms of a cofactor expansion along any row or column.
To compute the value of the 4 X 4 determinant, we
would have to evaluate four 3 X 3 determinants.

Definition

The determinant of an n X 1 matrix A, denoted
det(A), is a scalar associated with the matrix A that is
defined inductively as

o ail ifn=1
det(4) = {auAn +app A+ +apdy, ifn>1

where
Aij= (1) det(Myy) j=1,...,n

are the cofactors associated with the entries in the first
row of A.

As we have seen, it is not necessary to limit ourselves to
using the first row for the cofactor expansion. We state
the following theorem without proof:

Theorem 2.1.1

IfAisann X n matrix withn > 2, then det(A) can be
expressed as a cofactor expansion using any row or
column of A:

det(A) = aindia+apdip +- -+ andin
= a1jAyj + agjAgj+ -+ anjAy

fori=1, ...,nandj=1,...,n.



The cofactor expansion of a4 X 4 determinant will
involve four 3 X 3 determinants. We can often save
work by expanding along the row or column that
contains the most zeros. For example, to evaluate

N O O O
(==l N
= O ot W
w w o o

we would expand down the first column. The first three
terms will drop out, leaving

2 3

4 5‘:12

230
—2/4 5 0 :—2.3-‘

10 3
For n < 3, we have seen that an n X m matrix A is
nonsingular if and only if det(A) # 0. In the next
section, we will show that this result holds for all values
of n. In that section, we also look at the effect of row
operations on the value of the determinant, and we will
make use of row operations to derive a more efficient
method for computing the value of a determinant.

We close this section with three theorems that are
consequences of the cofactor expansion definition. The
proofs of the last two theorems are left for the reader (see
Exercises 8, 9, and 10 at the end of this section).

Theorem 2.1.2

IfAisann X n matrix, then det(AT) = det(A).
Proof

The proof is by induction on n. Clearly, the result holds if
n = 1, sincea 1 X 1 matrix is necessarily symmetric.
Assume that the result holds for all £ X k matrices and



thatAisa (k + 1) x (k + 1) matrix. Expanding det(A)
along the first row of A, we get

det(A) =ai det(Mn) — a2 det(M12) + = Ear g det(ML;H_l)
Since the M;;’s are all k x k matrices, it follows from

the induction hypothesis that

det(A) = ay; det(Mi;) — arp det(Miy) + — - - - +a1 p1 det(Mka)
(9)

The right-hand side of (9) is just the expansion by
minors of det(A”) using the first column of A7,
Therefore,

det(AT) = det(A)

Theorem 2.1.3

If Ais an n X n triangular matrix, then the
determinant of A equals the product of the diagonal
elements of A.

Proof

In view of Theorem 2.1.2, it suffices to prove the theorem
for lower triangular matrices. The result follows easily
using the cofactor expansion and induction on n. The
details are left for the reader (see Exercise 8 at the end of
the section).

Theorem 2.1.4

Let A be an n X n matrix.



1. If A has a row or column consisting entirely of zeros, then

det(A) = 0.

2. If A has two identical rows or two identical columns, then

det(4) = 0.

Both of these results can be easily proved with the use of
the cofactor expansion. The proofs are left for the reader
(see Exercises 9 and 10).

In the next section, we look at the effect of row
operations on the value of the determinant. This will
allow us to make use of Theorem 2.1.3 to derive a more
efficient method for computing the value of a
determinant.



Section 2.1 Exercises

1. Let
|'3 2 4'|
A=11 -2 3
lo 3 2l

1. Find the values of det(Ma; ), det(Mas), and det(Mas)

2. Find the values of As;, Ags, and Ass.

3. Use your answers from part (b) to compute det(A).

2. Use determinants to determine whether the following 2 X 2
matrices are nonsingular:

. 3 5
-2 -3
) 5 —2
-8 4
3 1 2
3.2 45
2 45
4 3 0
4.3 1 2
5 -1 —4
1 3 2
504 1 —2
21 3
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4. Evaluate the following determinants by inspection:

=]

|
%)

»
=N W N RN W
I

N = O w = O = Ot
=

N Ol
N WA NN

o O O O
[

5. Evaluate the following determinant. Write your answer as a
polynomial in x:

6. Find all values of A for which the following determinant will equal
O:

2—-X 4
3 3-A

7. Let Abe a 3 X 3 matrix with a;; = 0 and ag; # 0. Show that A is
row equivalent to I if and only if

—@12Q91033 1 Q12031003
+013091037 — A13031099 F# 0

8. Write out the details of the proof of Theorem 2.1.3.



9. Prove that if a row or a column of an . X 1 matrix A consists
entirely of zeros, then det(A) = 0.

10. Use mathematical induction to prove that if A is an
(n+ 1) x (n + 1) matrix with two identical rows, then
det(4) = 0.

11. Let A and Bbe 2 X 2 matrices.
1. Does det(A + B) = det(A) + det(B)?
2. Does det(AB) = det(A)det(B)?
3. Does det(AB) = det(BA)?

Justify your answers.

12. Let A and Bbe 2 X 2 matrices and let

C— [an 012], D_ [511 b12]’

ba1  bo a1 a

0 o
E —=
5 1)
1. Show that

det(A + B) = det(A) + det(B) + det(C) + det(D)

2. Show that if B = F A, then
det(A + B) = det(A) + det(B).

13. Let A be a symmetric tridiagonal matrix (i.e., A is symmetric and
a;; = 0 whenever |¢ — j| > 1). Let B be the matrix formed from
A by deleting the first two rows and columns. Show that

det(A) = ay; det(My1) — ajydet(B)



2.2 Properties of
Determinants

In this section, we consider the effects of row operations
on the determinant of a matrix. Once these effects have
been established, we will prove that a matrix A is
singular if and only if its determinant is zero, and we will
develop a method for evaluating determinants by using
row operations. Also, we will establish an important
theorem about the determinant of the product of two
matrices. We begin with the following lemma:

Lemma 2.2.1

Let A be anmn X n matrix. If A, denotes the cofactor of
ajpfork =1, ..., n,then

det(A) ifi=j
ailAj1+ai2Aj2+"'+ainAjn—{0 (4) z}fl#;

®
Proof

If 2 = 3, (1) is just the cofactor expansion of det(A) along
the ith row of A. To prove (1) in the case 7 7~ j, let A* be
the matrix obtained by replacing the jth row of A by the
ith row of A:

[CLH aip ... aln]
a;1 G2 ... Qin

A= jth row

a;1 a;2 ... Qi

I_anl ap2 ... CLnnJ



Since two rows of A* are the same, its determinant must
be zero. It follows from the cofactor expansion of det(A*
) along the jth row that

*

0 = det(A*) = ai]_Ajl =+ ai2Aj2 4+ 4 ainAjn
aitAji + apAjp + -+ aindj

Let us now consider the effects of each of the three row
operations on the value of the determinant.

Row Operation |

Two rows of A are interchanged.

IfAisa 2 X 2 matrix and

01
o=l
then
det(EA) = dan 2 = Q921Q12 — A22Q11 = —det(A)
air a2

Forn > 2,let E;; be the elementary matrix that
switches rows i and j of A. An induction proof can show
that det(E;;A) = —det(A). We illustrate the idea
behind the proof for the case n = 3. Suppose that the
first and third rows of a 3 X 3 matrix A have been
interchanged. Expanding det(E;3A) along the second
row and making use of the result for 2 X 2 matrices, we
see that



agyp az2 ass
det(ElgA) = as1 Q22 Q23

ajp a2 ais

o as2 as3 as1 asg as; as
= —a2 + az — Q23
a2 a3 ail ai; ap
. a1z a3 a aji; a3 ta ai; Q12
= an — a2 23
as2 ass as1 ass as;  as
= —det(4)

In general, if A is an n X 1 matrix and Eij isthen X n
elementary matrix formed by interchanging the ith and
jth rows of I, then

det(E;jA) = —det(A)
In particular,
det(E;j) = det(EyI) = —det(I) = —1
Thus, for any elementary matrix E of type I,

det(FA) = —det(A) = det(F) det(A)

Row Operation Il

A row of A is multiplied by a nonzero scalar.

Let E denote the elementary matrix of type II formed
from I by multiplying the ith row by the nonzero scalar o
. If det(EA) is expanded by cofactors along the ith row,
then

det(EA) = aapdy + aapdp + -+ aap A
= oafandi + apdip + -+ aindin)
= adet(A)

In particular,
det(E) = det(EI) = adet(I) = «

and hence,

det(FA) = o det(A) = det(E) det(A)



Row Operation Il

A multiple of one row is added to another row.

Let E be the elementary matrix of type III formed from I
by adding c times the ith row to the jth row. Since E is
triangular and its diagonal elements are all 1, it follows
that det(E) = 1. We will show that

det(EA) = det(A) = det(E) det(A)

If det(EA) is expanded by cofactors along the jth row, it
follows from Lemma 2.2.1 that

det(EA) = (ajl + cail)Aﬂ + (CL]‘Q + C(J,Z'Q)AJQ + -4+ (ajn + Cam)Aj
(alejl + -+ ajnAjn) + C(aﬂAﬂ + -+ amAjn)

= det(4)
Thus,
det(FA) = det(A) = det(E) det(A)
Summary

In summation, if E is an elementary matrix, then
det(EA) = det(E) det(A)
where

[ -1 if Fis of typeI
det(E) ={ a # 0 if Eisof type Il
"1 If E is of type III

(2

Similar results hold for column operations. Indeed, if E
is an elementary matrix, then ET isalso an elementary
matrix (see Exercise 8 at the end of the section) and

det(AE) = det((AE)") = det(ETAT)
det(ET) det(AT) = det(E) det(A)



Thus, the effects that row or column operations have on
the value of the determinant can be summarized as
follows:

1. Interchanging two rows (or columns) of a matrix changes the sign
of the determinant.

2. Multiplying a single row or column of a matrix by a scalar has the
effect of multiplying the value of the determinant by that scalar.

3. Adding a multiple of one row (or column) to another does not
change the value of the determinant.

Note

As a consequence of III, if one row (or column) of a
matrix is a multiple of another, the determinant of the
matrix must equal zero.

Main Results

We can now make use of the effects of row operations on
determinants to prove two major theorems and to
establish a simpler method of computing determinants.
It follows from (2) that all elementary matrices have
nonzero determinants. This observation can be used to
prove the following theorem.

Theorem 2.2.2

Ann X n matrix A is singular if and only if
det(A) =0

Proof

The matrix A can be reduced to row echelon form with a
finite number of row operations. Thus,

U=EyE;---E A



where U is in row echelon form and the E;’s are all
elementary matrices. It follows that

det(U) det(EkEk_l te ElA)

det(Ey) det(Eg_1) - - - det(Er) det(A)

Since the determinants of the F;’s are all nonzero, it
follows that det(A) = 0 if and only if det(U) = 0.If A
is singular, then U has a row consisting entirely of zeros,
and hence det(U) = 0. If A is nonsingular, then U is
triangular with 1’s along the diagonal and hence

det(U) = 1.

From the proof of Theorem 2.2.2, we can obtain a
method for computing det(A). We reduce A to row
echelon form.

U=FEE, - -EA

If the last row of U consists entirely of zeros, A is singular
and det(A) = 0. Otherwise, A is nonsingular and

det(A) = [det(E},) det(Ey_1) - - - det(E)] ™

Actually, if A is nonsingular, it is simpler to reduce A to
triangular form. This can be done using only row
operations I and III. Thus,

T—=E.E, - EA
and hence,
det(A) = +det(T) = ttiiton -« tyn

where the t;;’s are the diagonal entries of T. The sign will
be positive if row operation I has been used an even
number of times and negative otherwise.

Example 1

Evaluate



2 13
4 21
6 —3 4
SOLUTION
2 13 2 1 3 2 1 3
4 2 1/=[0 0 -5 = (-1)j0 —6 —5
6 -3 4 [0 -6 -5 0 0 -5

= —(=1)(2)(=6)(-5)
— —60

We now have two methods for evaluating the
determinant of an n X n matrix A. If n > 3 and A has
nonzero entries, elimination is the most efficient
method, in the sense that it involves fewer arithmetic
operations. In Table 2.2.1, the number of arithmetic
operations involved in each method is given for

n =2, 3,4, 5, 10. It is not difficult to derive general
formulas for the number of operations in each of the
methods (see Exercises 20 and 21 at the end of the
section).

Table 2.2.1 Operation Counts

nCofactors Elimination
AdditionsMultiplicationsAdditionsMultiplications and Divisions

2 1 2 1 3
S| 5 9 5 10
4 23 40 14 23
5 119 205 30 44

10 3,628,799 6,235,300 285 339

We have seen that, for any elementary matrix E,



det(EA) = det(E) det(A) = det(AE)

This is a special case of the following theorem.

Theorem 2.2.3

If A and B are n X n matrices, then
det(AB) = det(A) det(B)

Proof

If B is singular, it follows from Theorem 1.5.2 that AB is
also singular (see Exercise 14 of Section 1.5), and
therefore,

det(AB) = 0 = det(A) det(B)

If B is nonsingular, B can be written as a product of
elementary matrices. We have already seen that the
result holds for elementary matrices. Thus,

det(AB) = det(AEkEk_l s El)
= det(A) det(Ey) det(Ej_1) - - - det(E)
= det(A) det(EkEk,1 s El)
det(A) det(B)

If A is singular, the computed value of det(A) using exact
arithmetic must be 0. However, this result is unlikely if
the computations are done by computer. Since
computers use a finite number system, roundoff errors
are usually unavoidable. Consequently, it is more likely
that the computed value of det(A) will only be near o.
Because of roundoff errors, it is virtually impossible to
determine computationally whether a matrix is exactly
singular. In computer applications, it is often more
meaningful to ask whether a matrix is “close” to being
singular. In general, the value of det(A) is not a good
indicator of nearness to singularity. In Section 6.5, we



will discuss how to determine whether a matrix is close
to being singular.



Section 2.2 Exercises

1. Evaluate each of the following determinants by inspection:

00 3
Lo 4 1
2 31
1 1 13
0 3 11
2.
0 0 2 2
1 -1 -1 2
0001
1000
31010 0
0010
2, Let
ro 12 3
1 1 1 1
A_|_2—2 3 3
| 1 2 —2 —3]

1. Use the elimination method to evaluate det(A).

2. Use the value of det(A) to evaluate

o 1 2 3 o 1 2 3
92 —2 3 3 101 1 1
1 2 -2 —3/"|21 -1 4 4

1 1 1 1 2 3 -1 -2

3. For each of the following, compute the determinant and state
whether the matrix is singular or nonsingular:

[2 3
|'3 3 1'|

310 1 2
lo 2 3l



|'2 1 1]
404 3 5
l2 1 2

2 -1 3
50 -1 2 —2
l 1 4 o
(1111
6.|2_132|
0 121
lo o 7 3

4. Find all possible choices of ¢ that would make the following matrix
singular:

|'1 1 1'|
119 ¢
l1 ¢ 3]

5. Let A be an . X n matrix and « a scalar. Show that
det(ad) = a" det(A)

6. Let A be a nonsingular matrix. Show that

1
det(A)

det(A™!) =

7. Let A and Bbe 3 X 3 matrices with det(A) = 4 and
det(B) = 5. Find the value of

1. det(AB)

2. det(34)

3. det(24B)
4.det(A7'B)

8. Show that if E is an elementary matrix, then E Tisan elementary
matrix of the same type as E.

9. Let F/1, E5, and F3 be 3 X 3 elementary matrices of types I, I,
and III, respectively, and let A be a 3 X 3 matrix with
det(A) = 6. Assume, additionally, that E'5 was formed from I by
multiplying its second row by 3. Find the values of each of the
following:
1. det(E1 A)
2. det(EyA)
3. det(E3A)
4. det (AE 1 )



10.

11

12.

13.

14.

15.

16.

5 det(E?)
6. det(ElEgEg)

Let A and B be row equivalent matrices, and suppose that B can be
obtained from A by using only row operations I and III. How do
the values of det(A) and det(B) compare? How will the values
compare if B can be obtained from A using only row operation ITI?
Explain your answers.

Let A be an n X n matrix. Is it possible for A2+ 1= Ointhe
case where n is odd? Answer the same question in the case where
nis even.

Consider the 3 X 3 Vandermonde matrix
(1 oe o]
V=1 zo 2%
I. 1 a3 :L‘%J
1. Show that V' = (22 — x1) (23 — z1)(x3 — @3). Hint:
Make use of row operation III.

2. What conditions must the scalars 21, T2, and 3 satisfy
in order for V' to be nonsingular?

Suppose that a 3 X 3matrix A factors into a product:

1 0 O'l |' U1 U2 u13'|
tlyy 1 00 v 0wy w3
|_ l31 l32 1J |. 0 0 U33J

Determine the value of det(A).

Let A and Bbe n X m matrices. Prove that the product AB is
nonsingular if and only if A and B are both nonsingular.

Let A and Bbe n X n matrices. Prove that if AB = I, then
BA = I.What is the significance of this result in terms of the
definition of a nonsingular matrix?

A matrix A is said to be skew symmetricif AT = — A. For
example,

is skew symmetric, since

0 -1
T _ _
A_[l 0]_ A

If Ais an n X n skew-symmetric matrix and n is odd, show that A
must be singular.



17.

18.

19.

20.

21.

Let A be a nonsingular n. X n matrix with a nonzero cofactor A,,,,
and set
det(A)
CcC =
A’Il'll

Show that if we subtract ¢ from @, then the resulting matrix will
be singular.

Let Abeak X kmatrixandlet Bbean (n — k) X (n — k)
matrix. Let

[, O 1A o
E_{O B]’ F_[O InJ’

o-[83

where I;; and I, are the k X kand (n — k) x (n — k) identity
matrices.

1. Show that det(E) = det(B).
2. Show that det(F') = det(A).

3. Show that det(C') = det(A) det(B).

Let A and Bbe k X k matrices and let

M_[o B]

A O

Show that det(M) = (—1)* det(A) det(B).

Show that evaluating the determinant of an 7 X n matrix by
n—1
cofactors involves (n! — 1) additions and g n!/k!
k=1
multiplications.

Show that the elimination method of computing the value of the
determinant of an n X n matrix involves [n(n — 1)(2n — 1)]/6
additions and [n(n — 1)(n* + n + 3)] /3 multiplications and
divisions. Hint:Atthe ith step of the reduction process, it takes

n — 1 divisions to calculate the multiples of the ith row that are to
be subtracted from the remaining rows below the pivot. We must
then calculate new values for the (n — i)2 entries in rows ¢ + 1
through n and columns ¢ + 1 through n.



2.3 Additional Topics and
Applications

In this section, we learn a method for computing the
inverse of a nonsingular matrix A using determinants
and we learn a method for solving linear systems using
determinants. Both methods depend on Lemma 2.2.1.
We also show how to use determinants to define the
cross product of two vectors. The cross product is useful
in physics applications involving the motion of a particle
in 3-space.

The Adjoint of a Matrix

Let A be an n X n matrix. We define a new matrix called
the adjoint of A by

|' All A21 Ce Anl-l
A12 A22 . Ang
adjA=| .
|. Aln A2n o AnnJ

Thus, to form the adjoint, we must replace each term by
its cofactor and then transpose the resulting matrix. By
Lemma 2.2.1,

det(A) ifi=7
a1 Aj +apdp + -+ apdjy, = {0 (4) £ 7&;
and it follows that
A(adj A) = det(A)I

If A is nonsingular, det(A) is a nonzero scalar, and we
may write



1 .
Thus,

1 1 .
At = et (4) adj A when det(4) # 0

Example 1

For a2 X 2 matrix,

ade:[ ag —alz]
—a21 aii

If A is nonsingular, then

A1 1 [ a2 a12]
aj1G22 — @12a21 | —a21 ai
Example 2
Let
|'2 1 2'|
A=13 2 2.
1 2 3l
Compute adj A and A~ L.
SOLUTION
[o22f 132 [321"
2 3 13 12 )
e 2 2y T
adjd=1 =) o |1 3 ~|1 9| Z
1 2 2 2 2 1
L |2 2| |3 2 3 2/l
2 1 -2
A*lzd 1A -7 4 2
et(4) | 4 -3 1l

Using the formula

1 —2'|
4 21
3 1l



we can derive a rule for representing the solution to the
system Ax = b in terms of determinants.

Cramer’s Rule

Theorem 2.3.1 Cramer’s Rule

Let A be a nonsingular n X n matrix, and let b € R".
Let A; be the matrix obtained by replacing the ith
column of A by replacing the ith column of Aby b. Ifx is
the unique solution of Ax = b, then

mi:‘éztt((ii)) for i=1,2,....n
Proof
Since
x=Ap——1 (adj A)b
det(A)
it follows that

biAy; +boAg; + -+ + b A
det(A)

det(A)

Example 3

Use Cramer’s rule to solve



1 +2x2+ 3 = 5

221 + 222+ 3 = 6
1 +2x3+32z3 = 9
SOLUTION
1 21 5 2 1
det(A) = |2 2 1| = —4 det(4) = |6 2 1| = —4
1 2 3 9 2 3
1 51 1 25
det(As) = |2 6 1| = —4 det(ds) = [2 2 6 = -8
1 9 3 1 29
Therefore,
—4 —4 -8
$1=_—4:1, :132:_—4:1, .’123:_—4:2

Cramer’s rule gives us a convenient method for writing
the solution of an 1 X m system of linear equations in
terms of determinants. To compute the solution,
however, we must evaluate n + 1 determinants of order
n. Evaluating even two of these determinants generally
involves more computation than solving the system by
Gaussian elimination.

Application 1

Coded Messages

A common way of sending a coded message is to assign
an integer value to each letter of the alphabet and to send
the message as a string of integers. For example, the
message

SEND MONEY
might be coded as
5,8,10,21,7,2,10,8, 3

Here, the S is represented by a 5, the E by an 8, and so
on. Unfortunately, this type of code is generally easy to
break. In a longer message, we might be able to guess



which letter is represented by a number on the basis of
the relative frequency of occurrence of that number. For
example, if 8 is the most frequently occurring number in
the coded message, then it is likely that it represents the
letter E, the letter that occurs most frequently in the
English language.

We can disguise the message further by using matrix
multiplications. If A is a matrix whose entries are all
integers and whose determinant is +1, then, since

A1 = +adj A the entries of A1 will be integers. We
can use such a matrix to transform the message. The
transformed message will be more difficult to decipher.
To illustrate the technique, let

12 1
A=12 5 3
l2 3 2]

The coded message is put into the columns of a matrix B
having three rows:

5 21 10]
B=1 8 7 8
l10 2 3l

The product

|'1 2 1'| |' 5 21 10'| |'31 37 29]
AB=12 5 311 8 7 8 —180 83 69
l2 3 21110 2 3] 154 67 50l

gives the coded message to be sent:
31,80, 54, 37, 83, 67, 29, 69, 50

The person receiving the message can decode it by
multiplying by A1

|' 1 -1 1] |'31 37 29'| |'5 21 101
© 2 0 —1,1:80 8 69 =1 8 7 8.
| 4 1 1lls54 67 50] |10 2 3J



To construct a coding matrix A, we can begin with the
identity I and successively apply row operation III, being
careful to add integer multiples of one row to another.
Row operation I can also be used. The resulting matrix A
will have integer entries, and since

det(A) = *det(I) = +1

A~ will also have integer entries.

Reference

« 1. Hansen, Robert, “Integer Matrices Whose Inverses Contain
Only Integers,” Two-Year College Mathematics Journal, 13(1),
1982.

The Cross Product

Given two vectors x and y in R3, one can define a third
vector, the cross product, denoted X X y, by

|' T2Y3 — y2x3'|
XXy =" Y1Z3 — T1Y3!
T1Y2 — Y122

€y
If Cis any matrix of the form
|' w1 W2 w3‘|

C=121 x2 31
[yl Y2 y3J

then
[
x Xy = Cr1e1 + Craey + Crzeg =+ Cra
| 15l

Expanding det(C) by cofactors along the first row, we see
that

det(C) = w1C11 + wyClha + wyCiz = W' (x X y)



In particular, if we choose w = X orw = Yy, then the
matrix C will have two identical rows, and hence its
determinant will be 0. We then have

x'(xxy)=y (xxy)=0
(2

In calculus books, it is standard to use row vectors

x = (z1,22,23) and y = (y1,Y2,Y3)

and to define the cross product to be the row vector:

X Xy = (2ays — yax3)i — (21y3 — y1x3)j + (z1y2 — yiz2)k

where i, j, and k are the row vectors of the 3 x 3 identity
matrix. If one uses 1, j, and k in place of wq, wo, and ws,
respectively, in the first row of the matrix M, then the
cross product can be written as a determinant.

i j k
XXYyY=|Z1 T2 I3
Y Yy Y3

In linear algebra courses, it is generally more standard to
view X, y and X X Yy as column vectors. In this case, we
can represent the cross product in terms of the
determinant of a matrix whose entries in the first row are
€1, €9, €3, the column vectors of the 3 X 3 identity
matrix:

€ €y €3
XXYy=|T1 T2 I3
Y Y2 Y3

The relation given in equation (2) has applications in
Newtonian mechanics. In particular, the cross product
can be used to define a binormal direction, which
Newton used to derive the laws of motion for a particle in
3-space.

Application 2



Newtonian Mechanics

If x is a vector in either R? or R3 then, we can define the
length of x, denoted [Ix], by

o=

T

]l = (")

A vector x is said to be a unit vector if ||x|| = 1. Unit
vectors were used by Newton to derive the laws of
motion for a particle in either the plane or 3-space. If x
and y are nonzero vectors in R2, then the angle 6
between the vectors is the smallest angle of rotation
necessary to rotate one of the two vectors clockwise so
that it ends up in the same direction as the other vector
(see Figure 2.3.1).

Figure 2.3.1.

Figure 2.3.1. Full Alternative Text
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A particle moving in a plane traces out a curve in the
plane. The position of the particle at any time ¢ can be
represented by a vector (z1(t), 2 (¢)). In describing the
motion of a particle, Newton found it convenient to
represent the position of vectors at time t as linear
combinations of the vectors T(t) and N(t), where T(t) is a
unit vector in the direction of the tangent line to curve at
the point (21 (t), 2(t)) and N(2) is a unit vector in the
direction of a normal line (a line perpendicular to the
tangent line) to the curve at the given point (see Figure
2.3.2).

Figure 2.3.2.
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Figure 2.3.2. Full Alternative Text

In Chapter 5, we will show that if x and y are nonzero
vectors and 6 is the angle between the vectors, then

x"y = x| ly|l cos 6
3)

This equation can also be used to define the angle
between nonzero vectors in R3. Tt follows from (3) that
the angle between the vectors is a right angle if and only
itxTy = 0.

In this case, we say that the vectors x and y are
orthogonal. In particular, since T(t) and N(t) are unit
orthogonal vectors in R?, we have

|'T(t) = ||IN(¢)|| = 1 and the angle between the
vectors is % It follows from (3) that
T(t)"N(t) = 0

In Chapter 5, we will also show that if x and y are vectors
in R® and 6 is the angle between the vectors, then

llx xyll =|x]| |ly| siné
4
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A particle moving in three dimensions will trace out a
curve in 3-space. In this case, at time t the tangent and
normal lines to the curve at the point (z1(t), 2 (t))
determine a plane in 3-space. However, in 3-space the
motion is not restricted to a plane. To derive laws
describing the motion, Newton needed to use a third
vector, a vector in a direction normal to the plane
determined by T(t) and N(¢). If z is any nonzero vector in
the direction of the normal line to this plane, then the
angle between the vectors z and T(t) and the angle
between z and N(t) should both be right angles. If we set

B(t) = T(t) x N(t)

(5)

then it follows from (2) that B(t) is orthogonal to both
T(t) and N(t) and hence is in the direction of the normal
line. Furthermore, B(%) is a unit vector since it follows
from (4) that

IB(E) Il = IT() x N@) I = IT() 1 IN() I sin% =1

The vector B(t) defined by (5) is called the binormal
vector (see Figure 2.3.3).

Figure 2.3.3.



Figure 2.3.3. Full Alternative Text
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Section 2.3 Exercises

1. For each of the following, compute (i) det(A), (ii) adj A, and (iii)

AL
A 1 2
AT 1
31
2.A=[2 4]
|' 1 3 1'|
3A=1 21 1.
| 2 2 —1]
1 11
4A=10 1 1.
lo o 1]

2. Use Cramer’s rule to solve each of the following systems:

Ty +2x9 = 3
3z, — o = 1
2.
21+ 3z = 2
3z, +2xy = 5
3.
201+ x9—3x3 = 0
4y + bz + 3 = 8
—2x1 — X9+ 4x3 = 2
4.
1+ 32y +x3 = 1
2¢1+ a2+ 23 =
—2x1 + 229 —x3 = —8
5.
T+ X2 0
To+ T3 — 214 = 1
1 +2x3+ x4 = 0
T1 + 2o + x4 = 0

3. Given



|'1 2 1'|
A=10 4 3
[1 2 2]

determine the (2, 3) entry of A1 by computing a quotient of two
determinants.

4. Let A be the matrix in Exercise 3. Compute the third column of
A~ by using Cramer’s rule to solve Ax = e3.

5. Let

=W
—_— —

A:

— - —
W N =
=W N

5

1. Compute the determinant of A. Is A nonsingular?

2. Compute adj A and the product A adj A.

6. If A is singular, what can you say about the product A adj A?

7. Let B; denote the matrix obtained by replacing the jth column of

the identity matrix with a vector b = (b1, .. ., bn)T. Use
Cramer’s rule to show that

bj =det(B;) for j=1,...,n
8. Let A be a nonsingular . X m matrix with n > 1. Show that
det(adj A) = (det(A4))" "

9.LetAbe a4 x 4 matrix. If

[2 0 0 0
, 0 2 10
aGIJA:|0 4 3 2

lo -2 -1 2]

1. calculate the value of det(adj A). What should the value
of det(A) be? Hint: Use the result from Exercise 8.

2. find A.

10. Show that if A is nonsingular, then adj A is nonsingular and
(adj A) ' =det(A A =adj A~!
11. Show that if A is singular, then adj A is also singular.
12. Show that if det(A) = 1, then
adj (adjA4) = A

13. Suppose that Q is a matrix with the property @ ' = Q. Show
that



- Qij
det(Q)
14. In coding a message, a blank space was represented by 0, an A by

1, a Bby 2, a C by 3, and so on. The message was transformed
using the matrix

qij

(-1 -1 2 0]
1 1 -1 0
A‘| 0 0 -1 1|
l 1 0 o -1l

and sent as

-19,19,25, —21,0,18, 18,15, 3, 10
~8,3,-2,20, —7,12

What was the message?

15. Let x, y, and z be vectors in R®. Show each of the following;:

Lxxx=0
2y Xx=—(xXYy)

3xX(y+2z)=(xxy)+(xxz)

1 X9 I3
42" X (xxy)=|y y2 ¥3
21 Z2 23

16. Let x and y be vectors in R? and define the skew-symmetric
matrix A, by

|- 0 —3 :1}2'|
A:I: =1 .'B3 0 —.T:l |
I. —T9 A 0
1. Showthatx Xy = A,y.

2. Showthaty X x = Afy.



Chapter 2 Exercises

MATLAB Exercises

The first four exercises that follow involve integer
matrices and illustrate some of the properties of
determinants that were covered in this chapter. The last
two exercises illustrate some of the differences that may
arise when we work with determinants in floating-point
arithmetic.

In theory, the value of the determinant should tell us
whether the matrix is nonsingular. However, if the
matrix is singular and its determinant is computed
using finite-precision arithmetic, then, because of
roundoff errors, the computed value of the determinant
may not equal zero. A computed value near zero does
not necessarily mean that the matrix is singular or even
close to being singular. Furthermore, a matrix may be
nearly singular and have a determinant that is not even
close to zero (see Exercise 6).

1. Generate random 5 X 5 matrices with integer entries by setting
A = round(10 * rand(5))
and
B = round(20 * rand(5)) — 10

Use MATLAB to compute each of the pairs of numbers that follow.
In each case, check whether the first number is equal to the
second.

1. det(A4) det(AT)

2. det(A + B) det(A) + det(B)
3. det(AB) det(A) det(B)

4. det(ATBT) det(AT) det(BT)



5. det(A~1) 1/det(A)
6. det(AB™') det(A)/det(B)

2. Are . X 1 magic squares nonsingular? Use the MATLAB
command det(magic(n)) to compute the determinants of the
magic squares matrices in the casesn = 3, 4, ..., 10. What
seems to be happening? Check the cases n = 24 and 25 to see if
the pattern still holds.

3. Set A = round(10 * rand(6)). In each of the following, use
MATLAB to compute a second matrix as indicated. State how the
second matrix is related to A and compute the determinants of
both matrices. How are the determinants related?

LB=A4; B(2,:)=A(); B, =A@,
2.0 =A; C(3,)=4%A(3,:)
3. D=A4; D(5,:)=A(5:)+2%A(4,")

4. We can generate a random 6 X 6 matrix A whose entries consist
entirely of 0’s and 1’s by setting

A = round(rand(6))

1. What percentage of these random 0—1 matrices are
singular? You can estimate the percentage in MATLAB
by setting

y = zeros(1,100);

and then generating 100 test matrices and setting

y(7) = 1 if the jth matrix is singular and o0 otherwise.
The easy way to do this in MATLAB is to use a for loop.
Generate the loop as follows:

for j=1:100
A = round(rand(6));
y(j) = (det(4) == 0)
end

(Note: A semicolon at the end of a line suppresses
printout. It is recommended that you include one at the
end of each line of calculation that occurs inside a for
loop.) To determine how many singular matrices were
generated, use the MATLAB command sum(y). What
percentage of the matrices generated were singular?

2. For any positive integer n, we can generate a random
6 x 6 matrix A whose entries are integers from o0 to n by
setting

A = round(n * rand(6))



What percentage of random integer matrices generated
in this manner will be singular if n = 3? If n = 62 If

n = 10? We can estimate the answers to these questions
by using MATLAB. In each case, generate 100 test
matrices and determine how many of the matrices are
singular.

5. If a matrix is sensitive to roundoff errors, the computed value of
its determinant may differ drastically from the exact value. For an
example of this, set

U = round (100 * rand(10));
U = triu(U,1) + 0.1 * eye(10)

In theory,
det(U) = det(UT) = 10710
and
det(UUT) = det(U) det(UT) = 1072

Compute det(U7), det(U’), and det(U * U') with MATLAB. Do
the computed values match the theoretical values?

6. Use MATLAB to construct a matrix A by setting

A =vander(1:6); A= A— diag(sum(A4’))

1. By construction, the entries in each row of A should all
add up to zero. To check this, set x = ones(6, 1) and
use MATLAB to compute the product Ax. The matrix A
should be singular. Why? Explain. Use the MATLAB
functions det and inv to compute the values of det(A)
and A~'. Which MATLAB function is a more reliable
indicator of singularity?

2. Use MATLAB to compute det( AT). Are the computed
values of det(4) and det(AT) equal? Another way to
check if a matrix is singular is to compute its reduced
row echelon form. Use MATLAB to compute the reduced
row echelon forms of A and A7

3. To see what is going wrong, it helps to know how
MATLAB computes determinants. The MATLAB routine
for determinants first computes a form of the LU
factorization of the matrix. The determinant of the
matrix L is £1, depending on whether an even or odd
number of row interchanges were used in the
computation. The computed value of the determinant of
A is the product of the diagonal entries of U and
det(L) = +1. To see what is happening with our
original matrix, use the following commands to compute
and display the factor U:



format short e
[L,U] = l(A);U

In exact arithmetic, U should be singular. Is the
computed matrix U singular? If not, what goes wrong?
Use the following commands to see the rest of the
computation of d = det(A):

format short
d = prod(diag(U))



Chapter Test A True or False

For each statement that follows, answer true if the
statement is always true and false otherwise. In the case
of a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true. Assume that all the
given matrices are n X M.

1. det(AB) = det(BA)

2.det(A + B) = det(A) + det(B)

3.det(cA) = cdet(A)

4.det((AB)") = det(A) det(B)

5. det(A) = det(B)implies A = B.

6. det(A*) = det(A)"

7. A triangular matrix is nonsingular if and only if itts diagonal
entries are all nonzero.

8. If x is a nonzero vector in R" and Ax = 0, then det(A) = 0.

9. If A and B are row equivalent matrices, then their determinants
are equal.

10. If A # O, but A*¥ = O (where O denotes the zero matrix) for
some positive integer k, then A must be singular.



Chapter Test B

1. Let A and Bbe 3 X 3 matrices with det(A) = 4 and
det(B) = 6, and let E be an elementary matrix of type L.
Determine the value of each of the following:

1 det(%A)
2. det(B~1AT)
3. det(E A?)
2. Let
[ T 1 1]
A= 1 r —1
-1 -1 =zl
1. Compute the value of det(A) (Your answer should be a
function of x.)
2. For what values of x will the matrix be singular? Explain.
3. Let
|' 11 1 1 '|
1 2 3 4
A =
| 1 3 6 10|
l1 4 10 20]

1. Compute the LU factorization of A.

2. Use the LU factorization to determine the value of
det(A).

4. If A is a nonsingular n X 1 matrix, show that AT A s nonsingular

and det(AT A) > 0.

5. Let A be an m X n matrix. Show that if B = S~ 1 AS for some
nonsingular matrix S, then det(B) = det(A).

6. Let A and Bbe n X n matrices and let C = A B. Use
determinants to show that if either A or B is singular, then C must
be singular.

7. Let Abe an n X m matrix and let A be a scalar. Show that
det(A—AI)=0
if and only if

Ax = Ax for some x # 0



8. Let x and y be vectors in R™, n > 1. Show thatif A = xyT, then
det(A) = 0.

9. Let x and y be distinct vectors in R" (i.e., X # y), and let A be an
n X m matrix with the property that Ax = Ay. Show that
det(4) = 0.

10. Let A be a matrix with integer entries. If [det(A)| = 1, then what
can you conclude about the nature of the entries of A2 Explain.



Chapter 3 Vector Spaces
//

The operations of addition and scalar multiplication are
used in many diverse contexts in mathematics.
Regardless of the context, however, these operations
usually obey the same set of algebraic rules. Thus, a
general theory of mathematical systems involving
addition and scalar multiplication will be applicable to
many areas in mathematics. Mathematical systems of
this form are called vector spaces or linear spaces. In this



chapter, the definition of a vector space is given and
some of the general theory of vector spaces is developed.



3.1 Definition and Examples

In this section, we present the formal definition of a
vector space. Before doing this, however, it is instructive
to look at a number of examples. We begin with the
Euclidean vector spaces R".

Euclidean Vector Spaces

Perhaps the most elementary vector spaces are the
Euclidean vector spaces R”,n = 1,2, .. .. For
simplicity, let us consider first R2. Nonzero vectors in
R2 can be represented geometrically by directed line
segments. This geometric representation will help us to
visualize how the operations of scalar multiplication and
addition work in R2. Given a nonzero vector X = E;] ,
we can associate it with the directed line segment in the
plane from (0, 0) to (21, Z2) (see Figure 3.1.1). If we
equate line segments that have the same length and
direction (Figure 3.1.2), x can be represented by any line
segment from (a, b) to (a + x1,b + x2).

Figure 3.1.1.
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Figure 3.1.2.
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Figure 3.1.2. Full Alternative Text

2
For example, the vector x = [ 1] in R? could just as

well be represented by the directed line segment from
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(2,2)to (4, 3) or from (—1,—1) to (1, 0), as shown in
Figure 3.1.3.

Figure 3.1.3.

Figure 3.1.3. Full Alternative Text

We can think of the Euclidean length of a vector

X = [zj as the length of any directed line segment
representing x. The length of the line segment from
(0,0) to (x1, x2) is 1/ 23 + =3 (see Figure 3.1.4). For
each vector x = [z;] and each scalar o, the product

aX is defined by

] = o]
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, then

i

For example, as shown in Figure 3.1.5, if X

Figure 3.1.5.

1 < I i
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Figure 3.1.5. Full Alternative Text

The vector 3x is in the same direction as x, but its length
is three times that of x. The vector —x has the same
length as x, but it points in the opposite direction. The
vector —2X is twice as long as x and it points in the same
direction as —X. The sum of two vectors

is defined by

Note that if v is placed at the terminal point of u, then

u + Vv is represented by the directed line segment from
the initial point of u to the terminal point of v (Figure
3.1.6). If both u and v are placed at the origin and a
parallelogram is formed as in Figure 3.1.7, the diagonals
of the parallelogram will represent the sum u + v and
the difference v — u. In a similar manner, vectors in R3
can be represented by directed line segments in 3-space
(see Figure 3.1.8).

Figure 3.1.6.
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Figure 3.1.6. Full Alternative Text

Figure 3.1.7.
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In general, scalar multiplication and addition in R" are,
respectively, defined by

[ az1] [ Z1+Y1]
axs T2 + Yo
ax = and x+y= .

for any x, y € R" and any scalar a.

The Vector Space R™*"
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We can also view R" as the set of all n x 1 matrices with
real entries. The addition and scalar multiplication of
vectors in R"™ are just the usual addition and scalar
multiplication of matrices. More generally, let R”**"
denote the set of all m X n matrices with real entries. If
A = (a;;) and B = (b;;), then the sum A + Bis
defined to be the m X m matrix C' = (c;;), where

Cij = aij + bij. Given a scalar o, we can define a4 to be
the m X n matrix whose (%, j) entry is aa;;. Thus, by
defining operations on the set R”™*"™ we have created a
mathematical system. The operations of addition and
scalar multiplication of R™*™ obey certain algebraic
rules. These rules form the axioms that are used to define
the concept of a vector space.

Vector Space Axioms

Definition

Let V' be a set on which the operations of addition and
scalar multiplication are defined. By this we mean that,
with each pair of elements x and y in V, we can associate
a unique element X + y that is also in V, and with each
element x in V and each scalar «, we can associate a
unique element ax in V. The set V together with the
operations of addition and scalar multiplication is said to
form a vector space if the following axioms are
satisfied:

e« A1.X+y =Yy + xforanyxandyin V.
« A2.(x+y)+z=x+(y+2)foranyx,y,andzin V.

« A3. There exists an element 0 in V such that x + 0 = x for each
xeV.
« Ag4. Foreach x € V, there exists an element —X in V such that

x+(—x) = 0.

« As.a(x +y) = ax + ay for each scalar a and any x and y in
V.



« A6. (a+ B)x = ax + fx for any scalars @ and S and any
xeV.

« A7. (af)x = apx) for any scalars ¢ and fand any x € V.

« A8.1x =xforallx € V.

We will refer to the set V as the universal set for the
vector space. Its elements are called vectors and are
usually denoted by boldface letters such as u, v, w, x, y,
and z. The term scalar will generally refer to a real
number, although in some cases it will be used to refer to
complex numbers. Scalars will generally be represented
by lowercase italic letters such as a, b, and c or lowercase
Greek letters such as a, 3, and +. In the first five
chapters of this book, the term scalars will always refer
to real numbers. Often the term real vector space is used
to indicate that the set of scalars is the set of real
numbers. The boldface symbol 0 was used in Axiom 3 in
order to distinguish the zero vector from the scalar o.

An important component of the definition is the closure
properties of the two operations. These properties can be
summarized as follows:

o C1.Ifx € Vand ovis ascalar,thenax € V.

. C2.Ifx,y € V,thenx+y e V.

To illustrate the necessity of the closure properties,
consider the following example. Let

W = {(a,1)|a real}

with addition and scalar multiplication defined in the
usual way. The elements (3, 1) and (5, 1) are in W, but
the sum

(3,1)+(5,1) = (8,2)

is not an element of W. The operation + is not really an
operation on the set W because property C2 fails to hold.
Similarly, scalar multiplication is not defined on W,
because property C1 fails to hold. The set W, together



with the operations of addition and scalar multiplication,
is not a vector space.

If, however, we are given a set U on which the operations
of addition and scalar multiplication have been defined
and satisfy properties C1 and C2, then we must check to
see if the eight axioms are valid in order to determine
whether U is a vector space. We leave it to the reader to
verify that R” and R™*", with the usual addition and
scalar multiplication of matrices, are both vector spaces.
There are a number of other important examples of
vector spaces.

The Vector Space C'a, b|

Let C|a, b] denote the set of all real-valued functions
that are defined and continuous on the closed interval
[a, b]. In this case, our universal set is a set of functions.
Thus, our vectors are the functions in C|a, b]. The sum
f + g of two functions in C'[a, b] is defined by

(f +9)(z) = f(z) + 9()

for all x in [a, b]. The new function f + g is an element
of C|a, b] since the sum of two continuous functions is
continuous. If fis a function in C|a, b] and a is a real
number, define af by

(af)(z) = af(z)

for all x in [a, b]. Clearly, afis in C[a, b| since a constant
times a continuous function is always continuous. Thus,
we have defined the operations of addition and scalar
multiplication on C|a, b]. To show that the first axiom,
f+ g= g+ f,is satisfied, we must show that

(f+9)(z) =(g+ f)(z) forevery z in [a, b]

This follows because

(f +9)(z) = f() + 9(z) = 9(z) + f(z) = (9 + f)(z)



for every x in [a, b]. Axiom 3 is satisfied, since the
function

2(z) =0 forallzin [a,b]
acts as the zero vector; that is,
f+z=7Ff forall fin Cl[a,b)

We leave it to the reader to verify that the remaining
vector space axioms are all satisfied.

The Vector Space P,

Let P, denote the set of all polynomials of degree less
than n. Define p + g and ap, respectively, by

(p+q)(z) = p(z) + q(z)
and
(ap)(z) = ap(z)
for all real numbers x. In this case, the zero vector is the
zero polynomial:
2(z) =0z" 1 + 02" 2+ ... + 0z + 0

It is easily verified that all the vector space axioms hold.
Thus, P, with the standard addition and scalar
multiplication of functions, is a vector space.

Additional Properties of
Vector Spaces

We close this section with a theorem that states three
more fundamental properties of vector spaces. Other
important properties are given in Exercises 7, 8, and 9 at
the end of the section.



Theorem 3.1.1

If Vis a vector space and x is any element of V, then

1. 0x =0.

2. X + y = 0 implies that y = —x (i.e., the additive inverse of x is
unique).

3. (-1)x=—x.
Proof

It follows from axioms A6 and A8 that
x=1x=(14+0)x=1x+0x =x+0x
Thus,

—x+x =—-x+(x+0x)=(—x+x)+0x (A2)
0 =0+0x=0x (A1,A3,and A4)

To prove (ii), suppose that x + y = 0. Then
—x=-x+0=-x+(x+Yy)
Therefore,
—x=(—x+x)+y=0+y=y (Al,A2, A3 ,and A4)
Finally, to prove (iii), note that
0=0x=(1+(-1)x=1x+(-1)x [(i) and A6]
Thus,
x+(-1)x=0 (A8)
and it follows from part (ii) that

(-)x=—-x



Section 3.1 Exercises

1. Consider the vectors x3 = (8, G)T and x3 = (4, —1)T in R2.

1. Determine the length of each vector.

2. Let X3 = X1 + Xgo. Determine the length of x3. How
does its length compare with the sum of the lengths of x;
and Xo?

3. Draw a graph illustrating how x3 can be constructed
geometrically using x; and Xs. Use this graph to give a
geometrical interpretation of your answer to the
question in part (b).

2. Repeat Exercise 1 for the vectors x; = (2,1)T and x5 = (6,3)7.

3. Let C be the set of complex numbers. Define addition on C by
(a+bi)+ (c+di) = (a+c)+ (b+d)i
and define scalar multiplication by
ala+ bi) = aa + abi

for all real numbers .. Show that Cis a vector space with these
operations.

4. Show that R™*", together with the usual addition and scalar
multiplication of matrices, satisfies the eight axioms of a vector
space.

5. Show that C/[a, b], together with the usual scalar multiplication
and addition of functions, satisfies the eight axioms of a vector
space.

6. Let P be the set of all polynomials. Show that P, together with the
usual addition and scalar multiplication of functions, forms a
vector space.

7. Show that the element o0 in a vector space is unique.
8. Let x, y, and z be vectors in a vector space V. Prove that if
X+y=x+2z
theny = z.

9. Let Vbe a vector space and let x € V. Show that

1. 50 = O for each scalar .

2. if ax = 0, then either « = 0 orx = 0.



10.

11.

12.

13.

Let S be the set of all ordered pairs of real numbers. Define scalar
multiplication and addition on S by

a(z1,a) = (oxy,oxs)
(z1,22) ® (y1,92) = (21+11,0)

We use the symbol @ to denote the addition operation for this
system in order to avoid confusion with the usual addition x 4 y
of row vectors. Show that S, together with the ordinary scalar
multiplication and the addition operation @, is not a vector space.
Which of the eight axioms fail to hold?

Let V'be the set of all ordered pairs of real numbers with addition
defined by

(z1,22) + (Y1 + y2) = (T1 + Y1, T2 + Y2)
and scalar multiplication defined by
- (x1,x2) = (ax1, T2)

Scalar multiplication for this system is defined in an unusual way,
and consequently, we use the symbol ° to avoid confusion with the
ordinary scalar multiplication of row vectors. Is V a vector space
with these operations? Justify your answer.

Let RT denote the set of positive real numbers. Define the
operation of scalar multiplication, denoted °, by

aA°T =T

for each z € R™ and for any real number c. Define the operation
of addition, denoted @, by

x@y=z-y forall z,yc R

Thus, for this system, the scalar product of —3 times % is given by

1 1) 5
- 5—(5) =°

and the sum of 2 and 5 is given by
265=2-5=10
Is R a vector space with these operations? Prove your answer.

Let R denote the set of real numbers. Define scalar multiplication
by

ar = a -z (the usual multiplication of real numbers)
and define addition, denoted @, by
z @y =max(z,y) (themaximum of the two numbers)

Is R a vector space with these operations? Prove your answer.



14.

15.

16.

Let Z denote the set of all integers with addition defined in the
usual way and define scalar multiplication, denoted °, by

a-k=I[a]]-k forall ke Z

where [[[[c]] denotes the greatest integer less than or equal to a.
For example,

2.25.4=[[2.25]] . 4=2-4=8

Show that Z, together with these operations, is not a vector space.
Which axioms fail to hold?

Let S denote the set of all infinite sequences of real numbers with
scalar multiplication and addition defined by

a{an} = {aa‘n}
{a.} +{b.} {a,+b,}

Show that S is a vector space.

We can define a one-to-one correspondence between the elements
of P, and R" by

p(z) = a1+ apx + - - + apz™ !
& (ag,...,a) T =a

Show that if p «+> a and q <> b, then

1. ap <> aa for any scalar o.

2p+qg<>a+b.

[In general, two vector spaces are said to be isomorphic if their
elements can be put into a one-to-one correspondence that is
preserved under scalar multiplication and addition as in (a) and

()]



3.2 Subspaces

Given a vector space V, it is often possible to form
another vector space by taking a subset S of V and using
the operations of V. Since V'is a vector space, the
operations of addition and scalar multiplication always
produce another vector in V. For a new system using a
subset S of V as its universal set to be a vector space, the
set S must be closed under the operations of addition
and scalar multiplication. That is, the sum of two
elements of S must always be an element of S, and the
product of a scalar and an element of S must always be
an element of S.

Example 1

Let

o ()

S'is a subset of R2. If
- C
R S

is any element of S and « is any scalar, then

a3 1]

is also an element of S. If

a b
2(1} and [21)]

are any two elements of S, then their sum




at+tb] [ a+b
2a +2b|  |2(a+D)
is also an element of S. It is easily seen that the
mathematical system consisting of the set S (instead of

R?), together with the operations from R?, is itself a
vector space.

Definition

If S is a nonempty subset of a vector space V, and S
satisfies the conditions

1. ax € S whenever x € § for any scalar «

2.Xx+y € Swheneverx € Sandy € S
then S is said to be a subspace of V.

Condition (i) says that S is closed under scalar
multiplication. That is, whenever an element of S is
multiplied by a scalar, the result is an element of S.
Condition (ii) says that S is closed under addition. That
is, the sum of two elements of S is always an element of
S. Thus, if we use the operations from V and the
elements of S, to do arithmetic, then we will always end
up with elements of S. A subspace of V, then, is a subset
S that is closed under the operations of V.

Let S be a subspace of a vector space V. Using the
operations of addition and scalar multiplication as
defined on V, we can form a new mathematical system
with S as the universal set. It is easily seen that all eight
axioms will remain valid for this new system. Axioms A3
and A4 follow from Theorem 3.1.1 and condition (1) of
the definition of a subspace. The remaining six axioms
are valid for any elements of V, so, in particular, they are
valid for the elements of S. Thus, the mathematical
system with universal set S and the two operations
inherited from the vector space V satisfies all the



conditions in the definition of a vector space. Every
subspace of a vector space is a vector space in its own
right.

Remarks

1. In a vector space V; it can be readily verified that {0} and V are
subspaces of V. All other subspaces are referred to as proper
subspaces. We refer to {0} as the zero subspace.

2. To show that a subset S of a vector space forms a subspace, we
must show that S is nonempty and that the closure properties (i)
and (ii) in the definition are satisfied. Since every subspace must
contain the zero vector, we can verify that S is nonempty by
showing that 0 € §S.

Example 2

Let S = {(ml, T, (133)T‘331 = 132}. The set S is
nonempty since 0 = (0, 0, O)T € S.To show that Sis a
subspace of R3, we need to verify that the two closure
properties hold:

1 Ifx = (a,a,b)” is any vector in S, then
ax = (aa,aa,ab)’ € §
2.1f (a, a, b)T and (¢, c, d)T are arbitrary elements of S, then
(a,a,b)" + (c,c,d)’ = (a+c,a+c,b+d)T €8

Since S is nonempty and satisfies the two closure
conditions, it follows that S is a subspace of RR3.

Example 3

Let

z is areal number}

s={[i




If either of the two conditions in the definition fails to
hold, then S will not be a subspace. In this case, the first
condition fails since

a[ﬂ = {o;m] ¢S whena+#1

Therefore, S is not a subspace. Actually, both conditions
fail to hold. S is not closed under addition, since

ARSI

Example 4

Let S = {A € ]R2X2|a12 = —agl}. The set S is
nonempty, since O (the zero matrix) is in S. To show that
S is a subspace, we verify that the closure properties are

satisfied:

1. If A € S, then A must be of the form

a b
=15
and hence,
aa ab
A:
“ [ﬂb ac]

Since the (2, 1) entry of a4 is the negative of the (1, 2) entry,
ade€s.

2. If A, B € S, then they must be of the form

A:{a b] and B:[d e]
-b c —e
It follows that
a+d b+e
A+ B=
+ {—(b+e) c+f]

Hence, A+ B € S.



Example 5

Let S be the set of all polynomials of degree less than n
with the property that p(0) = 0. The set S is nonempty
since it contains the zero polynomial. We claim that Sis a
subspace of P,,. This follows, because

1 ifp(z) € S and o is a scalar, then
ap(0)=a-0=0
and hence ap € S; and

2. ifp(a:) and q(a:) are elements of S, then
(p+q)(0) =p(0) +¢(0) =0+0=0

and hencep + q € S.

Example 6

Let C"[a, b] be the set of all functions f that have a
continuous nth derivative on [a, b]. We leave it to the
reader to verify that C"[a, b] is a subspace of C|a, b).

Example 7

The function f(z) = |z|isin C[—1, 1], but it is not
differentiable at z = 0 and hence it is not in C''[—1, 1].
This shows that C'! [—1, 1] is a proper subspace of
C[—1, 1]. The function g(z) = z|z|is in C'[—1,1]
since it is differentiable at every point in [—1, 1] and
g/(xz) = 2|x| is continuous on [—1, 1]. However,

g & C%[—1,1] since g/(z) is not defined when = = 0.
Thus, the vector space C'? [—1, 1] is a proper subspace of
both C[—1,1] and C'[1, 1].

Example 8



Let S be the set of all fin C?[a, b] such that

fi(a) + f(x) = 0

for all x in [a, b]. The set S is nonempty since the zero
function is in S. If f € S and « is any scalar, then for
any x in [a, b]

(af)m(z) + (af)(z) afi(z) + af(z)

a(fr(z) + f(z)) =a-0=0

Thus, af € S.If fand g are both in S, then

(F+gmz)+(f+9)() = fr(z)+gn(z)+ f(z)+g(z)
[f1(z) + f(@)] + [g1(z) + g()]
— 040=0

Thus, the set of all solutions on [a, b] to the differential
equation y// 4 y = 0 forms a subspace of C?|a, b]. If
we note that f(x) = sin and g(x) = cos « are both
in S, it follows that any function of the form

c1 sin x + c2 cos x must also be in S. We can easily
verify that functions of this form are solutions to

yl+y=0.

The Null Space of a Matrix

Let Abe anm X n matrix. Let N (A) denote the set of
all solutions to the homogeneous system Ax = 0. Thus,

N(a) = {x € R"|Ax = 0}

We claim that N (A) is a subspace of R". Clearly,
0 € N(A),so N(A) is nonempty. Ifx € N(A) and «

is a scalar, then
Alax) =adAx=a0=0

and hence ax € N(A). If x and y are elements of
N(A), then

Ax+y)=Ax+Ay=0+0=0



Therefore, x +y € N(A). It then follows that N (A) is
a subspace of R". The set of all solutions of the
homogeneous system Ax = 0 forms a subspace of R".
The subspace N (A) is called the null space of A.

Example 9
Determine N (A) if

1110
A:[z 10 1]
SOLUTION

Using Gauss—Jordan reduction to solve Ax = 0, we

1 1 1 00 1 1 1 0
[2 1 0 1‘0] [0 -1 -2 1‘0]
1 0 —1 1[0 10 -1 1/0
~ | o by

0 -1 -2 10
The reduced row echelon form involves two free

obtain

variables, 3 and 4.

r1 — I3 — T4
Ty = —2x3+ 14

Thus, if we set £3 = a and x4 = (3, then

S N B
x=| 7y T =el LA
L

g1 Lol [ 1l

is a solution of Ax = 0. The vector space N(A) consists
of all vectors of the form

R I ity
9 1
@ 1| +5| 0|

[ of | 1]

where o and 3 are scalars.



The Span of a Set of Vectors

Definition

Let vy, Vo,...,V, bevectors in a vector space V. A sum
of the form a; vy + avy + - - - 4+ a,, vy, where

aq, . .., Q0 are scalars, is called a linear combination
of vy, Vg, ..., Vv,. The set of all linear combinations of
Vi,Vo,...,Vyiscalled the spanof vy, ..., v,. The
span of vy, ..., v, will be denoted by Span

(Vl, oo ,Vn).

In Example 9, we saw that the null space of A was the
span of the vectors (1, —2, 1, O)T and (—1,1,0, 1)T.

Example 10

In R3, the span of €1 and ey is the set of all vectors of
the form

[ <]
ae; + fex =1 B
0l

The reader may verify that Span(ey, €3) is a subspace of
IR3. The subspace can be interpreted geometrically as the
set of all vectors in 3-space that lie in the & Z5-plane
(see Figure 3.2.1). The span of €1, €5, €3 is the set of all
vectors of the form

[ o]
ale] + ages + azes =1 ol
a3

Figure 3.2.1.



Figure 3.2.1. Full Alternative Text

Thus, Span(e;, €9, e3) = R®.

Theorem 3.2.1

If vi,Vo,...,V, are elements of a vector space V, then
Span(vy, Vs, ..., V,) is asubspace of V.

Proof

Let 3 be a scalar and let

vV = a1V1 + agvy + - - - 4+ a, vy, be an arbitrary
element of Span(vl, Vo, ... ,Vn). Since

/BV = (/Bal)vl + (ﬂa2)v2 +--- 4+ (/Ban)vn
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it follows that v € Span(vy, ..., V,). Next, we must
show that any sum of elements of Span(vy, ..., v,)is
in Span(vy,...,v,). Letv=ayvy + - + o, vy
and w = Blvl + -+ ﬂnvn.

v+w=(a1+p1)vi+- -+ (an+ Bn)vn € Span(vy,...,Vvy)

Therefore, Span(vy, . .., v, ) is a subspace of V.

Avector x in R3 is in Span(el, 62) if and only if it lies
in the x1x5-plane in 3-space. Thus, we can think of the
T1T2-plane as the geometrical representation of the
subspace Span(ey, €;) (see Figure 3.2.1). Similarly,
given two vectors x and y, if (0, 0, 0), (x1, 2, x3), and
(y1, Y2, y3) are not collinear, these points determine a
plane. If 2 = ¢;xX + ¢2y, then z is a sum of vectors
parallel to x and y and hence must lie on the plane
determined by the two vectors (see Figure 3.2.2). In
general, if two vectors x and y can be used to determine a
plane in 3-space, that plane is the geometrical
representation of Span(x, y).

Figure 3.2.2.
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Figure 3.2.2. Full Alternative Text

Spanning Set for a Vector
Space

Let v, Vo,...,V, bevectors in a vector space V. We
will refer to Span(vy, . .., v,) as the subspace of V
spanned by vi, Vs, ..., V,. It may happen that
Span(vy,...,V,) = V,in which case we say that the
vectors Vi, ..., V, span V,orthat {vy,...,v,}isa
spanning set for V. Thus, we have the following
definition.
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Definition

The set {vy, ..., V,} is a spanning set for Vif and
only if every vector in V can be written as a linear
combination of vi, vo,..., V,.

We can easily visualize the span of a set of vectors in R2.
If v, is a single nonzero vector in R2, then Span(vl)
consists of all vectors of the form ¢;vy. Since ¢; can be
positive, negative, or zero, we see that the subspace
corresponds geometrically to a line in the plane that
passes through the origin. For any point not on that line,
the corresponding vector will not be in Span(vy). A
single nonzero vector v will span a proper subspace of
R2, but it cannot span the entire space. You need at least
two vectors in order to form a spanning set for R?.

The simplest choice of a spanning set for R? is to use the
vectors €1 and es. Figure 3.2.3 shows the vectors €; and
e, and a small circle representing a target point in the
plane. We can start at the origin and get to the target
point by moving 2 units in the direction of €; and then
moving 3 units in the direction of €. The resulting
vector v = (2, 3)T
change the target point to some other coordinates (a, b),

is shown in Figure 3.2.4. If we

then the corresponding vector will be

a
X = aej + bey = {b}

Figure 3.2.3.



Terminal point of first vector (1, 0)
Terminal point of second vector (0, 1)
Target point (2, 3)

Figure 3.2.3. Full Alternative Text

Figure 3.2.4.
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Cl=2 6'2=3

Figure 3.2.4. Full Alternative Text

Thus, any vector x in R? can be represented as a linear
combination of €1 and e; and hence {€1, €5} isa
spanning set for R

In Figure 3.2.5, the vectors €; and €5 have been rotated
and scaled to form the vectors v; and vy and the target
point has been moved to a new position. If we can start
at the origin and reach the target point moving only in
the directions of v, —vy, Vo, and —Vvy, then we can
express the target vector as a linear combination of the
given vectors. Reasoning this way, one can often come up
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with good approximations to the correct values of the
scalars ¢ and cy. However, it is much more difficult to
approximate the scalars using this type of geometric
reasoning when the angle between the vectors is small.
Actually, if the values of the given vectors and the target
vector are known, it is not necessary to approximate. You
can solve for the scalars directly. For example, if the
vectors in Figure 3.2.5 are given as

o~ e =[]

Figure 3.2.5.

Figure 3.2.5. Full Alternative Text
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then we can determine scalars by solving the equation

-1
C1V1 + CaVy = 3
for ¢; and cs. The vectors v; and v will span R? if we
can use these vectors to reach any point (a, b) in the
plane. This will be possible if the systems

a
C1V] + Ccavy = |: :|
b
are consistent for all choices of a and b.

Let us now consider the problem of finding a spanning
set for R3. As was the case for R?, we see that a single
nonzero vector X cannot span. In this case, Span(x) can
be represented geometrically by a line through the origin
in 3-space. What about the span of two nonzero vectors x
and y in R3? If y is not a multiple of x, then we can
represent the sum z = X + y geometrically as a vector
corresponding to the diagonal of a parallelogram in 3-
space. The parallelogram, which has one corner at the
origin, can be extended to form a plane passing through
the origin [see Figure 3.2.6(a)]. Any linear combination
c1X + c2y will correspond to a point in the plane. We
can reach that point by starting at the origin and moving
in the directions of x and y or, if the scalars are negative,
the directions of —x and —Yy. Indeed, if x and y are
nonzero vectors and one of the vectors is not a scalar
multiple of the other, then Span(x, y) corresponds to a
plane through the origin. If (21, 22, 23) is a point that
does not lie on the plane, then the vector

z= (21, 29, Zg)T is not in Span(x, y) [see Figure
3.2.6(b)]. In general, one cannot span R3 using only one
or two vectors. To span R3, you need at least three
vectors, and if the span of the first two vectors is
represented by a plane through the origin, then the third
vector must correspond to a point that does not lie in
that plane [see Figure 3.2.6(b)].



Figure 3.2.6.

(ﬂ) b

Figure 3.2.6. Full Alternative Text

While the the vectors x, y, and z in Figure 3.2.6(a) do not
form a spanning set, the three vectors in Figure 3.2.6(b)
do span IR®. To see this geometrically, let (a, b, c) be any
point in 3-space. If the point is not on the plane
corresponding to the span of x and y, draw a line
through the point in a direction parallel to the vector z
and then draw a vector v from the origin to the point
where this line intersects the plane (see Figure 3.2.7).
From the tip of the vector v, we can get to the point

(a, b, ¢) by moving an appropriate distance in the
direction of  or ~z. Thus, if b = (a, b, ¢)”, then

b = v + c3z for some scalar c3. Since

v € Span(x,y), we can find scalars ¢; and ¢ such
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that v.= ¢;X + ¢3y). Since the vector b was arbitrary
and

b=v+c3z =c1x+ coy+tcsz

Figure 3.2.7.

Z

f bl(a. b, ¢)

Y/
y 3

Figure 3.2.7. Full Alternative Text

it follows that x, y, and z span R3.

Example 11

Which of the following are spanning sets for R3?
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1 {ereres,(1,2,3) )
=
s

{1,207, (21,3)7, (4, -1,17)

17T, (1,1,0)7 (1,0,0)T}

(1,1,
(1,0,1)7, (0, 1,0) }

SOLUTION

To determine whether a set spans R3, we must
determine whether an arbitrary vector (a, b, c)T in R3
can be written as a linear combination of the vectors in
the set. In part (a), it is easily seen that (a, b, C)T can be
written as

(a,b, c)T = ae; + bey + ces + 0(1,2, 3)T

For part (b), we must determine whether it is possible to
find constants o1, a2, and g such that

[ 9] [ [ [

1 b =apr 1t +ag 1t +agl 01

[ el 1] l o] L o

This leads to the system of equations

artayt+a3 = a
a1 + Qo = b
ai

Since the coefficient matrix of the system is nonsingular,
the system has a unique solution. In fact, we find that

[ea] [ ¢ ]
Lagl =1 b—ci
I.a3J la— sl
Thus,
a1 14 I [
rbr =c 1v +(b—c) 1+ + (a—b)r O
lel L1l L ol o]

so the three vectors span R3.



For part (c), we should note that linear combinations of
(1,0,1)T and (0, 1,0)” produce vectors of the form
(a, B, a)T. Thus, any vector (a, b, C)T in R3, where

a # ¢, would not be in the span of these two vectors.

Part (d) can be done in the same manner as part (b). If

[“] [ [2] [ 4]
rbr =ap 20 Fagr 1 agr =10
| cl | 4] | 3] [ 1]

then

a1+ 2a9 +4ag3 =a
2000 + ag — a3 =25b
daqg +3as + a3 =c¢

In this case, however, the coefficient matrix is singular.
Gaussian elimination will yield a system of the form

a1 +2a9 +4a3 = a
2a —b
3
0 = 2a—3c+5b

as +3ag =

It

20 —3c+5b#0

then the system is inconsistent. Hence, for most choices
of a, b, and c, it is impossible to express (a, b, b)T asa
linear combination of (1, 2, 4)T, (2,1, 3)T, and

(4, -1, 1)T. The vectors do not span R3.

Example 12

The vectors 1 — 22, x + 2, and x? span P. Thus, if
az? + bz + cis any polynomial in Pj, it is possible to
find scalars a1, as, and a3 such that

az’ +br+c= al(l —:cz) + az(z + 2) +a3:172

Indeed,



o (1 — w2)+a2(m +2)+ aszz’ = (ag — al):c2 + ooz + (o1 + 20a9)

Setting
a3 — a
(69) = b
o] +2a9 = ¢

and solving, we see that &y = ¢ — 2b, aa = b, and
a3 =a+c— 2b.

In Example 11(a), we saw that the vectors

e, ez, es, (1,2, 3)T span R®. Clearly, R? could be
spanned with only the vectors €1, €2, e€3. The vector
(1,2, 3)T is really not necessary. In the next section, we
consider the problem of finding minimal spanning sets
for a vector space V (i.e., spanning sets that contain the
smallest possible number of vectors).

Linear Systems Revisited

Let S be the solution set to a consistent m X 7 linear
system Ax = b. In the case that b = 0, we have

S = N(A), and consequently, the solution set forms a
subspace of R™. If b = 0, then S does not form a
subspace of R™; however, if one can find a particular
solution X, then it is possible to represent any solution
vector in terms of X and a vector z from the null space
of A.

Let Ax = b be a consistent linear system and let x be
a particular solution to the system. If there is another
solution x; to the system, then the difference vector

Z = X; — Xo must be in N(A) since

Az = Ax; —Axg=b—-b=0

Thus, if there is a second solution, it must be of the form
X1 = X + 2z, wherez € N(A)



In general, if X is a particular solution to Ax = b and
z is any vector in [N (A), then setting y = x + 2, we
have

Ay = Axg+Az=b+0=D

So y = X + z must also be a solution to the system

Ax = b.

These observations are summarized in the following
theorem.

Theorem 3.2.2

If the linear system Ax = b is consistent and X is a
particular solution, then a vector y will also be a
solution if and only if y = X¢ + Z, wherez € N(A).

To help understand the meaning of Theorem 3.2.2, let us
consider the case of an m X 3 matrix whose null space is
spanned by two nonzero vectors z; and zs. If z; is not a
multiple of zo, then the set of all linear combinations of
Z1 and z9 corresponds to a plane through the origin in 3-
space (see Figure 3.2.8). If X is a vector in R3 and

b = Axy is a nonzero vector, then X is a particular
solution to the nonhomogeneous system Ax = b. It
follows from Theorem 3.2.2 that the solution set S
consists of all vectors of the form

Yy = Xg + ¢c12Z1 + C2Z2

Figure 3.2.8.



Figure 3.2.8. Full Alternative Text

where ¢; and ¢y are arbitrary scalars. The solution set S
corresponds to a plane in 3-space that does not pass
through the origin. See Figure 3.2.8.


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-02-008.xhtml#la_fig03-02-008

Section 3.2 Exercises

1. Determine whether the following sets form subspaces of R2:

3. Determine whether the following are subspaces of R2x2;

1. The set of all 2 X 2 diagonal matrices

2. The set of all 2 X 2 triangular matrices

3. The set of all 2 X 2 lower triangular matrices

4. The set of all 2 X 2 matrices A such that a1o = 1
5. The set of all 2 X 2 matrices B such thatb;; = 0
6. The set of all symmetric 2 X 2 matrices

7. The set of all singular 2 X 2 matrices

4. Determine the null space of each of the following matrices:
21
1
3 2

1 2 -3 -1
122 4 6 3



11 -1 2
4t 2 2 -3 1
| -1 -1 o -5l

5. Determine whether the following are subspaces of Py (be
careful!):
1. The set of polynomials in Py of even degree
2. The set of all polynomials of degree 3

3. The set of all polynomials p(z) in P such that

p(0) =0
4. The set of all polynomials in P, having at least one real
root

6. Determine whether the following are subspaces of C [— 1, 1]:

1. The set of functions fin C[—1, 1] such that
f(=1) = £(1)
2. The set of odd functions in C[—1, 1]

3. The set of continuous nondecreasing functions on

[_171]

4. The set of functions fin C[—1, 1] such that f(—1) =0
and f(1) =0

5. The set of functions fin C[—1, 1] such that f(1) = 0 or
f1)=0
7. Show that C™[a, b] is a subspace of C|a, b).

8. Let A beafixedvectorin R™*™ and let S be the set of all matrices
that commute with A, that is,

S = {B|AB = BA}

Show that S is a subspace of R™*".

9. In each of the following, determine the subspace of R2x2
consisting of all matrices that commute with the given matrix:

1o
o -1
_ [0 0]
11 o

S
310 1]

S
11 1]




10. Let A be a particular vector in R2*2. Determine whether the
following are subspaces of R2%2,

1 S = {B € R¥?BA =0}
2.9, = {B € R¥2|AB # BA}
3.3 = {B € R¥>?|AB+ B = O}

AL

AL )

AL L]
AL
Al [}

12. Which of the sets that follow are spanning sets for R3?2J ustify
your answers.

1 {(1,0,0)",(0,1,1)",(1,0,1)"}

2.{(1,0,0)",(0,1,1)", (1,0,1)", (1,2,3)"}
3.{(2,1,-2)7,(3,2,-2)7, (2,2,0)"}
4{(2,1,-2)",(-2,-1,2)",(4,2,-4)"}
5{(1,1,3)",(0,2,1)"}
13. Given
[ -1 [3]
xp=1 21, xg=141,
3 | 2]
[2] [ —9]
xX=161, y=1—21
| 6] L 5l

1 Isx € Span(x;,x2)?

2. Isy € Span(xi, X3)?

Prove your answers.



14. Let Abe a 4 x 3 matrix and let b € R*. How many possible
solutions could the system Ax = b have if N(A) = {0}?
Answer the same question in the case N (A) # {0}. Explain your
answers.

15. Let Abe a4 X 3 matrix and let
c=2a; +as+ aj
1. If N(A) = {0}, what can you conclude about the
solutions to the linear system Ax = c?

2. If N(A) # {0}, how many solutions will the system
Ax = c have? Explain.

16. Let X3 be a particular solution to a system Ax = b and let
{21, Z2, 23} be a spanning set for N (A). If

Z=z1 2y 14,
show that y will be a solution to Ax = b if and only if
y = X1 + Zc for some ¢ € R3.

17. Figure 3.2.6 gives a geometric illustration of the solution set S to a
system Ax = b, where A is an m X 3 matrix,
N(A) = Span(zi,23),and b = Axy, for some xg ¢ N(A).
Suppose we change b by setting it equal to Ax1, where X1 is a
different vector that is also not in IV (A) Explain the effect that
this change will have on the original figure. Geometrically, how
will the new solution set S compare to the original solution set S

and to N(A)?
18. Let {X1, X2, . . . , X} } be a spanning set for a vector space V.

1. If we add another vector, Xy 1, to the set, will we still
have a spanning set? Explain.

2. If we delete one of the vectors, say, X, from the set, will
we still have a spanning set? Explain.

19. In R?*2, Jet

10 01
E = E =
=00 a0 ]

00 00
E'21[1 0], E22{0 1]

Show that F11, Fra, a1, E9s span R2%2,

20. Which of the sets that follow are spanning sets for P3? Justify your
answers.

1 {1,z% 2% — 2}
2. {2,2%, 2,2z + 3}



21.

22,

23.

24.

25.

26.

27.

3. {z+2,z+ 1,22 -1}
4.{z+ 2,22 — 1}

Let S be the vector space of infinite sequences defined in Exercise
15 of Section 3.1. Let Sy be the set of {ay } with the property that
a, — 0asn — oo. Show that S is a subspace of S.

Prove that if S is a subspace of R1, then either S = {0} or
S =R\

Let A be an . X n matrix. Prove that the following statements are
equivalent:

L N(4) = {o}.
2. A is nonsingular.

3. For each b € R”, the system Ax = b has a unique
solution.

Let U and V be subspaces of a vector space W. Prove that their
intersection U N V is also a subspace of W.

Let S be the subspace of R2 spanned by e; and let T be the
subspace of R? spanned by €. Is S U T a subspace of R??
Explain.

Let U and V be subspaces of a vector space W. Define

U+V={z=u+v,whereuc Uandv eV}

Show that U + V is a subspace of W.

Let S, T, and U be subspaces of a vector space V. We can form new
subspaces using the operations of N and + defined in Exercises 24
and 26. When we do arithmetic with numbers, we know that the
operation of multiplication distributes over the operation of
addition in the sense that

a(b+c) =ab+ac

It is natural to ask whether similar distributive laws hold for the
two operations with subspaces.

1. Does the intersection operation for subspaces distribute
over the addition operation? That is, does

SN(T+U)=(SNT)+(SNU)?

2. Does the addition operation for subspaces distribute
over the intersection operation? That is, does

S+(TNU)=(S+T)N(S+0)?



3.3 Linear Independence

In this section, we look more closely at the structure of
vector spaces. To begin with, we restrict ourselves to
vector spaces that can be generated from a finite set of
elements. Each vector in the vector space can be built up
from the elements in this generating set using only the
operations of addition and scalar multiplication. The
generating set is usually referred to as a spanning set. In
particular, it is desirable to find a minimal spanning set.
By “minimal,” we mean a spanning set with no
unnecessary elements (i.e., all the elements in the set are
needed in order to span the vector space). To see how to
find a minimal spanning set, it is necessary to consider
how the vectors in the collection depend on each other.
Consequently, we introduce the concepts of linear
dependence and linear independence. These concepts
provide the keys to understanding the structure of vector
spaces.

Consider the following vectors in R>:

[ 1] [ 2] 1
xXp =1 —11, Xo=1 31, xXz3=1 31

[ 2] | 1] | 8]

Let S be the subspace of R3 spanned by X1, X2, X3.
Actually, S can be represented in terms of the two vectors
X1 and X2, since the vector X3 is already in the span of
x1 and x2; that is,

X3 = 3X1 + 2X9
(@)
Any linear combination of X1, X», and X3 can be reduced

to a linear combination of x; and X5:

a1X] + QoXo + 3X3 = QX1 + Q9Xo + O(3(3X1 + 2X2)
= (Oq + 3a3)x1+(a2 + 30(3)}{2



Thus,
S = Span(x1, X2, x3) = Span(xy,X2)
Equation (1) can be rewritten in the form

3x1 +2x9 — 1x3 =0
(2)

Since the three coefficients in (2) are nonzero, we could
solve for any vector in terms of the other two:

X1 = —%X2 + %in Xy = —%Xl + %X?n X3 = 3x1 + 2x3

It follows that
Span(xi,X2,x3) = Span(xz, x3) = Span(xi,x3) = Span(x,X2)

Because of the dependency relation (2), the subspace S
can be represented as the span of any two of the given
vectors.

In contrast, no such dependency relationship exists
between X1 and X2. Indeed, if there were scalars c¢1 and
c2, not both 0, such that

c1X1 +cx9 =0
(3

then we could solve for one of the vectors in terms of the
other:

xlz—%xQ (c1 #0) or xQ:—%xl (ca #£0)

However, neither of the two vectors in question is a
multiple of the other. Therefore, Span(x; ) and Span
(x2) are both proper subspaces of Span(x7, X3 ), and
the only way that (3) can hold isif ¢; = ¢c3 = 0.

We can generalize this example by making the following
observations:

1. If vy, va, ..., Vv, span a vector space V and one of these vectors
can be written as a linear combination of the other n — 1 vectors,
then those n — 1 vectors span V.



2. Given n vectors Vi, . . ., Vj, it is possible to write one of the
vectors as a linear combination of the other n — 1 vectors if and
only if there exist scalars cy, . . ., c,, not all zero, such that

c1vi+cve+ - +¢c,v,, =0
Proof of (I)

Suppose that v,, can be written as a linear combination
of the vectors v, vo, ..., Vv, 1;thatis,

Vp = P1vi+ Bava+ -+ Buo1 Vit

Let v be any element of V. Since v1, ..., vy span V, we
can write
V = a1vit+taVyt s+ ap1Vy_1 + ap vy

vy +0ava+ -+ an 1 Va1 + an(Bivi + -+ Buo1Vno1)
(01 + azfr) v + (a2 + a,B2)va + -+ - + (-1 + A Bn—1)Vn-1)

Thus, any vector v in V can be written as a linear
combination of v{, vo, ..., V,_1, and hence these
vectors span V.

Proof of (II)

Suppose that one of the vectors vi, vo, ..., V,, say, V,,
can be written as a linear combination of the others.

Vp = 01V] + oV + -+ 01 Vp—1
Subtracting v,, from both sides of this equation, we get
a1vy +aovy + -+ a1V 1 — v, =0

Ifwesetc; = a;fort =1,...m — 1, and set
C,, = —1, then it follows that

civi+ceve+ - +¢,v, =0
Conversely, if
vy +ceve+ - +c¢,v,, =0

and at least one of the ¢;’s, say, ¢y, is nonzero, then



Vp = nV1+ nV2+' + c, V-l
|
Definition
The vectors vi, Vo, ..., V, in a vector space V are said

to be linearly independent if

vy +cve+ -+ ¢,v, =0
implies that all the scalars ci, . . . , ¢, must equal o.
It follows from (I) and (IT) that, if {Vl, Vo, ..., Vn} is
a minimal spanning set, then v, va, ..., v, are linearly
independent. Conversely, if vy, ..., v, are linearly
independent and span V, then {vy,...,v,}isa
minimal spanning set for V (see Exercise 20 at the end of
this section). A minimal spanning set is called a basis.

The concept of a basis will be studied in more detail in
the next section.

Example 1

1 1
The vectors { 1] and ! 2] are linearly independent, since

if

ol +ola] =[]

ci+ c=0
co+2co =0

and the only solution to this system is c; = 0, ¢y = 0.



Definition

The vectors vi, Vo, ..., Vv, in a vector space V are said
to be linearly dependent if there exist scalars
C1,Ca, ..., Cp, not all zero, such that

cvi+ceve+---+c,v, =0

Example 2

Letx = (1,2, 3)T. The vectors €1, €5, €3, and x are
linearly dependent, since

e;+2e;+3e3—x=0

(In this case,c; = 1,¢c9 = 2,c3 = 3,¢c4 = —1.)
Given a set of vectors {Vy, Vs, ..., V,} in a vector
space V, we can find scalars ¢y, ¢, . . . , ¢, such that

civi +cve+ -+ ¢, v, =0

Just take
61262:---:cn:0

If there are nontrivial choices of scalars for which the
linear combination c1vi + - - - +¢, vy, equals the zero
vector, then v1, . .., v, are linearly dependent. If the
only way the linear combination c1vy + - - - + ¢, v can
equal the zero vector is for all the scalars c1, ..., cp to
be o, then vi, ..., vy are linearly independent.

Geometric Interpretation

If x and y are linearly dependent in R?, then

cx+cy=0

where ¢; and ¢ are not both o. If, say, ¢1 7% 0, we can
write



)
X=——Y
C1
If two vectors in R? are linearly dependent, one of the
vectors can be written as a scalar multiple of the other.
Thus, if both vectors are nonzero and they are placed at
the origin, then they will lie along the same line (see

Figure 3.3.1).

Figure 3.3.1.

i

iy

o v e deenden )y e e

Figure 3.3.1. Full Alternative Text

It


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-03-001.xhtml#la_fig03-03-001

are linearly independent in R3, then the two points

(21, x2, x3) and (y1, Y2, y3) will not lie on the same line
through the origin in 3-space. Since

(07 0, O)a (mla L2, $3)’ and (y17 Y2, y3) are not
collinear, they determine a plane. If (21, 29, 23) lies on
this plane, the vector z = (21, 22, 23)” can be written as
a linear combination of x and y, and hence x, y, and z
are linearly dependent. If (21, 22, 23) does not lie on the
plane, the three vectors will be linearly independent (see
Figure 3.3.2).

Figure 3.3.2.

( U

Figure 3.3.2. Full Alternative Text
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Theorems and Examples

Example 3

Which of the following collections of vectors are linearly
independent in R3?

1 (1,1,1)7,(1,1,0)7, (1,0,0)"

T

2.(1,0,1)",(0,1,0)"

3.(1,2,4)7,(2,1,3)", (4,-1,1)"

SOLUTION

=

These three vectors are linearly independent. To verify this, we
must show that the only way for

a(1,1,1)7, e5(1,1,0)7, e5(1,0,0)" = (0,0,0)"

4)

is if the scalars ¢y, g, c3 are all zero. Equation (4) can be written
as a linear system with unknowns ¢y, ¢2, c3:

cp+ctey =
c1+ co
C1

0
0
0

The only solution of this systemis c; = 0,¢cy = 0,c3 = 0.
2. If

T T r
Cl(lv Oa 1) + 62(07 ]-a 0) - (07 07 O)
then
(Cla C2, cl)T = (07 07 O)T

so ¢; = ¢ = (. Therefore, the two vectors are linearly
independent.

3. If
61(1, 2, 4)T + 62(2, 1, 3)T + 63(4a -1, 1)T = (07 0, O)T
then

c1+2c+4cs = 0
2c1+ co— ¢cg = 0
4cg1 +3co+ 3 = 0



The coefficient matrix of the system is singular and hence the
system has nontrivial solutions. Therefore, the vectors are linearly
dependent.

Notice in Example 3, parts (a) and (c), that it was
necessary to solve a 3 X 3 system to determine whether
the three vectors were linearly independent. In part (a),
where the coefficient matrix was nonsingular, the vectors
were linearly independent, while in part (c), where the
coefficient matrix was singular, the vectors were linearly
dependent. This illustrates a special case of the following
theorem.

Theorem 3.3.1

Let X1,X2, . ..,Xn be nvectors in R and let
X = (x1,...,Xp). The vectors X1,X2, . . . , Xp, will be
linearly dependent if and only if X is singular-.

Proof

The equation

X1+ coxo+ -+ X, =0
can be rewritten as a matrix equation:

Xc=0

This equation will have a nontrivial solution if and only if
X is singular. Thus, X1, . . . X,, will be linearly dependent
if and only if X is singular.

We can use Theorem 3.3.1 to test whether n vectors are
linearly independent, in R". Simply form a matrix X
whose columns are the vectors being tested. To
determine whether X is singular, calculate the value of
det(X). If det(X) = 0, the vectors are linearly



dependent. If det(X) # 0, the vectors are linearly
independent.

Example 4

Determine whether the vectors (4, 2, 3)T, (2,3, 1)T,
and (2, —5, 3)T are linearly dependent.

SOLUTION

Since

=0

W N

2 2
3 =5
1 3

the vectors are linearly dependent.

Example 5

The following vectors are pictured in Figure 3.3.3.

[2] [3] 9] [2]
xp=13", xp=121, xz3=151, x4="121,
L1] 1] | 2] 4]

Figure 3.3.3.



Figure 3.3.3. Full Alternative Text

We can see a dependency relation among the first three
of the vectors since

X3 = X1 + X2

In this case, the vector X3 lies in the plane spanned by x;
and Xs. It follows then that

X1+X2—X3—|—0X4:0

The collection of four vectors must be linearly dependent
since the scalarsc; = 1,¢c9 = 1,¢c3 = —1,¢c4 = O are
not all o.

In the next section of the book, we will show that any
collection of three linearly independent vectors in R3
will form a spanning set. If we then add a fourth vector to
the collection, the new vector can be expressed as a
linear combination of the three spanning vectors. Hence,
the collection of four vectors must be linearly dependent.
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To determine whether k vectors X1, Xa, . .. Xz in R"
are linearly independent, we can rewrite the equation

c1X1+coXo+ -+ cxp =0

as a linear system Xc = 0, where

X = (x1,X3,...,Xg). If kK # n, then the matrix X is
not square, so we cannot use determinants to decide
whether the vectors are linearly independent. The system
is homogeneous, so it has the trivial solution ¢ = 0. It
will have nontrivial solutions if and only if the row
echelon forms of X involve free variables. If there are
nontrivial solutions, then the vectors are linearly
dependent. If there are no free variables, then ¢ = 0 is
the only solution, and hence the vectors must be linearly
independent.

Example 6

Given

To determine whether the vectors are linearly
independent, we reduce the system Xc¢ = 0 to row
echelon form:

[ 1 -2 10'| |'1 -2 10'|

|—1 3 00| |0 1 1/0
2 1 700 0 0 000
| 3 —2 7ol Lo o olol

Since the echelon form involves a free variable cs3, there
are nontrivial solutions and hence the vectors must be
linearly dependent.

Next, we consider a very important property of linearly
independent vectors: Linear combinations of linearly



independent vectors are unique. More precisely, we have
the following theorem.

Theorem 3.3.2

Let vy, ..., Vo bevectors in a vector space V. A vector
v € Span(vy, ..., Vs) can be written uniquely as a
linear combination of vy, ..., Vv, ifand only if

Vi, ..., Vyarelinearly independent.

Proof

If v € Span(vi,...,Vy), then v can be written as a
linear combination:

V=01V] +QaVy + -+ Q,Vy
(5)

Suppose that v can also be expressed as a linear
combination:

V:ﬂlvl+ﬂ2v2+"'+ﬂnvn
(6)

We will show that, if vy, ..., v, are linearly
independent, then 8; = «;,%2 = 1,...,n, and if
V1i,...,Vyarelinearly dependent, then it is possible to
choose the (3;’s different from the a;’s.

If vy, ..., vy arelinearly independent, then subtracting
(6) from (5) yields
(1 = Br)vi+ (a2 — B2)va+ -+ (an — Bn) v = 0
)
By the linear independence of vy, ..., v, the
coefficients of (7) must all be 0. Hence,
ag :,81,012 :/B2a"’7an :,Bn

Thus, the representation (5) is unique when v{, ..., v,
are linearly independent.



On the other hand, if vy, ..., v, are linearly dependent,
then there exist ¢y, . . . , ¢,, not all 0, such that

0=cvi+covoy ... +cpvy
®
Now if we set
Pr=ai+c,B =ar+coy...,Bn=0an+cy

then, adding (5) and (8), we get

v = (aq+e)vi+(ag+ea)va+--+ (an+cn)vn
= Pivi+ Pove + o+ By

Since the ¢;’s are not all 0, 8; # «; for at least one value
of i. Thus, if vy, ..., v, are linearly dependent, the
representation of a vector as a linear combination of
Vi,...,Vyisnot unique.

Vector Spaces of Functions

To determine whether a set of vectors is linearly
independent in R"™, we must solve a homogeneous linear
system of equations. A similar situation holds for the
vector space P,.

The Vector Space P,

To test whether the following polynomials
Pp1, P2, ..., Dk are linearly independent in P, we set

cpr +copa+ -+ cpr = 2
9)

where z represents the zero polynomial; that is,

2(z) =0z" 1 +0z" 2+ - +0z+0



If the polynomial on the left-hand side of Equation (9) is
rewritten in the form

axz" '+ a2 2+ ... +a, 1z + a,, then, since
two polynomials are equal if and only if their coefficients
are equal, it follows that the coefficients a; must all be o.
But each of the a;’s is a linear combination of the c;’s.
This leads to a homogeneous linear system with
unknowns ¢y, Ca, . . . , C. If the system has only the
trivial solution, the polynomials are linearly
independent; otherwise, they are linearly dependent.

Example 7

To test whether the vectors
pi(z) =2 —22+3, py(x) =22 +z+8, ps(z)=2>+8z+7
are linearly independent, set
c1p1 () + capa(x) + esps(x) = 0z° + 0z + 0
Grouping terms by powers of x, we get
(c1 + 2o + c3)x® + (—2¢1 + 2 + 8¢3)x + (3c1 + 8¢z + Te3) = 0z + 0z + 0

Equating coefficients leads to the system

c1+2c5+c3 = 0
—2c14+c2+8c3 = 0
3c1 +8c2+Tc3 = 0

The coefficient matrix for this system is singular and
hence there are nontrivial solutions. Therefore, p1, p2,
and p3 are linearly dependent.

The Vector Space
C=Va, b]



In Example 4, a determinant was used to test whether
three vectors were linearly independent in R3.
Determinants can also be used to help to decide whether
a set of n vectors is linearly independent in C'"~1)[a, b).
Indeed, let f1, fa, ..., fn be elements of C(®V[a, b]. If
these vectors are linearly dependent, then there exist
scalars ¢y, €9, . . . , Co, not all zero, such that

cifi(z) +eafo(x) +--- +cnfu(z) =0
(10)

for each x in [a, b|. Taking the derivative with respect to
x of both sides of (10) yields

afi(@) +efi(@) +- - +efu(z) =0

If we continue taking derivatives of both sides, we end up

with the system
afilz) + cfi(z) ++  afulz) =0

afi(z) + cfi(z) +--+ cafi(z) =0

clfl(nfl)(a:) + CQfQ(nil)(.’L') et cnfénfl)(a:) = 0

For each fixed x in [a, b], the matrix equation

[ filz) foe) o ful@) T[] [0]
fi(z) flz) ... ful@) ‘ az| ‘ 0|
L@ £ . f@) Ladd Lol
(1)
will have the same nontrivial solution (cy, ca, . . . , ¢, )T.
Thus, if fi, ..., f, are linearly dependent in

C(n-1) [a, b], then, for each fixed x in [a, ], the
coefficient matrix of system (11) is singular. If the matrix
is singular, its determinant is zero.

Definition



Let f1, f2, -, fn be functions in C' ("~ ]a, b], and
define the function W[fy, fa, ..., ful(z) on [a, b] by

fi(z) flz) ... ful2)
fi(@) fx) ... filz)
Wifi, fos-- -, fol(2) = :

@) @) e 1 ()

The function W f1, fa, . .., fu] is called the
Wronskian of fi, fo, ..., fn.

Theorem 3.3.3

Let fi, fa, - .., fn be elements of C"~V[a, b]. If there
exists a point x in [a, b] such that

W[f17f27" afn](x(]) 7£ O: then flana"'afn are

linearly independent.
Proof

If f1, f2, ..., fn were linearly dependent, then by the
preceding discussion, the coefficient matrix in (11) would
be singular for each x in [a, b] and hence

W{fi, f2,- -, fn](x) would be identically zero on

[a, b].

If f1, fo, ..., f, arelinearly independent in
c (1) la, b], they will also be linearly independent in
Cla,b].

Example 8

Show that €” and e * are linearly independent in

C(—0o0, ).

SOLUTION



W[e’”,e’z] = . ew = -2
Since W [e®, e 7] is not identically zero, e* and e~ * are
linearly independent.
Example 9

Consider the functions 22 and z|z| in C[—1, 1]. Both
functions are in the subspace C'* [—1, 1] (see Example 7
of Section 3.2), so we can compute the Wronskian:

z? x|z|
2z 2|z

W[:c2,:1:|x|] =

Since the Wronskian is identically zero, it gives no
information as to whether the functions are linearly
independent. To answer the question, suppose that

az® + cpzlz| = 0

for all x in [—1, 1]. Then, in particular for z = 1 and
r = —1, we have

ct+ca=0
01*62:0

and the only solution of this systemis ¢; = ¢y = 0.
Thus, the functions 22 and z || are linearly independent
in C[—1, 1] even though W[x2, CL“ZBH =0.

This example shows that the converse of Theorem 3.3.3
is not valid.

Example 10

Show that the vectors 1, x, 22, and x> are linearly
independent in C((—00, 00)).

SOLUTION



1 z 22 =z
2
W[l,m,m2,ac3] = 0 L 2z 3z =12
0 0 2 6x
00 0 6

Since W [1, z, x2, 333} = 0, the vectors are linearly
independent.



Section 3.3 Exercises

1. Determine whether the following vectors are linearly independent

in R

2. Determine whether the following vectors are linearly independent

in R?:

RENER
10 0 1o 0 O

Lol L) L1]
RENERER

o1 0 0 1o 01 0 20

) ) )

Lol L1l L1] L3l

[ 217 31712
3.0 Ligo 20,020
| —2] [ —2] Lol
[ 2177211 4
4.0 1o =1v 0 20
| 2] | 2] | -4l
(979
501 1,024
L3l [1]

3. For each of the sets of vectors in Exercise 2, describe geometrically
the span of the given vectors.

4. Determine whether the following vectors are linearly independent
: 2x2
in R*“:



1 0] [0 1
"1 1] |o o]
[1 07 [0 17 [0 O
1o 170 o]’ [1 o
1 0] [0 17 [2 3
310 1]"[0 0]’ |0 2
5. Let X1, X2, ..., X be linearly independent vectors in a vector
space V.

1. If we add a vector X to the collection, will we still
have a linearly independent collection of vectors?
Explain.

2. If we delete a vector, say, X, from the collection, will we
still have a linearly independent collection of vectors?
Explain.

6. Let X1, X2, and X3 be linearly independent vectors in R™ and let
Y1 =X1+X2 Y2=X2+X3 Y3=3X3+X

Are y1,¥2, and y3 linearly independent? Prove your answer.

7. Let X1, X,, and X3 be linearly independent vectors in R™ and let
Y1 =X2— X1, Y2=X3 X2, y3=X3—X1

Are y1, Y2, and y3 linearly independent? Prove your answer.

8. Determine whether the following vectors are linearly independent

in P3:

11,2222 -2
2.2,2%,x,2x + 3

s z+2,c+1,22—-1
4x+2,22 -1

9. For each of the following, show that the given vectors are linearly
independent in C[0, 1]:

1. cos Tx, sin Tx

3/2 ,.5/2

2.z x

3.1, +e® e —e "

4. ez, efz, e2z

10. Determine whether the vectors cos x, 1, and sin?(z/2) are linearly
independent in C[—r, 7.



1

-

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Consider the vectors cos(z + «) and sin x in C[—r, 7. For what

values of a will the two vectors be linearly dependent? Give a
graphical interpretation of your answer.

Given the functions 2x and |x|, show that

1. these two vectors are linearly independent in C[—1, 1].

2. the vectors are linearly dependent in C0, 1].

Prove that any finite set of vectors that contains the zero vector
must be linearly dependent.

Let v1, and V3 be two vectors in a vector space V. Show that v
and Vv are linearly dependent if and only if one of the vectors is a
scalar multiple of the other.

Prove that any nonempty subset of a linearly independent set of
vectors {V1, ..., vy} is also linearly independent.

Let A be an X m matrix. Show that if A has linearly
independent column vectors, then N(A) = {0}.

[Hint: Forany x € R", Ax = z1a; + z2as + - -+ + x,a,.]

Let X1, . . ., Xg, be linearly independent vectors in R", and let A
be a nonsingular . X n matrix. Define y; = Ax; for
it =1,...,k Showthaty,,...,y, arelinearly independent.

Let Abe a3 X 3 matrix and let X1, X2, X3 be vectors in R3. Show
that if the vectors

yi = Axi, y2 = Axy, y3 = Ax3

are linearly independent, then the matrix A must be nonsingular
and the vectors X1, X3, and X3 must be linearly independent.

Let {v1,..., vV, } be a spanning set for the vector space V, and let
v be any other vector in V. Show that v, vy, ..., v, are linearly
dependent.

Let vi, Vo, ..., Vy be linearly independent vectors in a vector

space V. Show that v, ..., v, cannot span V.



3.4 Basis and Dimension

In Section 3.3, we showed that a spanning set for a vector
space is minimal if its elements are linearly independent.
The elements of a minimal spanning set form the basic
building blocks for the whole vector space, and
consequently, we say that they form a basis for the vector
space.

Definition

The vectors vi, Vo, ..., v, form a basis for a vector
space Vif and only if

1 Vi,..., Vy are linearly independent.

2.Vi,...,Vyspan V.

Example 1

The standard basis for R3 is {e1, e2, e3}; however,
there are many bases that we could choose for R3. For
example,

() = TRl

are both bases for R3. We will see shortly that any basis
for R® must have exactly three elements.

Example 2

In R?*2 consider the set {E11, E12, E21, E22}, where



mo_ 00 L oo

If
c1Ei + coF1g + csEo 4 c4Eay = O

then

cp c2f |00

cs ca|l |0 O
soc) = c2 = c3 = ¢4 = 0. Therefore, E11, F12, E21,
and F92 are linearly independent. If A is in R2X2, then

A = anFEun + ainFis + an B + axnFa

Thus, E11, F12, Eo1, F22 span R?*? and hence form a
basis for R2*2,

In many applications, it is necessary to find a particular
subspace of a vector space V. This can be done by finding
a set of basis elements of the subspace. For example, to
find all solutions of the system

0
0

T1 + X2 + X3
2¢1 + 2o+  + x4

we must find the null space of the matrix

1110
A[ZlOl]

In Example 9 of Section 3.2, we saw that N(A) is the
subspace of R4 spanned by the vectors

1 -1
-2 1
1 and 0

1

Since these two vectors are linearly independent, they
form a basis for N(A).



Theorem 3.4.1

If{v1,Va,...,V,} is a spanning set for a vector space
V, then any collection of m vectors in V, wherem > n,
is linearly dependent.

Proof
Let ui, ug, ..., U, be mvectors in Vwhere m > n.
Then, since vi, v, ..., V, span V, we have

u;, =anvi +apve+ -+ apvy, for i=1,2,...,m

A linear combination c;u; + cous + - - - 4+ ¢, u,, can
be written in the form

n n n
Cc1 E ai1;vj+ ¢ E ayiVi+ -+ ey E AV
j=1 j=1 =1

Rearranging the terms, we see that

m m m m
ciu; +coug + -+ + ey, = Z lci (Z aijvj)] = Z (Z aijCi) \Zi
i=1 j

i=1 j=1 \'i=1

Now consider the system of equations

Zaijci =0 .7: 1,2,...,1’L

i=1
This is a homogeneous system with more unknowns than
equations. Therefore, by Theorem 1.2.1, the system must
have a nontrivial solution (1, éa, . . ., ¢3)T. But then

@1U1+62112+'--+@mum:ZOV]'ZO
=1

Here, uq, us, . .., u,, are linearly dependent.

Corollary 3.4.2



Ifboth{vy,...,v,}and{uy,...,u,,} are bases for a
vector space V, then n = m.

Proof

Let vy, Vvo,..., Vv, and uy, Uy, ..., V., both be bases
for V. Since v, Vo, ...,V span Vand u;, usg, ..., vy,
are linearly independent, it follows from Theorem 3.4.1
that m < n. By the same reasoning, u;, us, ..., v,
span V, and vy, Vg, ..., V, are linearly independent, so
n <m.

In view of Corollary 3.4.2, we can now refer to the
number of elements in any basis for a given vector space.
This leads to the following definition.

Definition

Let V' be a vector space. If V has a basis consisting of n
vectors, we say that V has dimension n. The subspace
{0} of V'is said to have dimension 0. V'is said to be
finite dimensional if there is a finite set of vectors that
spans V; otherwise, we say that V'is infinite
dimensional.

If x is a nonzero vector in R?, then x spans a one-
dimensional subspace Span(x) = {ax|a is a scalar}.
Avector (a, b, ¢)” will be in Span(x) if and only if the
point (a, b, ¢) is on the line determined by (0, 0, 0) and
(21, 2, x3). Thus, a one-dimensional subspace of R3
can be represented geometrically by a line through the
origin.

If x and y are linearly independent in R?, then

Span(x,y) = {ax + By|a and S are scalars}



is a two-dimensional subspace of R3. A vector (a, b, ¢)”
will be in Span(x, y) if and only if (a, b, ¢) lies on the
plane determined by (0, 0, 0), (x;, X5, X3), and (Y;, Y, Y3).
Thus, we can think of a two-dimensional subspace of R?
as a plane through the origin. If x, y, and z are linearly
independent in R3, they form a basis for R3 and Span(x,
y, z) = R®. Hence, any fourth point (a, b, C)T must lie in

Span(x,y, z) (see Figure 3.4.1).

Figure 3.4.1.

. b i

Figure 3.4.1. Full Alternative Text

Example 3


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig03-04-001.xhtml#la_fig03-04-001

Let P be the vector space of all polynomials. We claim
that P is infinite dimensional. If P were finite
dimensional, say, of dimension n, any set of n + 1
vectors would be linearly dependent. However,
1,z,x2,...,z" are linearly independent, since
W[l, z,z2,... ,x"} > 0. Therefore, P cannot be of
dimension n. Since n was arbitrary, P must be infinite
dimensional. The same argument shows that C'[a, b] is
infinite dimensional.

Theorem 3.4.3

If V'is a vector space of dimension n > 0, then

1. any set of n linearly independent vectors spans V.

2. any n vectors that span V are linearly independent.

Proof

To prove (I), suppose that vy, ..., v, are linearly
independent and v is any other vector in V. Since V has
dimension n, it has a basis consisting of n vectors and
these vectors span V. It follows from Theorem 3.4.1 that

Vi, Vo,...,Vy, and v must be linearly dependent. Thus,
there exist scalars ¢y, ¢, . . ., Cy, Cy 41, Dot all zero, such
that

civy+covo+ -+ ey vy +epiv=20
(€]
The scalar ¢, +1 cannot be zero, for then (1) would imply

that vi, ..., vy are linearly dependent. Hence, (1) can
be solved for v.

V=a1V]y+ayvy + -+ a,V,

Here, o; = —¢;/¢piq fori = 1,2, ..., n. Since v was
an arbitrary vector in V it follows that v, vo, ..., Vv,
span V.



To prove (IT), suppose that vy, ..., Vv, span V. If

V1, ..., V, are linearly dependent, then one of the v;’s,
say, V,,, can be written as a linear combination of the
others. It follows that v{, ..., v,,_1 will still span V. If
Vi,...,Vy, 1 are linearly dependent, we can eliminate
another vector and still have a spanning set. We can
continue eliminating vectors in this way until we arrive
at a linearly independent spanning set with k < n
elements. But this contradicts dim V' = n. Therefore,
Vi, ..., Vy, mustbe linearly independent.

Example 4

1 —2 1
Show that 21, 1{, 10 is a basis for R3.
3 0 1

SOLUTION

Since dim R3 = 3, we need only show that these three
vectors are linearly independent. This follows, since

W N =

|

S =N

—_ O
Il
[N

Theorem 3.4.4

If V'is a vector space of dimension n > 0, then

1. no set of fewer than n vectors can span V.

2. any subset of fewer than n linearly independent vectors can be
extended to form a basis for V.

3. any spanning set containing more than n vectors can be pared
down to form a basis for V.



Proof

Statement (i) follows by the same reasoning that was
used to prove part (I) of Theorem 3.4.3. To prove (ii),
suppose that v, ..., Vi are linearly independent and
k < n. It follows from (i) that Span(v1,..., V) isa
proper subspace of V and hence there exists a vector
Vi1 that is in Vbut not in Span(vi, ..., vg). It then
follows that vi, v, ..., Vi, Vi1 must be linearly
independent. If £ + 1 < n, then, in the same manner,
{V1,...,Vk, Vi11} can be extended to a set of k& + 2
linearly independent vectors. This extension process may
be continued until a set

{Vl, Voo y Vi, Vidly ooy Vn} of n linearly
independent vectors is obtained.

To prove (iii), suppose that vy, ..., v, span Vand

m > n. Then, by Theorem 3.4.1, vy, ..., V,, must be
linearly dependent. It follows that one of the vectors, say,
V., can be written as a linear combination of the others.
Hence, if v, is eliminated from the set, the remaining
m — 1 vectors will still span V. If m — 1 > n, we can
continue to eliminate vectors in this manner until we
arrive at a spanning set containing n vectors.

Standard Bases

In Example 1, we referred to the set {€1, €5, €3} as the
standard basis for R®. We refer to this basis as the
standard basis because it is the most natural one to use
for representing vectors in R3. More generally, the
standard basis for R™ is the set {e1, €2, ..., e, }.

The most natural way to represent matrices in R2*2 is in
terms of the basis { F11, E12, E91, E91, F2} given in
Example 2. This, then, is the standard basis for R?*2,



The standard way to represent a polynomial in P, is in

n—1

terms of the functions 1, z, 2, ..., z" !, and

consequently, the standard basis for P, is
{1,2,2%,...,2" 1}

Although these standard bases appear to be the simplest
and most natural to use, they are not the most
appropriate bases for many applied problems. (See, for
example, the least squares problems in Chapter 5 or the
eigenvalue applications in Chapter 6.) Indeed, the key to
solving many applied problems is to switch from one of
the standard bases to a basis that is in some sense
natural for the particular application. Once the
application is solved in terms of the new basis, it is a
simple matter to switch back and represent the solution
in terms of the standard basis. In the next section, we
will learn how to switch from one basis to another.



Section 3.4 Exercises

1. In Exercise 1 of Section 3.3, indicate whether the given vectors
form a basis for R

2. In Exercise 2 of Section 3.3, indicate whether the given vectors

form a basis for R3.

3. Consider the vectors

e e f) o[

1. Show that X7 and X form a basis for R2.
2. Why must X, X9, X3 be linearly dependent?

3. What is the dimension of Span(x, X2, X3)?

4. Given the vectors

[ 3] [ 3] [ 6]
xlzlle, Xo =1 2|7
| 4l [ 4l | —sl
what is the dimension of Span(x1, X2, X3)?
5. Let
[2] [ 3 [2]
xlzlll, x2:|71|, X3:|6|
| 3] | 4l | 4]
1. Show that X1, X9, and X3 are linearly dependent.
2. Show that x; and X3 are linearly independent.
3. What is the dimension of Span(x7, X2, X3)?

4. Give a geometric description of Span(x1, X2, X3).

6. In Exercise 2 of Section 3.2, some of the sets formed subspaces of
IR3. In each of these cases, find a basis for the subspace and
determine its dimension.

7. Find a basis for the subspace S of R* consisting of all vectors of the
form (a + b,a — b + 2¢, b, c)T, where q, b, and c are all real
numbers. What is the dimension of S?

8. Givenx; = (1,1, 1)T and x2 = (3, —1,4)T:

1. Do x; and X5 span R3? Explain.



2. Let x3 be a third vector in R? and set X = (x; X3 X3).
What condition(s) would X have to satisfy in order for x;
, X2, and X3 to form a basis for R3?

3. Find a third vector x3 that will extend the set {x1, X2} to
a basis for R3.

9. Let a; and ay be linearly independent vectors in ]R3, and let x
beavector in R2.

1. Describe geometrically Span(ay, as).

2. If A = (aj, az) and b = Ax, then what is the
dimension of Span(aj, ag, b)? Explain.

10. The vectors

[1] [2]
X; =121, Xo=1 51,
L 2] [ 4]

[ 1] [2] [
x3=131, x4y=171, x5=1 11
| 2] | 4] L ol

span R3, Pare down the set {X1, X2, X3, X4, X5} to form a basis
for R3,

11. Let S be the subspace of P5 consisting of all polynomials of the
form ax? + bz + 2a + 3b. Find a basis for S.

12. In Exercise 3 of Section 3.2, some of the sets formed subspaces of
R2%2, In each of these cases, find a basis for the subspace and
determine its dimension.

13. In C[—, 7], find the dimension of the subspace spanned by
1, cos 2z, cos’z.

14. In each of the following, find the dimension of the subspace of P
spanned by the given vectors:
rtz,e—1,22+1
oz, x— 1,22 +1,22 -1
szt zl—zx—1,z+1

4.2z, x — 2

15. Let S be the subspace of Pj consisting of all polynomials p(z)
such that p(0) = 0, and let T be the subspace of all polynomials
q(z) such that (1) = 0. Find bases for

1S

2. T



3.5NT

16. In R?, let Ube the subspace of all vectors of the form
(uq, ug, 0, O)T, and let V be the subspace of all vectors of the form
(0, v2, v3, 0). What are the dimensions of U, V.U N V,U + V
? Find a basis for each of these four subspaces. (See Exercises 24
and 26 of Section 3.2.)

17. Is it possible to find a pair of two-dimensional subspaces U and V'
of R3 whose intersection is {0}? Prove your answer. Give a
geometrical interpretation of your conclusion. [Hint: Let {uy, ua}
and {Vl, V2} be bases for U and V, respectively. Show that
uj, Ug, Vi, Vo are linearly dependent.]

18. Show that if U and V are subspaces of R” and U N V' = {0},
then

dim(U+V)=dimU + dim V



3.5 Change of Basis

Many applied problems can be simplified by changing
from one coordinate system to another. Changing
coordinate systems in a vector space is essentially the
same as changing from one basis to another. For
example, in describing the motion of a particle in the
plane at a particular time, it is often convenient to use a
basis for R? consisting of a unit tangent vector t and a
unit normal vector n instead of the standard basis

{el, eg}.

In this section, we discuss the problem of switching from
one coordinate system to another. We will show that this
can be accomplished by multiplying a given coordinate
vector x by a nonsingular matrix S. The product y = Sx
will be the coordinate vector for the new coordinate
system.

Changing Coordinates in R?

The standard basis for R? is {e1, €3 }. Any vector x in
IR2 can be expressed as a linear combination:

X = x1€1 + To2e

The scalars x1 and 5 can be thought of as the
coordinates of x with respect to the standard basis.
Actually, for any basis {y, z} for R?, it follows from
Theorem 3.3.2 that a given vector x can be represented
uniquely as a linear combination:

x=ay+ Pz

The scalars « and (3 are the coordinates of x with respect
to the basis {y, z}. Let us order the basis elements so
that y is considered the first basis vector and z is



considered the second, and denote the ordered basis by
[y, z]. We can then refer to the vector (e, 3)” as the
coordinate vector of x with respect to [y, z]. Note that, if
we reverse the order of the basis vectors and take [z, y|,
then we must also reorder the coordinate vector. The
coordinate vector of x with respect to [z, y] will be

(B, a)T. When we refer to a basis using subscripts, such
as {ul, uz}, the subscripts assign an ordering to the
basis vectors.

Example 1

Lety = (2, 1)T andz = (1, 4)T. The vectors y and z
are linearly independent and hence form a basis for R2.
The vector x = (7, 7)T can be written as a linear
combination:

x=3y+z

Thus, the coordinate vector of x with respect to |y, z] is
(3, 1)T. Geometrically, the coordinate vector specifies
how to get from the origin to the point (7, 7) by moving
first in the direction of y and then in the direction of z. If,
instead, we treat z as our first basis vector and y as the

second basis vector, then

x=z+3y
The coordinate vector of x with respect to the ordered
basis [z, y] is (1, 3)". Geometrically, this vector tells us
how to get from the origin to (7, 7) by moving first in the
direction of z and then in the direction of y (see Figure

3.5.1).

Figure 3.5.1.

ﬂ



X=CY+01
Cl=3 C2=1

Figure 3.5.1. Full Alternative Text
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As an example of a problem for which it is helpful to
change coordinates, consider the following application.

Application 1

Population Migration

Suppose that the total population of a large metropolitan
area remains relatively fixed; however, each year 6
percent of the people living in the city move to the
suburbs and 2 percent of the people living in the suburbs
move to the city. If, initially, 30 percent of the population
lives in the city and 70 percent lives in the suburbs, what
will these percentages be in 10 years? 30 years? 50
years? What are the long-term implications?

The changes in population can be determined by matrix
multiplications. If we set

4 [0-94 0.02 L [0:30
~10.06 098] *¢ 07 |00

then the percentages of people living in the city and
suburbs after one year can be calculated by setting

x; = Axy. The percentages after two years can be
calculated by setting x5 = Ax; = A%X,. In general,
the percentages after n years will be given by

x,, = A"xq. If we calculate these percentages for

n = 10, 30, and 50 years and round to the nearest
percent, we get

~[0.27 ~[0.25 ~[0.25

X0 = 1g.73] 07 Jors| 0T |07

In fact, as n increases, the sequence of vectors
. T
x, = A"x( converges to alimit x = (0.25,0.75)".

The limit vector x is called a steady-state vector for the
process.



To understand why the process approaches a steady
state, it is helpful to switch to a different coordinate
system. For the new coordinate system, we will pick
vectors U; and Uy, for which it is easy to see the effect of
multiplication by the matrix A. In particular, if we pick
u; to be any multiple of the steady-state vector x, then
Au; will equal uy. Let us choose u; = (1 3)T and

uz = (—1 1)". The second vector was chosen because
the effect of multiplying by A is just to scale the vector by
a factor of 0.92. Thus, our new basis vectors satisfy

At [094 0.02] [1] _ 1] _
M= 006 098] 3] 3] ™™

A, — [0:04 002] [-1] _ [-0.92] _
27 10.06 0.98 1l | 092

The initial vector X can be written as a linear
combination of the new basis vectors:

0.30 1 ~1
Xo = [0.70] =0.25 M - 0.05[ J = 0.25u; — 0.05u,

It follows that
X, = A"xg = 0.25u; — 0.05(0.92)"u,

The entries of the second component approach 0 as n
gets large. In fact, for n > 27, the entries will be small
enough so that the rounded values of x,, are all equal to
0.25

0.25u; = [0‘75]
This application is an example of a type of mathematical
model called a Markov process. The sequence of vectors
X1, X2, . ..1s called a Markov chain. The matrix A has a
special structure in that its entries are nonnegative and
its columns all add up to 1. Such matrices are called
stochastic matrices. More precise definitions will be
given later when we study these types of applications in
Chapter 6. What we want to stress here is that the key to
understanding such processes is to switch to a basis for
which the effect of the matrix is quite simple. In



particular, if A is n X n, then we will want to choose
basis vectors so that the effect of the matrix A on each
basis vector u; is simply to scale it by some factor Aj,
that is,

Auj=2du; j=1,2,...,n
(@)

In many applied problems involving an 7 X n matrix A,
the key to solving the problem often is to find basis
vectors Uy, . . ., U, and scalars Aq, ..., A, such that (1)
is satisfied. The new basis vectors can be thought of as a
natural coordinate system to use with the matrix A, and
the scalars can be thought of as natural frequencies for
the basis vectors. We will study these types of
applications in more detail in Chapter 6.

Changing Coordinates

Once we have decided to work with a new basis, we have
the problem of finding the coordinates with respect to
that basis. Suppose, for example, that instead of using
the standard basis {e;, 3} for R?, we wish to use a
different basis, say,

el el

Indeed, we may want to switch back and forth between
the two coordinate systems. Let us consider the following
two problems:

1. Given a vector x = (&1, 22)”, find its coordinates with respect to
u and us.

2. Given a vector c;u; + coUg, find its coordinates with respect to
€] and €s.

We will solve II first, since it turns out to be the easier
problem. To switch bases from {u1, 112} to {el, ez}, we



must express the old basis elements u; and u, in terms
of the new basis elements €; and es.

u; = 3e| + 2e
u = e t+e

It follows then that

ciu) +couy = (36181 -+ 20162) + (6261 + Cgez)
= (Be1 +ca)er + (2¢1 + c)er

Thus, the coordinate vector of c;u;1 + ca2ug with respect

to{el,eQ}is
o 3c1 + ¢ o 3 1|
x*= 2¢1 + ¢ T2 1 Co
If we set

U = (w1, u9) = B ﬂ

then, given any coordinate vector ¢ with respect to
{uy, uy}, to find the corresponding coordinate vector x
with respect to {1, €3 }, we simply multiply U times c:

x=Uc
(2)

The matrix U is called the transition matrix from the
ordered basis {uy, us } to the standard basis {e1, e }.

To solve problem I, we must find the transition matrix
from {el, 92} to {ul, u2}. The matrix Uin (2) is
nonsingular, since its column vectors, u; and u,, are
linearly independent. It follows from (2) that

c=U'x

Thus, given a vector

x = (z1, cCz)T = x1€1 + T2€3

we need only multiply by U ~! to find its coordinate
vector with respect to {uy, us }. U ! is the transition
matrix from {el, ez} to {ul, uz}.



Example 2

Letw; = (3,2)", w2 = (1,1)7, and x = (7,4)”. Find
the coordinates of x with respect to u; and us.

SOLUTION

By the preceding discussion, the transition matrix from
{el, 62} to {ul, u2} is the inverse of

1
U= (ul,ug) = |:; 1:|
Thus,

c=U"1x=

1 1] (7 [ 3
-2 3 4] |-2
is the desired coordinate vector and

x = 3u; — 2u,

Example 3

Letb; = (1, —l)T and by = (-2, 3)T. Find the
transition matrix from {e;, €3} to {by, by} and

determine the coordinates of x = (1,2)” with respect

to {bl , bz }
SOLUTION

The transition matrix from {by, bs} to {e1, €5} is

B = (b;,by) = [_1 _:ﬂ

and hence the transition matrix from {e1, €2} to

{b1,b2}is
=

The coordinate vector of x with respect to {b1, b2} is



== 2 [} =[]

x = Tby + 3bs

and hence

Now let us consider the general problem of changing
from one ordered basis {Vl, VQ} of R? to another
ordered basis {uy, uy }. In this case, we assume that, for
a given vector x, its coordinates with respect to {vy, vo}
are known:
X = C1V] + CaVa

Now we wish to represent x as a sum d;u; + daus.
Thus, we must find scalars d; and d» so that

vy + eave = diug + dauy
(3)
Ifweset V = (vi,vs) and U = (uy, uy), then
Equation (3) can be written in matrix form:

Ve=Ud

It follows that

d=U Ve

Thus, given a vector x in IR? and its coordinate vector ¢
with respect to the ordered basis {v1, v2}, to find the
coordinate vector of x with respect to the new basis
{u1, uz}, we simply multiply ¢ by the transition matrix

S=U"1V.

Example 4

Find the transition matrix corresponding to the change
of basis from {vy, vo } to {uy, us}, where

W =[] s - ]

SOLUTION



The transition matrix from {vl, V2} to {ul, u2} is

s=oov=[5 =[5

The change of basis from {v1, vo} to {u;, us} can also

given by

be viewed as a two-step process. First we change from
{Vv1, Vs } to the standard basis, {€1, €}, and then we
change from the standard basis to {ul, U } Given a
vector x in R2, if ¢ is the coordinate vector of x with
respect to { vy, Vo } and d is the coordinate vector of x
with respect to {u;, uy }, then

C1V1 + Ve = T1€1 + Toey = diug + dauy

Since V is the transition matrix from {v1, va} to
{e1, ey} and U ! is the transition matrix from
{el, 62} to {ul, u2}, it follows that

Ve=x and U lx=d
and hence
U'lVe=U'x=d

As before, we see that the transition matrix from
{v1,va}to{ui,u2} is U 'V (see Figure 3.5.2).

Figure 3.5.2.



|
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Figure 3.5.2. Full Alternative Text

Change of Basis for a General
Vector Space

Everything we have done so far can easily be generalized
to apply to any finite-dimensional vector space. We begin
by defining coordinate vectors for an n-dimensional
vector space.

Definition

Let Vbe a vector space and let E = {vy,Vs,...,v,} be
an ordered basis for V. If v is any element of V, then v
can be written in the form

V =cC1V]y+CVy—+---+cC,Vp
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where ¢y, €9, . . ., ¢, are scalars. Thus, we can associate
with each vector v a unique vector

c=(cy,coy.-, Cn)T in R™. The vector ¢ defined in
this way is called the coordinate vector of v with
respect to the ordered basis E and is denoted [v]g. The
¢;’s are called the coordinates of v relative to E.

The examples considered so far have all dealt with
changing coordinates in IR?. Similar techniques could be
used for R™. In the case of R"™, the transition matrices
will be n X n.

Example 5
It

and

U H I S
of ol ]

then F = {vy,vy,v3}and F = {u;, us, u3} are
ordered bases for R3. Let

x=3vi+2vy—v3y and y=v; —3vy+2v3

Find the transition matrix from E to F and use it to find
the coordinates of x and y with respect to the ordered
basis F.

SOLUTION

As in Example 4, the transition matrix is given by

2 -1 0] 1 21 1 1 -3
U'v=|-1 1 -1/ |1 3 5({=|-1 -1 o0
0 1] [1 2 4 1 2 4



The coordinate vectors of x and y with respect to the
ordered basis F are given by

S i B
12 [ [

and
[y}F: i—1 -1 0

The reader may verify that

8u; — buy + 3ug 3vi + 2vy — v3
—8u; + 2uy + 3ug = vy — 3vs + 2v3

If Vis any n-dimensional vector space, it is possible to
change from one basis to another by meansofann X n
transition matrix. We will show that such a transition
matrix is necessarily nonsingular. To see how this is
done,let E = {wy,...,wytand F = {vq,...,v,}
be two ordered bases for V. The key step is to express
each basis vector w; as a linear combination of the v;’s.

Wi = 811V + S21Va + -+ SV
W2 $12V1 + S22Va + - -+ + SpaVy

W, = 81pV1 + 82 Vo + - + SppVia
@
Letv € V.Ifx = [v]g, it follows from (4) that

V = I1W] + ToWy + -+ T,W,

n n n
< Sljxj> vi+ < 82j$j> Vo Ao+ (Z Sni%j | Vn
J=1 J=1 J=1

Thus, if y = [v] F, then

n
yi:Zsijxj i:1,...,n
=1

and hence,



The matrix S defined by (4) is referred to as the
transition matrix. Once S has been determined, it is a
simple matter to change coordinate systems. To find the
coordinates of v = x{w; + - - - + x,,w,, with respect to
{v1,...,V,}, we need only calculate y = Sx.

The transition matrix S corresponding to the change of
basis from {w1, ..., wp}to{vi,...,Vp} canbe
characterized by the condition

Sx =y ifandonlyif zywi;+- -4+ z,Ww,=vy1Vv1i+ -+ Yy

(5)
Taking y = 0 in (5), we see that Sx = 0 implies that

w1+ +z,w, =0

Since the w;’s are linearly independent, it follows that
x = 0. Thus, the equation Sx = 0 has only the trivial
solution and hence the matrix S is nonsingular. The
inverse matrix is characterized by the condition

S7ly =x ifandonlyif yvi+ -4 ynVn = T1W1 + -+ + 2, W,

Thus, S~ ! is the transition matrix used to change basis
from {vy,...,v,}to{wy,...,w,}.

Example 6

Suppose that in P3 we want to change from the ordered
basis [1, x, 332} to the ordered basis [1, 2z, 4% — 2}.
Because [1, z, :Bﬂ is the standard basis for P, it is

easier to find the transition matrix from
[1, 2z, 4x* — 2} to [1, x, :Iﬂ . Since

1 = 1-1+0z+022
20 = 0-1+ 2z + 0x2
4722 -2 = —2-1+ 0z + 422

the transition matrix is



[10—2'|
S=102 0

[oo 4J

The inverse of S will be the transition matrix from

1, z,2%] to [1, 2z, 42* — 2|:
1
2
]
4

[1
St=lo
lo
Given any p(z) = a + bx + cx? in P;, to find the
coordinates of p(z) with respect to [1, 2z, 4z — 2] ,

O = O

we multiply

— 1
(=
O v O

= O =
N—
— 1
S Q
N—
Il
1
)
N[NNI +
S N |—=
o
—_—T

Thus,

p(z) = (a+%c> -1+(%b) -2&7—&—%&(4:132—2)

We have seen that each transition matrix is nonsingular.
Actually, any nonsingular matrix can be thought of as a
transition matrix. If S is an . X 1 nonsingular matrix
and {v1, ..., V,} is an ordered basis for V, then define
{w1,Wa, ..., Wy} by (4). To see that the w;’s are
linearly independent, suppose that

n
E SCjo =0
j=1

It follows from (4) that

Z ( sijxj) Vj =0
i=1 \j=1
By the linear independence of the v;s, it follows that

n
Zsijxj:0 i:].,...,’n
J=1

or, equivalently,



Sx=0

Since S is nonsingular, x must equal 0. Therefore,

W1, ..., W, are linearly independent and hence they
form a basis for V. The matrix S is the transition matrix
corresponding to the change from the ordered basis

{w1,...,wptto{vy,..., v, }.

In many applied problems, it is important to use the
right type of basis for the particular application. In
Chapter 5, we will see that the key to solving least
squares problems is to switch to a special type of basis
called an orthonormal basis. In Chapter 6, we will
consider a number of applications involving the
eigenvalues and eigenvectors associated withann X n
matrix A. The key to solving these types of problems is to
switch to a basis for R™ consisting of eigenvectors of A.



Section 3.5 Exercises

1. For each of the following, find the transition matrix corresponding
to the change of basis from {uy, us } to {e1, e2}:
T T
Lu = (1, 1) , Ug = (—1,1)
2. U = (1,2)T, Uy = (2,5)T
3w =(0,1)", uy= (1,07

2. For each of the ordered bases {u1, u2} in Exercise 1, find the
transition matrix corresponding to the change of basis from
{el, 82} to {ul, 112}.

3. Let vy = (3, 2)T and vy = (4, 3)T. For each ordered basis
{uy, uy} given in Exercise 1, find the transition matrix from
{Vl, Vg} to {lll, ll2}.

4Lt E=[(53)7,(3,2)] andletx = (1,1)T,y = (1, -1)",
and z = (10, 7)T. Determine the values of [X]E, [y]E, and [Z]E

5 Letuy = (1,1,1)",up = (1,2,2)", and us = (2,3,4)".
1. Find the transition matrix corresponding to the change
of basis from {eq, €3, e3} to {uy, uz, us}.

2, Find the coordinates of each of the following vectors with
respect to the ordered basis {uy, us, us}:

1 (3,2,5)T
2.(1,1,2)T
3- (2a 3, 2)T

6. Letvy = (4,6,7)7,vy = (0,1,1), and v5 = (0,1,2)7, and
let u, ug, and ug be the vectors given in Exercise 5.

1. Find the transition matrix from {vy, v, v3} to
{u17 uy, U.3}.

2. If x = 2v; + 3vy — 4v3, determine the coordinates of
x with respect to {u;, uy, us}.

7. Given



find vectors w; and wo so that S will be the transition matrix
from {w1, Wa} to {vy, Vo}.

el el o[t

find vectors 17 and Uy so that S will be the transition matrix from
{Vl, V2} to {lll, 112}.

9. Let [z,1] and [2z — 1, 2z + 1] be ordered bases for Ps.

8. Given

1. Find the transition matrix representing the change in
coordinates from [2z — 1,2z + 1] to [z, 1].

2. Find the transition matrix representing the change in

coordinates from [z, 1] to [2z — 1, 2z + 1].

10. Find the transition matrix representing the change of coordinates
on Pj5 from the ordered basis [1, x, w2] to the ordered basis

1,1+ 2,1+ 2+ 27

1. Let E = {uy,...,u,}and F = {vy,..., v, } betwo ordered
bases for R", and set

U= (u,...,u,), V=_(vi,...,Vp)

Show that the transition matrix from E to F can be determined by
calculating the reduced row echelon form of (V|U).



3.6 Row Space and Column
Space

If A is an m X m matrix, each row of A is an n-tuple of
real numbers and hence can be considered as a vector in
R, The m vectors corresponding to the rows of A will
be referred to as the row vectors of A. Similarly, each
column of A can be considered as a vector in R™, and we
can associate n column vectors with the matrix A.

Definition

If Ais an m X m matrix, the subspace of R1*" spanned
by the row vectors of A is called the row space of A. The
subspace of R™ spanned by the column vectors of A is
called the column space of A.

Example 1

Let

100
A‘[()lo]

The row space of A is the set of all 3-tuples of the form

a(1,0,0) + 4(0,1,0) = (o, 8,0)

The column space of A is the set of all vectors of the form

“lof +#[i] ++[a] - 3

Thus, the row space of A is a two-dimensional subspace
of R1 and the column space of A is R2.



Theorem 3.6.1

Two row equivalent matrices have the same row space.
Proof

If B is row equivalent to A, then B can be formed from A
by a finite sequence of row operations. Thus, the row
vectors of B must be linear combinations of the row
vectors of A. Consequently, the row space of B must be a
subspace of the row space of A. Since A is row equivalent
to B, by the same reasoning, the row space of A is a
subspace of the row space of B.

Definition

The rank of a matrix A, denoted rank(A), is the
dimension of the row space of A.

To determine the rank of a matrix, we can reduce the
matrix to row echelon form. The nonzero rows of the row
echelon matrix will form a basis for the row space.

Example 2
Let
[1 -2 3]
A=12 -5 1
l1 -4 —7l

Reducing A to row echelon form, we obtain the matrix

|'1 -2 3‘|
1 0 1 5
lo o ol

U:



Clearly, (1, —2, 3) and (0, 1, 5) form a basis for the row
space of U. Since U and A are row equivalent, they have
the same row space, and hence the rank of A is 2.

Linear Systems

The concepts of row space and column space are useful
in the study of linear systems. A system Ax = b can be
written in the form

[[on] [ 6] [am]  [b]

az1 a22

T +

Lol La) Lol Lo

(€Y}

In Chapter 1 we used this representation to characterize
when a linear system will be consistent. The result,
Theorem 1.3.1, can now be restated in terms of the
column space of the matrix.

Theorem 3.6.2 Consistency
Theorem for Linear Systems

A linear system Ax = b is consistent if and only if b is
in the column space of A.

If b is replaced by the zero vector, then (1) becomes

T1a; + x0as+ - - - + xpa, = 0
(2)
It follows from (2) that the system Ax = 0 will have

only the trivial solution x = 0 if and only if the column
vectors of A are linearly independent.



Theorem 3.6.3

Let A be an mxn matrix. The linear system Ax = b is
consistent for every b € R™ if and only if the column
vectors of A span R™. The system Ax = b has at most
one solution for every b € R™ if and only if the column
vectors of A are linearly independent.

Proof

We have seen that the system Ax = b is consistent if
and only if b is in the column space of A. It follows that
Ax = b will be consistent for every b € R™ if and only
if the column vectors of A span R™. To prove the second
statement, note that, if Ax = b has at most one solution
for every b, then in particular the system Ax = 0 can
have only the trivial solution, and hence the column
vectors of A must be linearly independent. Conversely, if
the column vectors of A are linearly independent,

Ax = 0 has only the trivial solution. Now, if X1 and X2
were both solutions of Ax = b, then x1 — X2 would be a
solution of Ax = 0:

A(Xl—XQ):AX1—Ax2:b—b:0

It follows that x; — X2 = 0, and hence X1 must equal
X9.

Let A be an m X n matrix. If the column vectors of A
span R™, then n must be greater than or equal to m,
since no set of fewer than m vectors could span R™. If
the columns of A are linearly independent, then n must
be less than or equal to m, since every set of more than m
vectors in R™ is linearly dependent. Thus, if the column
vectors of A form a basis for R™, then n must equal m.



Corollary 3.6.4

Ann X m matrix A is nonsingular if and only if the
column vectors of A form a basis for R™.

In general, the rank and the dimension of the null space
always add up to the number of columns of the matrix.
The dimension of the null space of a matrix is called the
nullity of the matrix.

Theorem 3.6.5 The Rank—
Nullity Theorem

If A is an m X n matrix, then the rank of A plus the
nullity of A equals n.

Proof

Let U be the reduced row echelon form of A. The system
Ax = 0 is equivalent to the system Ux = 0. If A has
rank r, then U will have r nonzero rows, and
consequently, the system Ux = 0 will involve r lead
variables and nn — 7 free variables. The dimension of
N (A) will equal the number of free variables.

Example 3
Let
12 -1 1
A=12 4 -3 01
l1 2 1 5l

Find a basis for the row space of A and a basis for N(A).
Verify that dim N(A) = n — r.



SOLUTION

The reduced row echelon form of A is given by
1 20 3'|
U=10 0 1 21
000 ol

Thus, {(1, 2,0, 3), (0,0, 1,2)} is a basis for the row
space of A, and A has rank 2. Since the systems Ax = 0

and Ux = 0 are equivalent, it follows that x is in N (A)
if and only if

T+ 229 + 3z,=0
3+ 2x4 =0

The lead variables x1 and x3 can be solved for in terms of
the free variables x9 and x,:

Ir1 = —2172 - 3:134
Iry — —2%4

Let 2o = aand x4 = Q. It follows that N (A) consists
of all vectors of the form

o] [ [ [
e R e R
led L op 1 Lol Ll

The vectors (—2, 1,0,0)” and (—3,0, —2,1) form a
basis for V(A). Note that

n—r=4—2=2=dim N(A4)

The Column Space

The matrices A and U in Example 3 have different
column spaces; however, their column vectors satisfy the
same dependency relations. For the matrix U, the
column vectors u; and uj are linearly independent,
while



w = 2uy
wy = 3u; + 2ug

The same relations hold for the columns of A: The
vectors a; and a3 are linearly independent, while

a) = 2a1
ay = 3a; + 2a3

In general, if A is an m X m matrix and U is the row
echelon form of A, then, since Ax = 0 if and only if
Ux = 0, their column vectors satisfy the same
dependency relations. We will use this property to prove
that the dimension of the column space of A is equal to
the dimension of the row space of A.

Theorem 3.6.6

If Ais an m X n matrix, the dimension of the row space
of A equals the dimension of the column space of A.

Proof

If A is an m X m matrix of rank r, the row echelon form
U of A will have r leading 1’s. The columns of U
corresponding to the leading 1’s will be linearly
independent. They do not, however, form a basis for the
column space of A, since, in general, A and U will have
different column spaces. Let UL, denote the matrix
obtained from U by deleting all the columns
corresponding to the free variables. Delete the same
columns from A and denote the new matrix by Ar. The
matrices Az, and Uy, are row equivalent. Thus, if x is a
solution of A7;x = 0, then x must also be a solution of
Urx = 0. Since the columns of Uy, are linearly
independent, x must equal 0. It follows from the
remarks preceding Theorem 3.6.3 that the columns of
A7 are linearly independent. Since Ay has r columns,
the dimension of the column space of A is at least r.



We have proved that, for any matrix, the dimension of
the column space is greater than or equal to the
dimension of the row space. Applying this result to the
matrix AT, we see that

dim(row space of A) dim(column space of A7)

dim(row space of AT)

v

dim(column space of A)

Thus, for any matrix A, the dimension of the row space
must equal the dimension of the column space.

We can use the row echelon form U of A to find a basis
for the column space of A. We need only determine the
columns of U that correspond to the leading 1’s. These
same columns of A will be linearly independent and form
a basis for the column space of A.

Note

The row echelon form U tells us only which columns of A
to use to form a basis. We cannot use the column vectors
from U, since, in general, U and A have different column
spaces.

Example 4

Let
[ 1 -21 1 2
-1 30 2 -
A:| 0 11 3 4|
|l 1 25 13 5]

The row echelon form of A is given by



[1 -2 11 2]
0 1130
U_|0 0001|
lo o0 o0 0 ol

The leading 1’s occur in the first, second, and fifth
columns. Thus,

[ 4 [ 2] [ 2]
-1 3 )
= 0|’ a2:| 1|’ A= 4|

[ 1] | 2] | 5)

form a basis for the column space of A.

Example 5

Find the dimension of the subspace of R* spanned by

[ 4 [ 2] [ 2] [ 3]

2 5 4 8

xa=| s m=| gl m=| | x|

| ol | 2l ol L4l
SOLUTION

The subspace Span(x1, Xa, X3, X4) is the same as the
column space of the matrix

|' 1 2 2 3'|
2 5 4 8
X = | -1 -3 -2 -5
Ll o 2 o 4]
The row echelon form of X is
|' 1 2 2 3'|
| 010 2|
00O0@O
lo 0o o ol

The first two columns X1, X2 of X will form a basis for
the column space of X. Thus, dim
Span(xi, x2, X3, X4) = 2.






Section 3.6 Exercises

1. For each of the following matrices, find a basis for the row space, a
basis for the column space, and a basis for the null space:

13 2
112 1 4

l4 7 8l

[-3 1 3 4
21 1 2 —1 —2u
|l 38 4 2l
(13 -2 1
3.1 2 1 3 21
l3 4 5 6

2. In each of the following, determine the dimension of the subspace
of R3 spanned by the given vectors:

[T 21773
L1 =210 =211 31

L 2l [ 4l L 6l
REREE

2.1 11,10 20,1 31
L1 Lsl L4l

[ 07217 3171 2
3.1 —1|,| 2|,|—2|,|—1|
L of L4l L 511 sl

3. Let

S N
N Ot N
co Ot W
UL = =
© O
[I————

1. Compute the reduced row echelon form U of A. Which
column vectors of U correspond to the free variables?
Write each of these vectors as a linear combination of the
column vectors corresponding to the lead variables.

2. Which column vectors of A correspond to the lead
variables of U? These column vectors form a basis for the
column space of A. Write each of the remaining column



vectors of A as a linear combination of these basis
vectors.

4. For each of the following choices of A and b, determine whether b
is in the column space of A and state whether the system Ax = b
is consistent:

1 2 4
1.A=_2 4_, b:_S_
(3 6] 17
2.A:_1 2]’ b:_l_
(2 17 (4]
A= =
3 3 4] b 6]
|'1 1 2'| |'1

4A=111 2, b=1 2,

11 2] [ 3]
[0 1 [2]
5A=11 01, b=15
lo 1] [ 2]
[t 2] [ 5]
6.A=12 4., b= 10:
[1 2] [ 5]

5. For each consistent system in Exercise 4, determine whether there
will be one or infinitely many solutions by examining the column
vectors of the coefficient matrix A.

6. How many solutions will the linear system Ax = b have if b is in
the column space of A and the column vectors of A are linearly
dependent? Explain.

7. Let Abe a 6 X n matrix of rank r and let b beavectorin RS. For
each choice of r and n that follows, indicate the possibilities as to
the number of solutions one could have for the linear system
Ax = b. Explain your answers.

Ltn="7r=>5
o2n=7r==6
3.n=5r=>5
4.n=>5r=4

8. Let A be an m X n matrix withm > n. Let b € R™ and suppose
that N(A) = {0}.

1. What can you conclude about the column vectors of A?
Are they linearly independent? Do they span R™?
Explain.



10.

11.

12.

13.

14.

15.

2. How many solutions will the system Ax = b have if b is
not in the column space of A? How many solutions will
there be if b is in the column space of A? Explain.

.Let Aand Bbe 6 X 5 matrices. If dim N(A) = 2, what is the

rank of A? If the rank of B is 4, what is the dimension of N (B)?

Let A be an ™ X m matrix whose rank is equal to n. If Ac = Ad,
does this imply that ¢ must be equal to d? What if the rank of A is
less than n? Explain your answers.

Let A be an m X m matrix. Prove that
rank(A) < min(m,n)
Let A and B be row equivalent matrices.
1. Show that the dimension of the column space of A equals

the dimension of the column space of B.

2. Are the column spaces of the two matrices necessarily
the same? Justify your answer.

Let Abe a4 x 3 matrix and suppose that the vectors

[ [ 1
z1=111, zZo=1 O

L 2] [ -1l

form a basis for N(A). If b = a; + 2a, + ag, find all solutions
of the system Ax = b.

Let A be a 4 x 4 matrix with reduced row echelon form given by

[10 2 1
011 4
U:|0 00 0|
lo o o ol
If
[_21 f_;*]
al:| o and A= 7|
L 1] 1]

find a3 and ay.

Let Abe a4 X 5 matrix and let U be the reduced row echelon
form of A. If

[ 2] f’é]
’aZ:| 3|’

| —2] [ 1]



(1020 -1
0130 —
U_|0001 5|
lo o oo ol

1. find a basis for N(A).

2. given that X is a solution to Ax = b, where

1. find all solutions to the system.

2. determine the remaining column vectors of A.

16. Let Abe a 5 X 8 matrix with rank equal to 5 and let b be any
vector in RP. Explain why the system Ax = b must have
infinitely many solutions.

17. Let Abe a4 X 5 matrix. If a3, as, and a4 are linearly independent
and

az; = a; +2ay, a;=2a; —a,+ 3a,

determine the reduced row echelon form of A.
18. Let Abe a b X 3 matrix of rank 3 and let {x;, Xo, X3} be abasis for
R3,
1. Show that N(A) = {0}.

2. Show that if y; = Axy,y, = AxXy, and y; = Axj3, then
Y1, Y2, and y3 are linearly independent.

3. Do the vectors y1, ¥2, y3 from part (b) form a basis for
R5? Explain.

19. Let A be an m X m matrix with rank equal to n. Show that if
x # 0andy = Ax,theny # 0.

20. Prove that a linear system Ax = b is consistent if and only if the
rank of (A | b) equals the rank of A.

21. Let A and B be m X n matrices. Show that

rank(A + B) < rank(A) + rank(B)

22, Let A be an m X n matrix.

1. Show that if B is a nonsingular m X m matrix, then BA
and A have the same null space and hence the same
rank.



2. Show that if Cis a nonsingular 7 X 1 matrix, then AC
and A have the same rank.

23. Prove Corollary 3.6.4.

24. Show that if A and B are n X n matrices and N(A — B) = R",
then A = B.

25. Let A and B be n X m matrices.
1. Show that AB = O if and only if the column space of B
is a subspace of the null space of A.

2. Show that if AB = O, then the sum of the ranks of A
and B cannot exceed n.

26.LetA A € R™™and b € R™, and let X( be a particular solution
of the system Ax = b. Prove that if N(A) = {0}, then the
solution Xy must be unique.

27. Let x and y be nonzero vectors in R™ and R, respectively, and let

A =xyT.

1. Show that {x} is a basis for the column space of A and
that {yT} is a basis for the row space of A.

2. What is the dimension of N (A)?

28. Let A € R™*" B € R™*" and C = AB. Show that
1. the column space of C is a subspace of the column space
of A.

2. the row space of C is a subspace of the row space of B.

3. rank(C) < min{rank(A),rank(B)}.

29.Let A € R™*" B € R™" and C = AB. Show that

1. if A and B both have linearly independent column
vectors, then the column vectors of C will also be linearly
independent.

2. if A and B both have linearly independent row vectors,
then the row vectors of C will also be linearly
independent. [Hint: Apply part (a) to C T

30.Let A € R™" B € R™" and C = AB. Show that

1. if the column vectors of B are linearly dependent, then
the column vectors of C must be linearly dependent.

2. if the row vectors of A are linearly dependent, then the
row vectors of C are linearly dependent. [Hint: Apply
part (a) to CT]



31. An m X n matrix A is said to have a right inverse if there exists
ann X m matrix C such that AC' = I,,,. The matrix A is said to
have a left inverse if there exists an n X m matrix D such that

DA =1,

1. Show that if A has a right inverse, then the column
vectors of A span R™.

2. Is it possible for an m X n matrix to have a right inverse
ifn < m?n > m? Explain.

32. Prove: If A is an ™ X m matrix and the column vectors of A span
R™, then A has a right inverse. [Hint: Let €; denote the jth
column of I, and solve Ax = ejforj =1,...,m.]

33. Show that a matrix B has a left inverse if and only if BThasa right
inverse.

34. Let Bbe an . X m matrix whose columns are linearly
independent. Show that B has a left inverse.

35. Prove that if a matrix B has a left inverse, then the columns of B
are linearly independent.

36. Show that if a matrix U is in row echelon form, then the nonzero
row vectors of U form a basis for the row space of U.



Chapter 3 Exercises

MATLAB Exercises

1. (Change of Basis) Set

U = round(20 * rand(4)) — 10,
V = round(10 * rand(4))

and setb = ones(4, 1).

1. We can use the MATLAB function rank to determine
whether the column vectors of a matrix are linearly
independent. What should the rank be if the column
vectors of U are linearly independent? Compute the rank
of U, and verify that its column vectors are linearly
independent and hence form a basis for R*. Compute the
rank of V, and verify that its column vectors also form a
basis for R%.

2. Use MATLAB to compute the transition matrix from the
standard basis for R* to the ordered basis
E = {uy, uy, u3, uy}. [Note that in MATLAB, the
notation for the jth column vector u;is U(:, §).] Use this
transition matrix to compute the coordinate vector ¢ of b
with respect to E. Verify that

b = ciu; + cous + csug + cquy = Ue

3. Use MATLAB to compute the transition matrix from the
standard basis to the ordered basis F' = {Vl, Vo, V3, V4}
, and use this transition matrix to find the coordinate
vector d of b with respect to F. Verify that

b = dyvy + dovy + d3vs + dyvy = Vd

4. Use MATLAB to compute the transition matrix S from E
to F and the transition matrix 7 from Fto E. How are S
and T related? Verify that Sc = d and T'd = c.

2. (Rank-Deficient Matrices) In this exercise, we consider how to use
MATLAB to generate matrices with specified ranks.

1. In general, if A is an ™ X 71 matrix with rank r, then
r < min(m, n). Why? Explain. If the entries of A are
random numbers, we would expect that 7 = min(m, n)



. Why? Explain. Check this out by generating random
6 x 6,8 x 6,and 5 X 8 matrices and using the
MATLAB command rank to compute their ranks.
Whenever the rank of an m X 1 matrix equals min(m,
n), we say that the matrix has full rank. Otherwise, we
say that the matrix is rank deficient.

2. MATLAB’s rand and round commands can be used to
generate random m X 71 matrices with integer entries in
a given range [a, b]. This can be done with a command of
the form

A =round((b — a) *rand(m,n)) + a
For example, the command
A = round(4 * rand(6,8)) + 3

will generate a 6 X 8 matrix whose entries are random
integers in the range from 3 to 7. Using the range [1, 10],
create random integer 10 x 7, 8 x 12, and 10x15 matrices
and in each case check the rank of the matrix. Do these
integer matrices all have full rank?

3. Suppose that we want to use MATLAB to generate
matrices with less than full rank. It is easy to generate
matrices of rank 1. If x and y are nonzero vectors in R"
and R™, respectively, then A = xy” willbeanm x n
matrix with rank 1. Why? Explain. Verify this in
MATLAB by setting

x = round(9 *rand(8,1)) + 1,
y = round(9 *rand(6,1)) + 1

and using these vectors to construct an 8 X 6 matrix A.
Check the rank of A with the MATLAB command rank.

4. In general,

rank(AB) < min(rank(A), rank(B))

®

(See Exercise 28 in Section 3.6.) If A and B are non-
integer random matrices, the relation (1) should be an
equality. Generate an 8 X 6 matrix A by setting

X =rand(8,2),Y = rand(6, 2)
A=X*Y1

What would you expect the rank of A to be? Explain. Test
the rank of A with MATLAB.

5. Use MATLAB to generate matrices A, B, and C such that

1. Ais 8 X 8 with rank 3.

2. Bis 6 X 9 with rank 4.



3.Cis 10 x 7 with rank 5.

3. (Column Space and Reduced Row Echelon Form) Set

B = round(10 * rand(8,4))
X = round(10 * rand(4, 3))
C=B*X
A= [BC(|

1. How are the column spaces of B and C related? (See
Exercise 28 in Section 3.6.) What would you expect the
rank of A to be? Explain. Use MATLAB to check your
answer.

2. Which column vectors of A should form a basis for its
column space? Explain. If U is the reduced row echelon
form of A, what would you expect its first four columns
to be? Explain. What would you expect its last four rows
to be? Explain. Use MATLAB to verify your answers by
computing U.

3. Use MATLARB to construct another matrix
D = (E EY),where Eis arandom 6 X 4 matrix and
Yis arandom 4 X 2 matrix. What would you expect the
reduced row echelon form of D to be? Compute it with
MATLAB. Show that, in general, if B is an m X n matrix
of rank n and Xis an n X k matrix, the reduced row
echelon form of (B BX) will have block structure

(I X)ifm=mn or }ifm>n

I
O O
4. (Rank-1 Updates of Linear Systems)

1. Set

A = round(10 * rand(8))
b = round(10 * rand(8,1))
M =inv(A)

Use the matrix M to solve the system Ay = b fory.

2. Consider now a new system Cx = b, where Cis
constructed as follows:

u = round(10 * rand(8, 1))
v = round(10 * rand(8,1))
E=u*wv
C=A+FE

The matrices C and A differ by the rank-1 matrix E. Use
MATLAB to verify that the rank of E is 1. Use MATLAB’s
“\” operator to solve the system Cx = b and then
compute the residual vectorr = b — Cx.



3. Let us now solve Cx = b by a new method that takes
advantage of the fact that A and C differ by a rank-1
matrix. This new procedure is called a rank-1 update
method. Set

z=M%*u, c=vl*y,
d=vi*z, e=c/(1+d)

and then compute the solution x by
x=y—e*z

Compute the residual vector b — C'x and compare it
with the residual vector in part (b). This new method
may seem more complicated, but it actually is much
more computationally efficient.

4. To see why the rank-1 update method works, use
MATLAB to compute and compare

Cy and b+cu

Prove that if all computations had been carried out in
exact arithmetic, these two vectors would be equal. Also,
compute

Cz and (1+d)u

Prove that if all computations had been carried out in
exact arithmetic, these two vectors would be equal. Use
these identities to prove that Cx = b. Assuming that A
is nonsingular, will the rank-1 update method always
work? Under what conditions could it fail? Explain.



Chapter Test A True or False

Indicate whether each of the following statements is

true or false. In each case, explain or prove your

answer.

6.

7

®

10.

11.

12.

13.

14.

15.

. If Sis a subspace of a vector space V, then S is a vector space.

.IR?is a subspace of R>.

. It is possible to find a pair of two-dimensional subspaces S and T

of R3such that SNT = {0}.

.If S and T are subspaces of a vector space V, then S U T is a
subspace of V.

. If S and T are subspaces of a vector space V,then SN T isa

subspace of V.
If X1, X9, . . ., X, span R", then they are linearly independent.

. If x1, X9, ..., X, span a vector space V, then they are linearly
independent.

If x1, X9, . . . , X are vectors in a vector space V and
Span(xi, X2, . .., Xg) = Span(x1, Xa, . . ., Xk_1)

then x1, X9, . . . , X}, are linearly dependent.
. If Ais an m X n matrix, then A and AT have the same rank.
If Ais an m X n matrix, then A and AT have the same nullity.

If U is the reduced row echelon form of A, then A and U have the
same row space.

If U is the reduced row echelon form of A, then A and U have the
same column space.

Let X1, X2, . . . , X, be linearly independent vectors in R”. If
k < n and x4 is a vector that is not in Span(x, X, . . ., Xk),
then the vectors X1, X2, . . . , Xk, Xg+1 are linearly independent.

Let {ul, u2}, {Vl, Vz}, and {Wl, W2} be bases for R2. If X is the
transition matrix corresponding to a change of basis from

{ul, u2} to {Vl, V2} and Y'is the transition matrix corresponding
to a change of basis from {vy, vo} to {wy, wa},then Z = XY is
the transition matrix corresponding to the change of basis from
{u1, us} to {wy, wa}.

If A and B are n X n matrices that have the same rank, then the
rank of A% must equal the rank of B2,



Chapter Test B

1. In ]R3, let x; and x5 be linearly independent vectors and let
x3 = O (the zero vector). Are X1, X9, and X3 linearly
independent? Prove your answer.

2. For each set that follows determine whether it is a subspace of R2.
Prove your answers.

L1
1S =qx= 1 +x9=0

Lo
2.32:{x:|:m1:| :171+:172:U}

T2

3. Let

|'1 3 1 3 4'|
00111
A:|0 022 2
lo o 33 3]

1. Find a basis for N(A) (the null space of A). What is the
dimension of N (A)?

2. Find a basis for the column space of A. What is the rank
of A?

4. How do the dimensions of the null space and column space of a
matrix relate to the number of lead and free variables in the
reduced row echelon form of the matrix? Explain.

5. Answer the following questions and, in each case, give geometric
explanations of your answers:

1. Is it possible to have a pair of one-dimensional subspaces
Uy and U; of R such that Uy N Uy = {0}?

2. Is it possible to have a pair of two-dimensional
subspaces V7 and V5 of R3 such that V; N Vs = {0}

6. Let S be the set of all symmetric 2 X 2 matrices with real entries.
1. Show that S is a subspace of R2%2,
2. Find a basis for S.

7. Let Abe a 6 X 4 matrix of rank 4.

1. What is the dimension of N (A)? What is the dimension
of the column space of A?



2. Do the column vectors of A span R5? Are the column
vectors of A linearly independent? Explain your answers.

3. How many solutions will the linear system Ax = b
have if b is in the column space of A? Explain.

8. Given the vectors

[ [N
X1=121, Xp=131,
[ 2] [ 3]
[ [N
X3:I5I, X4:|2|
[ 5] [ 3]

1. Are X1, X9, X3, and X4 linearly independent in R3?
Explain.

2. Do X1, X2 span R3? Explain.

3. Do X, X, X3 span R3? Are they linearly independent?
Do they form a basis for R3? Explain.

4. Do X1, X2, X4 span R3? Are they linearly independent?
Do they form a basis for R3? Explain or prove your
answers.

9. Let X1, X9, and X3 be linearly independent vectors in R*andlet A
be a nonsingular 4 X 4 matrix. Prove that if
y1 = Ax1,y2 = Axy,y3 = Ax3

then y1, ¥, and y3 are linearly independent.

10. Let Abe a 6 X 5 matrix with linearly independent column vectors
aj, ag, ag and whose remaining column vectors satisfy

as = aj + 3ap + ag, a; = 2a; — ag

1. What is the dimension of N (A)? Explain.

2. Determine the reduced row echelon form of A.

11. Let {uy, us} and {1, va} be ordered bases for R2, where

Bt
u; = , U2 =

13 7

and
- (5] B 4
V1= -2- , V2= 9

1. Determine the transition matrix corresponding to a
change of basis from the standard basis {€1, €} to the



ordered basis {uy, us}. Use this transition matrix to
find the coordinates of x = (1, 1)7 with respect to
{ul, U2}.

2. Determine the transition matrix corresponding to a
change of basis from the ordered basis {v1, v2} to the
ordered basis {ul, uz}. Use this transition matrix to
find the coordinates of z = 2v + 3vy with respect to

{uy, us}.



Chapter 4 Linear
Transformations

[oxi
(~sinf, cos f)

(cos 6, sin f)

(10

Linear mappings from one vector space to another play

Full Alternative Text

an important role in mathematics. This chapter provides
an introduction to the theory of such mappings. In
Section 4.1, the definition of a linear transformation is
given and a number of examples are presented. In
Section 4.2, it is shown that each linear transformation L
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mapping an n-dimensional vector space Vinto an m-
dimensional vector space W can be represented by an

m X n matrix A. Thus, we can work with the matrix A in
place of the mapping L. In the case that the linear
transformation L maps Vinto itself, the matrix
representing L will depend on the ordered basis chosen
for V. Hence, L may be represented by a matrix A with
respect to one ordered basis and by another matrix B
with respect to another ordered basis. In Section 4.3, we
consider the relationship between different matrices that
represent the same linear transformation. In many
applications, it is desirable to choose the basis for V' so
that the matrix representing the linear transformation is
either diagonal or in some other simple form.



4.1 Definition and Examples

In the study of vector spaces, the most important types of
mappings are linear transformations.

Definition
A mapping L from a vector space Vinto a vector space W
is said to be a linear transformation if
L(avy + Bve) = aL(v1) + BL(v2)
(@)

for all vq, vy € V and for all scalars o and S.

If L is a linear transformation mapping a vector space V'
into a vector space W, then it follows from (1) that

L(vi+vy) = L(v1) + L(v2) (a=p=1)
(2
and
L(av) = aL(v) (v=v1,8=0)
(3)

Conversely, if L satisfies (2) and (3), then

L(OlVl + ﬂVz) = L(avl) + L(ﬂVQ)
= aL(vy) + BL(v3)

Thus, L is a linear transformation if and only if L satisfies
(2) and (3).

Notation



A mapping L from a vector space Vinto a vector space W
will be denoted

L:V—-W
When the arrow notation is used, it will be assumed that

Vand W represent vector spaces.

In the case that the vector spaces Vand W are the same,
we will refer to a linear transformation L : V' — V asa
linear operator on V. Thus, a linear operator is a linear
transformation that maps a vector space V into itself.

Let us now consider some examples of linear
transformations. We begin with linear operators on R,
In this case, it is easier to see the geometric effect of the
operator.

Linear Operators on R?

Example 1
Let L be the operator defined by
L(x) = 3x
for each x € R Since
L(ax) = 3(ax) = a(3x) = a L(x)
and
L(x+y) =3(x+y) =3x+3y = L(x) + L(y)

it follows that L is a linear operator. We can think of L as
a stretching by a factor of 3 (see Figure 4.1.1). In general,
if v is a positive scalar, the linear operator F'(x) = ax
can be thought of as a stretching or shrinking by a factor
of au.



Figure 4.1.1.

L(X) = 3x

Figure 4.1.1. Full Alternative Text

Example 2
Consider the mapping L defined by
L(X) = X1€1

for each x € R2. Thus, if x = (a:l, :Ez)T, then
L(x) = ($1,0)T- Ify = (yl,y2)T, then

and it follows that

L(ax + By) = (azx1 + fyi)er = a(zie1) + B(yie1) = a L(x) + B L(y)
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Hence, L is a linear operator. We can think of L as a
projection onto the x;-axis (see Figure 4.1.2).

Figure 4.1.2.
X, xS
| X

Figure 4.1.2. Full Alternative Text

Example 3

Let L be the operator defined by

L(x) = (1, —x2)"

for each x = (1, azg)T in R2. Since
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L(ax + By)

[ azy + By, ]
—(azy + Bys)

o 2ol

=aL(x)+BL(y)

it follows that L is a linear operator. The operator L has
the effect of reflecting vectors about the x1-axis (see
Figure 4.1.3).

Figure 4.1.3.

X = (X}, 1)

> X axis

L(%) = (x1, =)



Figure 4.1.3. Full Alternative Text

Example 4
The operator L defined by
L(x) = (—a3,21)"

is linear, since

oo <[ 212

~o[ 2] 4o ]
= aL(x) + B L(y)

The operator L has the effect of rotating each vector in
R2 by 90° in the counterclockwise direction (see Figure

4.1.4).

Figure 4.1.4.
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L(X) - (_xlv ! I)T

o

Figure 4.1.4. Full Alternative Text

Linear Transformations from

R™to R™

Example 5

The mapping L : R?> — R! defined by
L(x) = 21 +

is a linear transformation, since

L(ax + By) = (ax1 + By1) + (azz + By2)
a(zy + z2) + B(yr + o)
aL(x)+ BL(y)
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Example 6

Consider the mapping M defined by

M(x) = (2 +23)"
Since

M(ax) = (o’z} + a2m§)1/2

= |a| M(x)
it follows that
aM(x) # M(ax)

whenever a < 0 and x 7 0. Therefore, M is not a
linear operator.

Example 7

The mapping L from R? to R? defined by

L(x) = (z2, %1, 21 + 1132)T

is linear, since

L(ax) = (amy, oy, oy + azs)’ = a L(x)

and

Lix+y) = (z2+ys,z1+y1,71 +y1 +x2+y2)T

= (22, 1,21 + 22)" + (Y2, Y1, 91 + 12)7T
= L(x) + L(y)

Note that if we define the matrix A by

[0 4
A=11 0
l1 1]



then

for each x € R2.

In general, if A is any ™ X 1 matrix, we can define a
linear transformation L 4 from R" to R™ by

for each x € R"™. The transformation L 4 is linear, since

Ly(ox+ By) = A(ax+ By)
aAx + Ay

= aLa(x) + BLa(y)

Thus, we can think of each m X T matrix A as defining a
linear transformation from R” to R™.

In Example 7, we saw that the linear transformation L
could have been defined in terms of a matrix A. In the
next section, we will see that this is true for all linear
transformations from R to R™.

Linear Transformations from V
to W

If L is a linear transformation mapping a vector space V
into a vector space W, then

1. L(0y) = Oy (where Oy and Oyy are the zero vectors in Vand W,
respectively).

2.if vy, ..., v, are elements of Vand a4, . . ., a, are scalars, then
L(oqvy + agvg + ... + ayv,) = an L(v1) + agL(va) + ... + an L(vy)

3. L(—v) = —L(v)forallv € V.



Statement (i) follows from the condition

L(av) = a L(v) with & = 0. Statement (ii) can easily
be proved by mathematical induction. We leave this to
the reader as an exercise. To prove (iii), note that

Ow = L(Oy) = L(v + (—v)) = L(v) + L(—v)

Therefore, L(—V) is the additive inverse of L(v); that
is,

Example 8

If Vis any vector space, then the identity operator I is
defined by

I(v)=v

forall v € V. Clearly, I is a linear transformation that
maps Vinto itself:

I(avy + fva) = avy + Bvy = al(v1) + BI(vs)

Example 9

Let L be the mapping from C|a, b] to R! defined by

b
L) = [ f@)e
If fand g are any vectors in C|a, b|, then

L(af + Bg) = [ (af + Bg)(z)dz
=a [} f(z)dz + B [, 9(z)dw
= aL(f) + BL(g)

Therefore, L is a linear transformation.



Example 10

Let D be the linear transformation mapping C'* a, b]
into Ca, b] defined by

D(f) = fr (the derivatitive of f)

D is a linear transformation, since

D(af + Bg) = afr + Byl = a D(f) + BD(g)

The Image and Kernel

Let L : V' — W be a linear transformation. We close
this section by considering the effect that L has on
subspaces of V. Of particular importance is the set of
vectors in V' that get mapped into the zero vector of W.

Definition

Let L : V — W be alinear transformation. The kernel
of L, denoted ker(L), is defined by

ker(L) ={v € V|L(v) = Oy}

Definition

Let L : V' — W be a linear transformation and let S be
a subspace of V. The image of S, denoted L(.S), is
defined by

L(S)={w e W|w = L(v) forsome ve&S}

The image of the entire vector space, L(V), is called the
range of L.



Let L : V' — W be a linear transformation. It is easily
seen that ker(L) is a subspace of V, and if S is any
subspace of V, then L(.S) is a subspace of W. In
particular, L(V) is a subspace of W. Indeed, we have the
following theorem.

Theorem 4.1.1

IfL : V — W is a linear transformation and S is a
subspace of V, then

1. ker(L) is a subspace of V.

2. L(S) is a subspace of W.

Proof

We see that ker (L) is nonempty since Oy, the zero
vector of V, is in ker(L). To prove (i), we must show
that ker (L) is closed under scalar multiplication and
addition of vectors.

For closure under scalar multiplication, let v € ker(L)
and « be a scalar. Then

L(av) = a L(v) = a0y = Oy

Therefore, av € ker(L).

For closure under addition, let v, vy € ker(L). Then
L(vy +ve) = L(vy) + L(vy) = Oy + Oy = Oy

Therefore, vi + va € ker(L) and hence ker(L) isa
subspace of V.

The proof of (ii) is similar. L(S ) is nonempty, since
Oy = L(0y) € L(S). 1fw € L(S), then w = L(v)

for some v € S. For any scalar a,

aw = a L(v) = L(av)



Since av € S, it follows that aw € L(.S), and hence
L(S) is closed under scalar multiplication. If

w1, Wy € L(S), then there exist vy, vy € S such that
L(vy) = wy and L(vy) = wy. Thus,

Wi+ Wy = L(Vl) + L(Vz) = L(V1 + V2)

and hence L (S) is closed under addition. It follows that L
(S) is a subspace of W.

Example 11

Let L be the linear operator on R? defined by

-]

Avector x is in ker(L) if and only if z; = 0. Thus,

ker (L) is the one-dimensional subspace of R? spanned
by €5. A vector y is in the range of L if and only if y is a
multiple of e1. Hence, L (Rz) is the one-dimensional
subspace of R? spanned by ej.

Example 12

Let L : R3 — R2 be the linear transformation defined
by

L(x) = (21 + ®2, 22 + wg)T

and let S be the subspace of R3 spanned by e; and e;.

If x € ker(L), then

r1+29=0 and x9+x23=0



Setting the free variable £3 = a, we get
o — —a, T1 =a

and hence ker(L) is the one-dimensional subspace of
R? consisting of all vectors of the form a(1, —1,1)" .
Ifx € S, then x must be of the form (a, 0,b)", and
hence L(x) = (a,b)”. Clearly, L(S) = R2. Since the
image of the subspace S is all of IR?, it follows that the
entire range of L must be R? [i.e., L (]R3) = R2].

Example 13

Let D : P3 — Pjs be the differentiation operator,
defined by

D(p(z)) = p/(z)

The kernel of D consists of all polynomials of degree o.
Thus, ker(D) = P;. The derivative of any polynomial in
P; will be a polynomial of degree 1 or less. Conversely,
any polynomial in P will have antiderivatives in P3, so
each polynomial in P will be the image of polynomials
in P53 under the operator D. It then follows that

D(P;) = P,.



Section 4.1 Exercises

1. Show that each of the following are linear operators on R,
Describe geometrically what each linear transformation

accomplishes.
1 L(x) = (—z1,z2)
2. L(x) = —x
3. L(x) = (22, 1)
4. L(x) = %x
5 L(x) = xz9e9

2. Let L be the linear operator on R? defined by
L(x) = (z; cosa —z, sina, z; sina + z, cosa)’

Express 1, T2, and L(x) in terms of polar coordinates. Describe
geometrically the effect of the linear transformation.

3. Let a be a fixed nonzero vector in R2. A mapping of the form
Lx)=x+a

is called a translation. Show that a translation is not a linear
operator. Illustrate geometrically the effect of a translation.

4.Let L : R?2 — R? be a linear operator. If
L((1,2)T) =(-2,3)"
and
L((1,-1") = (,2)"

find the value of L((7, 5)T).

5. Determine whether the following are linear transformations from

R? into R:
1 L(x) = (z2, z3)
2. L(x) = (0,0)"
3. L(x) = (14 z1,x2)
4. L(x) = (x5, + 75)



6. Determine whether the following are linear transformations from

R2 into R3:

L L(x) = (z1,22,1)7

2. L(x) = (@1, T2, 1 + 222)
3. L(x) = (21,0,0)"

4. L(x) = (w1, 22, 2% + 23)

1. L(A)=2A

2. L(A) = AT

3. L(A)=A+1T
4. L(A)=A—- AT

8. Let Cbe a fixed n X n matrix. Determine whether the following
are linear operators on R™*":

L L(A) = CA + AC
2. L(A) = C?A
3. L(A) = A2C
9. Determine whether the following are linear transformations from
Ps to Ps:
1 L(p(z)) = zp(x)
2. L(p(z)) = 2* + p(z)
3. L(p(z)) = p(z) + zp(z) + 2°p!(z)

10. For each f € C[0, 1], define L(f) = F, where
F(z) = [y f(t)ydt 0<z<1

Show that L is a linear operator on C|0, 1] and then find L(e")
and L (CIJZ)

11. Determine whether the following are linear transformations from

C[0,1] into R1:

L L(f) = £(0)
2. L(f) = [£(0)]
3. L(f) = [£(0) + f(1)]/2



12. Use mathematical induction to prove that if L is a linear
transformation from Vto W, then

L(agvy + aave + ... + apVy,)
=a1L(v1) + aoL(va) + ... + a,L(vy,)

13. Let {v1, ..., v, } be a basis for a vector space V, and let L; and

L be two linear transformations mapping V into a vector space
W. Show that if

Ly(v;) = La(vy)

foreacht = 1,...,n, then L1 = Ly [i.e., show that
14 (V) =Ly (V) forallv € V1.

14. Let L be a linear operator on R! and let @ = L(1). Show that
L(z) = azforallz € R

15. Let L be a linear operator on a vector space V. Define L, n > 1,
recursively by

L' =L
L*Y(v) =L(L*v)) forallveV
Show that L" is a linear operator on V for each n > 1.

16.Let L1 : U — V and Ly : V' — W be linear transformations,
and let L = Lg o L be the mapping defined by

L(u) = Ly(L1(u))

for each u € U. Show that L is a linear transformation mapping U
into W.
17. Determine the kernel and range of each of the following linear
operators on R3:
T
1 L(x) = (z3, 72, 1)
T
2. L(X) = (:171, T, 0)

3. L(x) = (wl,wl,ml)T

18. Let S be the subspace of R3 spanned by e; and es. For each linear
operator L in Exercise 17, find L(S).

19. Find the kernel and range of each of the following linear operators
on Ps:

20. Let L : V' — W be a linear transformation, and let T'be a
subspace of W. The inverse image of T, denoted L (T, is



defined by
LNT)={veV|L(v)eT}
Show that L™1(T) is a subspace of V.

21. A linear transformation L : V' — W is said to be one-to-one if
L(vy) = L(v2) implies that vi = V3 (i.e., no two distinct
vectors V1, Vo in V get mapped into the same vector w € W).
Show that L is one-to-one if and only if ker(L) = {0y }.

22. A linear transformation L : V' — W is said to map V onto W if
L(V) = W. Show that the linear transformation L defined by

L(x) = (z1,21 + @3, x1 + 22 + (Bg)T

maps R3 onto R3.

23. Which of the operators defined in Exercise 17 are one-to-one?
Which map R? onto R3?

24. Let Abe a 2 X 2 matrix, and let L 4 be the linear operator defined
by

Ly(x) = Ax

Show that

1. L 4 maps R? onto the column space of A.

2. if A is nonsingular, then L 4 maps R? onto R?.

25. Let D be the differentiation operator on P3, and let
S = {p € Ps|p(0) = 0}

Show that

1. D maps P3 on to the subspace Py, but D : P3 — Py is
not one-to-one.

2. D : S — Pjis one-to-one but not onto.



4.2 Matrix Representations of
Linear Transformations

In Section 4.1, it was shown that each m X 1 matrix A
defines a linear transformation L 4 from R" to R™,
where

Ly(x) = Ax

for each x € R". In this section, we will see that, for
each linear transformation L mapping R" into R™, there
is an m X m matrix A such that

L(x) = Ax

We will also see how any linear transformation between
finite dimensional spaces can be represented by a matrix.

Theorem 4.2.1

If L is a linear transformation mapping R" into R™,
there is an m X n matrix A such that

L(x) = Ax

for each x € R". In fact, the jth column vector of A is
given by

a; = L(ej) _7 = 1,2,...,n
Proof
Forj =1,...,n,define
aj = L(ej)
and let

A = (ai]‘) = (al,ag, .. .,an)



It

X =1x1€1 + T2ey + ...+ €,

is an arbitrary element of R", then

L(X) = mlL(el) + sz(eg) + ...+ :an(en)
=z1a] + 222 + ...+ TprQ,
[ 1]
T2
- (a17 A, ..y an)

2,
= Ax

We have established that each linear transformation
from R™ into R™ can be represented in terms of an mxn
matrix. Theorem 4.2.1 tells us how to construct the
matrix A corresponding to a particular linear
transformation L. To get the first column of A, see what L
does to the first basis element €; of R". Seta; = L(e;)
. To get the second column of A, determine the effect of L
on €, and set ag = L(e2), and so on. Since the
standard basis elements e, €5, . . ., €, (the column
vectors of the n X n identity matrix) are used for R",
and the column vectors of the m X m identity matrix
are being used as a basis for R™, we refer to A as the
standard matrix representation of L. Later (Theorem
4.2.3) we will see how to represent linear
transformations with respect to other bases.

Example 1
Define the linear transformation L : R? — R? by
L(x) = (1 + @, x2 + asg)T

T. . . .
for each X = (21, T2, 23)" in R3. Itis easily verified
that L is a linear operator. We wish to find a matrix A



such that L(x) = Ax for each x € R3. To do this, we
must calculate L(e; ), L(e3), and L(e3)):

L(e)) :L((l,O,O)T) -

==

Liez) =L((0,1,0))

L(es) =L<(0,0,1)T> -

We choose these vectors to be the columns of the matrix

110
A_L)ll]

To check the result, we compute Ax:

11 0}["“] _[m1+w2:|

01 1} % = |20+ a3

x| | 2]

Example 2

Let L be the linear transformation operator R? that
rotates each vector by an angle 6 in the counterclockwise
direction. We can see from Figure 4.2.1(a) that ey is

mapped into (cos 6, sin 9)T and the image of es is

(—sin 6, cos H)T. The matrix A representing the
transformation will have (cos 8, sin 8)” as its first
column and (— sin 6, cos )7 as its second column.

[cos # —sin 9]

sin 6 cosf

If x is any vector in R2, then, to rotate x
counterclockwise by an angle 6, we simply multiply by A
[see Figure 4.2.1(b)].
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Now that we have seen how matrices are used to
represent linear transformations from R" to R™, we
may ask whether it is possible to find a similar
representation for linear transformations from Vinto W,
where V and W are vector spaces of dimension n and m,
respectively. To see how this is done, let

E = {vy,vy,...,v,} be an ordered basis for Vand

F = {wy,Ws,...,w,,} be an ordered basis for W. Let
L be a linear transformation mapping Vinto W. If vis
any vector in V, then we can express v in terms of the
basis E:
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V=2x1V]+ToVy+...+T,V,

We will show that there exists an m X 1 matrix A
representing the linear transformation L, in the sense
that

Ax =y ifandonlyif L(Vv)=y1w1+ yaWa+ ...+ yYnWn,

The matrix A characterizes the effect of the linear
transformation L. If x is the coordinate vector of v with
respect to E, then the coordinate vector of L(v) with
respect to F'is given by

[L(V)]p = Ax

The procedure for determining the matrix representation
A is essentially the same as before. For j = 1, ..., n, let

a; = (aij, azj, . - -, amj)T be the coordinate vector of
L(v ;) with respect to {W1, Wy, ..., Wy, }; that is,

L(vj) = a1;w1 + a2jwa + ... + apjwy, 1<j<n
Let A = (a”) = (al, .. .,an). If

V=2I1V]y+ToVvy+...+TpVp

then
L(v) = L(]E}la:]vj)
n
= ¥ z;L(v))
j=1
n m
= j§1$] (Ela”wl>
m n
Fori =1,...,m,let
Yi = jglal]x]
Thus,

T
Yy = (ylayZa"'aym) = Ax

is the coordinate vector of L (v) with respect to
{wW1, W2, ..., Wn, }. We have established the following



theorem.

Theorem 4.2.2 Matrix
Representation Theorem

IfE ={vi,va,..,Vy}and F = {wy,ws,..., W, }
are ordered bases for vector spaces Vand W,
respectively, then, corresponding to each linear
transformation L : V. — W, there is an m X n matrix
A such that

[L(v)p = Alv]g] foreachv eV

A is the matrix representing L relative to the ordered
bases E and F. In fact,

a;=[L(vj)ly, i=12,...,n

Theorem 4.2.2 is illustrated in Figure 4.2.2. If A is the
matrix representing L with respect to the bases E and F,
and if

x =[v]p (the coordinate vector of v with respect to E)
y = [w]p (the coordinate vector of w with respect to F)

then L maps v into w if and only if A maps x into y.

Figure 4.2.2.
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Example 3

Let L be the linear transformation mapping R? into R?
defined by

L(X) = z1b; + (132 + iI)g)bz

for each x € R3, where

o=l =[]

Find the matrix A representing L with respect to the
ordered bases {€e1, €2, €3} and {by, b, }.

SOLUTION

L(el) = 1b1 + 0b2
L(eg) = 0b; + 1bs
L(eg) = 0b; + O0by

The ith column of A is determined by the coordinates of
L(e;) with respect to {by, by } fori = 1,2, 3. Thus,

100
A_L)ll]
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Example 4

Let L be a linear transformation mapping R? into itself
defined by
L(ab1 + ﬂb2) = (a + 5)b1 + 2ﬂb2

where {by, by} is the ordered basis defined in Example
3. Find the matrix A representing L with respect to

{bl, b2}

SOLUTION
L(b;) = 1by + Oby
L(by) =1by + 2b,
Thus,
11
A=lo 4
|
Example 5

The linear transformation D defined by D(p) = p/ maps
P; into P,. Given the ordered bases [mz, x, 1] and

[z, 1] for Py and P, respectively, we wish to determine
a matrix representation for D. To do this, we apply D to
each of the basis elements of Pj.

D(z?) =2z+0-1

D(z) =0z+1-1

D(1) =0z+0-1
In P, the coordinate vectors for D (:cz), D(x), and D(1)
are (2,0)7, (0,1), and (0, 1), respectively. The
matrix A is formed with these vectors as its columns.



200
A:L)lo]

Ifp(z) = az? + bx + c, then the coordinate vector of

p with respect to the ordered basis of P3 is (a, b, C)T. To
find the coordinate vector of D(p) with respect to the
ordered basis of P, we simply multiply

Thus,

D(am2+ba:+c) =2azx+b

To find the matrix representation A for a linear
transformation L : R" — R™ with respect to the

ordered bases £ = {uy,...,u,} and
F = {by,...,b,,}, we must represent each vector
L(u;) as alinear combination of by, . . ., by,. The

following theorem shows that determining this
representation of L(u;) is equivalent to solving the
linear system Bx = L(u;).

Theorem 4.2.3

Let E = {uy,...,u,}and F = {by,...,b,,} be
ordered bases for R™ and R™, respectively. If

L : R™ — R™ is a linear transformation and A is the
matrix representing L with respect to E and F, then

aj=B'L(u;) forj=1,..,n

where B = (b1, ...,bp)
Proof

If A is representing L with respect to E and F, then, for
j=1,...,n,



L(llj) =a1by + agjbz + ...+ amjbm
= Baj

The matrix B is nonsingular since its column vectors
form a basis for R™. Hence,

aj=B'L(w) j=1,..,n

One consequence of this theorem is that we can
determine the matrix representation of the
transformation by computing the reduced row echelon
form of an augmented matrix. The following corollary
shows how this is done.

Corollary 4.2.4

If A is the matrix representing the linear transformation
L : R™ — R™ with respect to the bases

E={uy,...,u,} and F={by,...,b,}

then the reduced row echelon form of

(b1, .. bo|L(wy), ..., L(uy)) is (I]A).
Proof

Let B = (by,...by,). The matrix
(B|L(u1), ..., L(uy)) is row equivalent to

BY(B|L(w),. .., L(w,)) = (I|B'L(wy),..., B'L(u,))

= (Ilay,...,a,)

= (114)

Example 6

Let L : R?2 — RR3 be the linear transformation defined
by



L(x) = (2, @1 + x2, 21 — $2)l

Find the matrix representations of L with respect to the
ordered bases {u;, us } and {by, bs, b3}, where

w = (1,2)", uw=(3,1)"
and
by = (1,0,0)", b, =(1,1,0)7 bs=(1,1,1)"

SOLUTION

We must compute L(u; ) and L(us) and then
transform the augmented matrix

(by, b, b3|L(u;), L(uz)) to reduced row echelon
form:

L(u) = (2,3,-1)" and L(u) = (1,4,2)7

11121 [100-1 -3
0 1 1] 3 40 =10 1 0| 4 21
lo o 1{-1 2] Lo o 1/-1 2l

The matrix representing L with respect to the given
ordered bases is

[-1 =3]
A=1 4 21
-1 2l

The reader may verify that

L(ul) = —b; + 4by — bs
L(u2) = —3b; + 2by + 2bg

Application 1 Computer
Graphics and Animation

A picture in the plane can be stored in the computer as a
set of vertices. The vertices can then be plotted and
connected by lines to produce the picture. If there are n
vertices, they are stored in a 2 X n matrix. The x-



coordinates of the vertices are stored in the first row and
the y-coordinates in the second. Each successive pair of
points is connected by a straight line.

For example, to generate a triangle with vertices (0, 0),
(1,1), and (1, —1), we store the pairs as columns of a
matrix:

01 1 0
T‘[01—10}

An additional copy of the vertex (0, 0) is stored in the
last column of T so that the previous point (1, —1) will
be connected back to (0, 0) [see Figure 4.2.3(a)].

We can transform a figure by changing the positions of
the vertices and then redrawing the figure. If the
transformation is linear, it can be carried out as a matrix
multiplication. Viewing a succession of such drawings
will produce the effect of animation.

The four primary geometric transformations that are
used in computer graphics are as follows:

1. Dilations and contractions. A linear operator of the form
L(x) =cx

is a dilation if ¢ > 1 and a contraction if 0 < ¢ < 1. The operator
L is represented by the matrix cI, where I is the 2 X 2 identity
matrix. A dilation increases the size of the figure by a factor ¢ > 1,
and a contraction shrinks the figure by a factor ¢ < 1. Figure
4.2.3(b) shows a dilation by a factor of 1.5 of the triangle stored in
the matrix 7.

2. Reflections about an axis. If L, is a transformation that reflects a
vector x about the x-axis, then L is a linear operator and hence it
can be represented by a 2 X 2 matrix A. Since

Lz(el) = €1 and LE(GQ) = —€9

it follows that
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Similarly, if L, is the linear operator that reflects a vector about
the y-axis, then L is represented by the matrix

-1 0
01
Figure 4.2.3(c) shows the image of the triangle T after a reflection
about the y-axis. In Chapter 77, we will learn a simple method for

constructing reflection matrices that have the effect of reflecting a
vector about any line through the origin.

. Rotations. Let L be a transformation that rotates a vector about
the origin by an angle  in the counterclockwise direction. We saw
in Example 2 that L is a linear operator and that L(x) = Ax,
where

cosf —sinf

sind  cosf
Figure 4.2.3(d) shows the result of rotating the triangle T'by 60°
in the counterclockwise direction.

. Translations. A translation by a vector a is a transformation of
the form

Lx)=x+a

If a # 0, then L is not a linear transformation and hence L cannot
be represented by a 2 X 2 matrix. However, in computer graphics
it is desirable to do all transformations as matrix multiplications.
The way around the problem is to introduce a new system of
coordinates called homogeneous coordinates. This new system
will allow us to perform translations as linear transformations.

Homogeneous Coordinates

The homogeneous coordinate system is formed by

equating each vector in R? with a vector in R? having

the same first two coordinates and having 1 as its third

coordinate.

2] ot

21 1]
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When we want to plot a point represented by the
homogeneous coordinate vector (21, 2, 1)T, we simply
ignore the third coordinate and plot the ordered pair

(ﬂ)l y L9 ) .

The linear transformations discussed earlier must now
be represented by 3 X 3 matrices. To do this, we take the
2 X 2 matrix representation and augment it by attaching
the third row and third column of the 3 X 3 identity
matrix. For example, in place of the 2 X 2 dilation

b3

matrix

we have the 3 X 3 matrix

Note that

0[ar] [ 3a1]

30
10 3 0r1zgr =1 3z
lo ol [ 1]
If L is a translation by a vector a in R?, we can find a
matrix representation for L with respect to the
homogeneous coordinate system. We simply take the
3 X 3 identity matrix and replace the first two entries of
its third column with the entries of a. To see that this
works, consider, for example, a translation

corresponding to the vector a = (6, 2)T. In
homogeneous coordinates, this transformation is
accomplished by the matrix multiplication

(10 Gjfa] om0
Ax =10 1 211 21 =1 22+ 21

lo o uJla) | 1 |

Figure 4.2.4(a) shows a stick figure generated from a
3 X 81 matrix S. If we multiply S by the translation



matrix A, the graph of AS is the translated image given in
Figure 4.2.4(b).

Figure 4.2.4.
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Figure 4.2.4. Full Alternative Text

Application 2 The Yaw, Pitch,
and Roll of an Airplane
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The terms yaw, pitch, and roll are commonly used in the
aerospace industry to describe the maneuvering of an
aircraft. Figure 4.2.5(a) shows the initial position of a
model airplane. In describing yaw, pitch, and roll, the
current coordinate system is given in terms of the
position of the vehicle. It is always assumed that the craft
is situated on the xy-plane with its nose pointing in the
direction of the positive x-axis and the left wing pointing
in the direction of the positive y-axis. Furthermore, when
the plane moves, the three coordinate axes move with the
vehicle (see Figure 4.2.5).

Figure 4.2.5.

Front
z X
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\y
Right
(a) Original Position of Airplane
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Right
(b) Yaw of 45°
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(c) Pitch of —30°

(d) Roll of 30°

Figure 4.2.5. Full Alternative Text

A yaw is a rotation in the xy-plane. Figure 4.2.5(b)
illustrates a yaw of 45°. In this case, the craft has been
rotated 45° to the right (clockwise). Viewed as a linear
transformation in 3-space, a yaw is simply a rotation
about the z-axis. Note that if the initial coordinates of the
nose of the model plane are represented by the vector (1,
0, 0), then its xyz coordinates after the yaw
transformation will still be (1, 0, 0), since the coordinate
axis rotated with the craft. In the initial position of the
airplane, the x, y, and z axes are in the same directions as
the front-back, left-right, and top-bottom axes shown in
the figure. We will refer to this initial front, left, top axis
system as the FLT axis system. After the 45° yaw, the
position of the nose of the craft with respect to the FLT

axis system is (%, —%, 0).

If we view a yaw transformation L in terms of the FLT
axis system, it is easy to find a matrix representation. If L
corresponds to yaw by an angle u, then L will rotate the
points (1, 0, 0) and (0, 1, 0) to the positions

(cosu, —sinwu, 0) and (sin u, cos u, 0), respectively.
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The point (0, 0, 1) will remained unchanged by the yaw
since it is on the axis of rotation. In terms of column
vectors, if Y1, Y2, and y3 are the images of the standard
basis vectors for R3 under L, then

cosu sinu 0
y, = L(e1) = !- —sinu-! , y2=L(e)) = !- cos u-! , y3 = L(e3) = 0.!
Ll o | [ o | [ 1]

Therefore, the matrix representation of the yaw
transformation is

|’ cosu sinu 0'|
Y =1 —sinu cosu 01
0 o 1l

®

A pitch is a rotation of the aircraft in the xz-plane. Figure
4.2.5(c) illustrates a pitch of —300. Since the angle is
negative, the nose of the craft is rotated 30° downward,
toward the bottom axis of the figure. Viewed as a linear
transformation in 3-space, a pitch is simply a rotation
about the y-axis. As with the yaw, we can find the matrix
for a pitch transformation with respect to the FLT axis
system. If L is a pitch transformation with angle of
rotation v, the matrix representation of L is given by

|' cosv 0 fsinv]
0 1 0

P:I
|.sinv 0 cost

(2)

A roll is a rotation of the aircraft in the yz-plane. Figure
4.2.5(d) illustrates a roll of 30°. In this case, the left wing
is rotated up 30° toward the top axis in the figure and the
right wing is rotated 30° downward toward the bottom
axis. Viewed as a linear transformation in 3-space, a roll
is simply a rotation about the x-axis. As with the yaw and
pitch, we can find the matrix representation for a roll
transformation with respect to the FLT axis system. If L
is a roll transformation with angle of rotation w, the
matrix representation of L is given by



[1 0 0 ]
R=10 cosw —sinw:
|_0 sinw cost

(3)

If we perform a yaw by an angle u and then a pitch by an
angle v, the composite transformation is linear; however,
its matrix representation is not equal to the product PY.
The effect of the yaw on the standard basis vectors e, €5
, and ej is to rotate them to the new directions y, yo,
and ys. So the vectors y1, y2, and y3 will define the
directions of the x, y, and z axes when we do the pitch.
The desired pitch transformation is then a rotation about
the new y-axis (i.e., the axis in the direction of the vector
y2). The vectors y; and y3 form a plane, and when the
pitch is applied, they are both rotated by an angle v in
that plane. The vector y» will remain unaffected by the
pitch, since it lies on the axis of rotation. Thus, the
composite transformation L has the following effect on
the standard basis vectors:
yaw picth
e —YyY1 — cosvy;+sinvys
yaw picth
e Y2 —Y2
yaw picth
e3 —YyY3 — —sInvy;+CosSvYys
The images of the standard basis vectors form the
columns of the matrix representing the composite
transformation:

|‘cosv 0 —sinv'|
(cos vy, +sinvys,yy, —sinvy, +cosvy;) = (y1,y2,y3)t 0 1 0
sinv 0 cosv |

=YP

It follows that matrix representation of the composite is
a product of the two individual matrices representing the
yaw and the pitch, but the product must be taken in the
reverse order, with the yaw matrix Y on the left and the
pitch matrix P on the right. Similarly, for a composite
transformation of a yaw with angle u, followed by a pitch
with angle v, and then a roll with angle w, the matrix



representation of the composite transformation would be
the product YPR.



Section 4.2 Exercises

1. Refer to Exercise 1 of Section 4.1. For each linear transformation
L, find the standard matrix representation of L.

2. For each of the following linear transformations L mapping R3
into R?, find a matrix A such that L L(x) = Ax for every x in R3

1 L((mla $2,$3)T = (561 + x9, O)T)
2. L((z1, 22, 23)") = (w1 + 22)"
3. L((z1, 22, 23)") = (22 — 21,23 — 22)"

3. For each of the following linear operators L on R3, find a matrix A
such that L(x) = Ax for every x in R?:

L L(($1,ﬂ?2,$3)T) = ($3,$2,$1)T
T T
2. L(($1,$2,$3) ) = («’ﬂl,ﬁvl + x2,x1 + X2 + £E3)

3. L((ml, Ta, a:3)T> = (23, x2 + 321,221 — wg)T

4. Let L be the linear operator on R3 defined by

[2.’171 — Ty — :1:3-‘
2132 — I1 — T3

L(x) =
[2:133 —x1 — ng

Determine the standard matrix representation A of L, and use A to
find L (x) for each of the following vectors x:

Lx=(1,1,1)7
2.x=(2,1,1)7

3.x=(-5,3,2)7

5. Find the standard matrix representation for each of the following
linear operators:

1. L is the linear operator that rotates each x in R? by 45°
in the clockwise direction.

2. L is the linear operator that reflects each vector x in R?
about the x1-axis and then rotates it 90° in the
counterclockwise direction.



3. L doubles the length of x and then rotates it 30° in the
counterclockwise direction.

4. L reflects each vector x about the line 2 = 1 and then
projects it onto the x;-axis.

6. Let

o= 1] o] o [1]
ol Ll

and let L be the linear transformation from R? into R? defined by
L(X) = z1b;1 + zobs + (:Ill + :Ez)bg

Find the matrix A representing L with respect to the ordered bases

{el, 82} and {bl, b2, bg}

7. Let
H — H
yi1= {1l,y2= 1|1

H

Y3 — 0
1 o]

and let T be the identity operator on R3.

1. Find the coordinates of I{e,), 7(e,) and I(e3) with
respect to {y1, y2,¥3}-

2. Find a matrix A such that Ax is the coordinate vector of x
with respect to {y1, y¥2,¥3}

8. Let y1, Y2, and y3 be defined as in Exercise 7, and let L be the
linear operator on R3 defined by

L(ciy1 + c2y2 + c3y3) = (1 + c2 + ¢c3)y1 + (21 + ¢3)y2 — (2¢2 + ¢3)y3

1. Find a matrix representing L with respect to the ordered
basis {YIa Yo, }’3}

2. For each of the following, write the vector x as a linear
combination of y1, ¥2,, and y3 and use the matrix from
part (a) to determine L (x):

Lx=(7,5,2)"
2.x = (3,2,1)F
3.x=(1,2,3)"

9. Let



[00110"
=10 1100
S

The column vectors of R represent the homogeneous coordinates
of points in the plane.

1. Draw the figure whose vertices correspond to the column
vectors of R. What type of figure is it?

2. For each of the following choices of A, sketch the graph
of the figure represented by AR and describe
geometrically the effect of the linear transformation:

(1 0 o]

LtA=10 1 0

[0 0 1J

[ 1 1
Vi oz 0

S B T
2. A 5 5 0
| 0 0 1

1 0 2]

0 0 1J

10. For each of the following linear operators on R2, find the matrix
representation of the transformation with respect to the
homogeneous coordinate system:

1. The transformation L that rotates each vector by 120° in
the counterclockwise direction

2. The transformation L that translates each point 3 units
to the left and 5 units up

3. The transformation L that contracts each vector by a
factor of one-third

4. The transformation that reflects a vector about the y-axis
and then translates it up 2 units

11. Determine the matrix representation of each of the following
composite transformations.
1. A yaw of 90°, followed by a pitch of 90°
2. A pitch of 90°, followed by a yaw of 90°
3. A pitch of 45°, followed by a roll of —90°
4. Aroll of —90°, followed by a pitch of 45°

5. A yaw of 45°, followed by a pitch of —90° and then a roll
of —45°



6. Aroll of —45°, followed by a pitch of —90° and then a
yaw of 45°

12. Let Y, P, and R be the yaw, pitch, and roll matrices given in
equations (1), (2), and (3), respectively, and let ) = Y PR.
1. Show that Y, P, and R all have determinants equal to 1.

2. The matrix Y represents a yaw with angle u. The inverse
transformation should be a yaw with angle —u. Show
that the matrix representation of the inverse
transformation is Y7 and that YT = Y1,

3. Show that Q is nonsingular and express Qfl in terms of
the transposes of Y, P, and R.

13. Let L be the linear transformation mapping p» into R? defined by

Lip(@)) = [fo ;’((jj))d]

Find a matrix A such that
Lo+ pz)=A [g]

14. The linear transformation L defined by
L(p(z)) = p(z) + p(0)

maps p3 into ps. Find the matrix representation of L with respect
to the ordered bases (22, z,1] and [2, 1, —x]. For each of the
following vectors p(x) in ps, find the coordinates of L (p(x)) with
respect to the ordered basis [2, 1, —z]:

Lz?+22—3
2. 22 4+ 1

3. 3x

4. 42% + 22

15. Let S be the subspace of C[a, b] spanned by e*, ze®, and z2e®. Let
D be the differentiation operator of S. Find the matrix
representing D with respect to [em, ze®, z? e’”] .

16. Let L be a linear operator on R”. Suppose that L(z) = 0 for
some X 7 0. Let A be the matrix representing L with respect to
the standard basis {e1, €2, . . .., €, }. Show that A is singular.

17. Let L be a linear operator on a vector space V. Let A be the matrix
representing L with respect to an ordered basis {v1, ..., v,} of V

n
lie, L(v;) = Ela,-jvi,j =1,....,n]. Show that A™ is the
1=

matrix representing L™ with respect to {vy, ..., v, }.



18. Let E = {u;, us,u3} and F' = {by, bo}, where

S Y Y
1N R

and
by = (1,-1)7, by=(2,-1)"

For each of the following linear transformations L from R3 into
IR2, find the matrix representing L with respect to the ordered
bases E and F:

1 L(x) = ($3,$1)T
2. L(x) = (21 + 23,21 — z3)"

3. L(x) = (222, —ml)T

19. Suppose that Ly : V' — W and Ly : W — Z are linear
transformations and E, F, and G are ordered bases for V, W, and Z,
respectively. Show that, if A represents L1 relative to E and F and
Brepresents L relative to F and G, then the matrix C = BA
represents Ls 0 Ly : V' — Z relative to E and G. Hint: Show that
BAv]p = [(Lz 0 L1)(v)]g forallv € V.

20. Let Vand W be vector spaces with ordered bases E and F,
respectively. If L : V' — W is a linear transformation and A is
the matrix representing L relative to E and F, show that

1. v € ker(L) if and only if [v] , € N(A).

2. w € L (V) if and only if [W] , is in the column space of
A.



4.3 Similarity

If L is a linear operator on an n-dimensional vector space
V, the matrix representation of L will depend on the
ordered basis chosen for V. By using different bases, it is
possible to represent L by different n X n matrices. In
this section, we consider different matrix representations
of linear operators and characterize the relationship
between matrices representing the same linear operator.

Let us begin by considering an example in R2. Let L be
the linear transformation mapping R? into itself defined
by

L(x) = (221,21 + 2)"

Since

Lier) = ﬁ

and L(e) = m

it follows that the matrix representing L with respect to
{el, 62} is

A= ]

If we use a different basis for R?, the matrix
representation of L will change. If, for example, we use

I I
W=y and 2=

for a basis, then to determine the matrix representation
of L with respect to {ul, uz}, we must determine L(ul)
and L(uy). and express these vectors as linear

combinations of u; and us. We can use the matrix A to
determine L(u;) and L(uy):



2 011 2
- 0]
2 0][-1 —2
o= - 1]
To express these vectors in terms of 11 and ug, we use a
transition matrix to change from the ordered basis
{e1,e2},to {ui, uz}. Let us first compute the

transition matrix from {ul, u2} to {el, es } This is
simply

o[} ]

The transition matrix from {eq, €5} to {uy, us } will
then be

To determine the coordinates of L(u;) and L(usy) with
respect to {u1, Uz }, we multiply the vectors by UL

-
AN
Il
—
|
= o=
N | o =

UﬁlL(ul) = UflAul =

| — |
\

UﬁlL(lIg) =U71AUQ =

] N ) P O P T
[ ) P ) PR

| — |
|

Thus,

L(ul) = 2u; + Ouy
L(llz) = —1u; + 1uy

and the matrix representing L with respect to {uy, us }

is
B 2 -1
|10 1
How are A and B related? Note that the columns of B are
|:(2J = U_lAul and [_ﬂ = U_lAll2

Hence,



B= (U 'Au, U "Awy) = U "A(ug,wp) = U AU

Thus, if

1. B is the matrix representing L with respect to {uy, us },
2. A is the matrix representing L with respect to {e1, €2 }.

3. U s the transition matrix corresponding to the change of basis
from {ul, 112} to {el, 62},

then

B=U'AU
®

The results that we have established for this particular
linear operator on R? are typical of what happens in a
much more general setting. We will show next that the
same sort of relationship as that given in (1) will hold for
any two matrix representations of a linear operator that
maps an n-dimensional vector space into itself.

Theorem 4.3.1

Let B = {v1,...,vp}and F = {w1,..., Wy} be two
ordered bases for a vector space V, and let L be a linear
operator on V. Let S be the transition matrix
representing the change from F to E. If A is the matrix
representing L with respect to E, and B is the matrix
representing L with respect to F, then B = S 1AS.

Proof

Let x be any vector in R™ and let
V=T{W| + ToW2 + ...+ T,Wp,
Let

y=5%x, t=Ay, z=DBx

(2)



It follows from the definition of S that y = [v]; and
hence

V=Y1Vi+ ...+ YVpn

Since A represents L with respect to E, and B represents
L with respect to F, we have

t=[L(v)]p and z=I[L(v)|p
The transition matrix from E to Fis S L. Therefore,

Slt=1z
(3)
It follows from (2) and (3) that

S'ASx =S Ay =St =z =Bx

(see Figure 4.3.1). Thus,

S 1ASx = Bx

Figure 4.3.1.

e

Figure 4.3.1. Full Alternative Text

for every x € R", and hence S™'AS = B.
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Another way of viewing Theorem 4.3.1 is to consider S as
the matrix representing the identity transformation 7
with respect to the ordered bases

F={wy,...,w,} and E = {vy,...,v,}

It

« Srepresents 7] relative to F and E,
« Arepresents L relative to E,

e represents / relative to E and F,

then L can be expressed as a composite operator 7oLo7,
and the matrix representation of the composite will be
the product of the matrix representations of the
components.

Thus, the matrix representation of 7o L o 7 relative to F
is S~1AS. If B is the matrix representing L relative to F,
then B must equal S~ AS (see Figure 4.3.2).

Figure 4.3.2.
L

Basis E: V' = V/

\ A

IS S

!

Basis F: V = |/



Figure 4.3.2. Full Alternative Text

Definition

Let A and B be n X n matrices. B is said to be similar
to A if there exists a nonsingular matrix S such that

B=S"1A48S.

. e . _1\—1 _
Note that if B is similar to A, then A = (S 1) BS!
is similar to B. Thus, we may simply say that A and B are
similar matrices.

It follows from Theorem 4.3.1 that, if A and Baren X n
matrices representing the same operator L, then A and B
are similar. Conversely, suppose that A represents L with

respect to the ordered basis {vy, ..., v, } and
B = S~ AS for some nonsingular matrix S. If
W1, ..., W, are defined by

Wi = 811V1 +821Vy + ...+ 8,1V

Wy = 812V] + 829Vo + ...+ SpaVy,

W, = 81,V1+ S, Va+ ...+ 8mmVn

then {w1, . . .,wy, } is an ordered basis for V, and B is
the matrix representing L with respect to { w1, . . ., Wy, }.
Example 1

Let D be the differentiation operator on p3. Find the
matrix B representing D with respect to [1, T, a:2] and
the matrix A representing D with respect to

[1,2:c,4:c2 — 2}.

SOLUTION

D(1) =0-140-2+0-z?
D(z) =1-1+0-2+0-2*
D(z?) =0-1+2-2+0-2?
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The matrix B is then given by

[OlO-I
B=10 0 2

lo 0 o

Applying D to 1, 2x, and 4x® — 2, we obtain

D(1) =0-14+0-2z+40- (42 —2)
D(2z) =2-140-2z+0- (42® —2)
D(42®> —2) =0-1+4-2z+0- (42° - 2)

Thus,

[OZO-I
A=10 0 4

lo 0 o

The transition matrix S corresponding to the change of
basis from [1, 2z, 4x% — 2] to [1, T, mz} and its inverse

are given by
10 —2 [1
S=10 0 and S~1= |0
00 4 o

(See Example 6 from Section 3.5.) The reader may verify
that A = S~ 1BS.

o
O o=
S|

S N O
O o=
|—
| —

Example 2

Let L be the linear operator mapping R® into R? defined
by L(x) = Ax, where

[2 2 O-I
A=111 2
11 2

Thus, the matrix A represents L with respect to
{e1, e2, e3}. Find the matrix representing L with
respect to {y1, y2,y3}, where



SOLUTION

L(y1) = Ay: = 0 = Oy; + Oy + Oy3
L(ys) = Ays =y, = 0y1 + 1y2 + Oy3
L(y3) = Ays = 4y; = Oy1 + Oy + 4y3

Thus, the matrix representing L with respect to
{y1,¥2,y3}is

[000-|
D=101 0

lo 0 4

We could have found D by using the transition matrix
Y = (y1,y2,¥y3) and computing

D=Y 1Ay

This was unnecessary due to the simplicity of the action
of L on the basis {y1,y2,¥3}-

In Example 2, the linear operator L is represented by a
diagonal matrix D with respect to the basis {y1,y2,y3}
. It is much simpler to work with D than with A. For
example, it is easier to compute Dx and D"x than Ax
and A"X. Generally, it is desirable to find as simple a
representation as possible for a linear operator. In
particular, if the operator can be represented by a
diagonal matrix, this is usually the preferred
representation. The problem of finding a diagonal
representation for a linear operator will be studied in
Chapter 6.



Section 4.3 Exercises

1. For each of the following linear operators L on RZ, determine the
matrix A representing L with respect to {el, ez} (see Exercise 1 of
Section 1.2) and the matrix B representing L with respect to

{u1 —1,1) = (—1,1)T};

1 L(x) = (—x1,x2)
2. L(x) = —x

3. L(x) = (x2, 71)
4 L(x) = 3x

5. L(x) = z9€2

2. Let {uy, us } and {v1, va} be ordered bases for R?, where

o= b =[]
w=fi) =l

Let L be the linear transformation defined by

and

T
L(x) = (—z1,22)
and let B be the matrix representing L with respect to {u1 , uz}
[from Exercise 1(a)].
1. Find the transition matrix S corresponding to the change
of basis from {uy, us } to {vy, va}.

2. Find the matrix A representing L with respect to
{v1, va} by computing SBS 1.

3. Verify that

=
5
!

= a11V1 + ag1ve
= a12vi + azva

=

<

L
!

3. Let L be the linear transformation on R? defined by

[2371—:132—.’113"
L(x) =1 2zy — 21 — 31
|.21L‘3—331—£E2



and let A be the standard matrix representation of L (see Exercise
4 of Section 4.2). Ifu; = (1,1, O)T, u; = (1,0, l)T, and

us = (0,1, l)T, then {uy, uz, uz} is an ordered basis for R3
and U = (u1, ug, u3) is the transition matrix corresponding to a
change of basis from {ul, uy, U3} to the standard basis

{e1, €5, €3}. Determine the matrix B representing L with respect
to the basis {u;, ug, uz} by calculating U "L AU.

4. Let L be the linear operator mapping R3 into R defined by
L(x) = Ax, where

[3 —1 —2]
A=12 0 -2
lo -1 -1l

and let

[ [ [0]
vi=11i,vog=121,vg=1 =2

[ 1] Lol [ 1]

Find the transition matrix V corresponding to a change of basis
from {vy, vy, v3} to {€1, e, €3}, and use it to determine the
matrix B representing L with respect to {vy, v, v3}.

5. Let L be the operator on p3 defined by
L(p(z)) = zp I(z) + pi(x)
1. Find the matrix A representing L with respect to
1,z,2%].

2. Find the matrix B representing L with respect to
[1, z,1+ wz].

3. Find the matrix S such that B = S 1 AS.
4.Ifp(x) = ap + a1z + a2 (1 + m2), calculate

L"(p(z)).

6. Let Vbe the subspace of Cla, b] spanned by 1, e*, e~%, and let D
be the differentiation operator on V.

-

. Find the transition matrix S representing the change of
coordinates from the ordered basis [1, e*, e *] to the
ordered basis

1 1
[1, coshz,sinh z]. |coshz = 3 (" + e ®),sinhz = 3 (e”
2. Find the matrix A representing D with respect to the
ordered basis [1, cosh x, sinh x].

3. Find the matrix B representing D with respect to

[1,e,e7"].
4. Verify that B = S~1AS.

—e ).



7. Prove that if A is similar to B and B is similar to C, then A is
similar to C.

8. Suppose that A = SAS ™!, where A is a diagonal matrix with
diagonal elements A1, Ag, . . ., Ay.

1. Show that Asi =\Ns;,i=1,...,n.

2. Show thatif x = o381 + @9sy + ... + o, Sy, then
AkX = al)\’fsl + a2/\12“52 + ...+ Oln)\ZSn

3. Suppose that |A;| < 1foré =1, ..., n. What happens

to A¥x as k — 0o? Explain.

9. Suppose that A = ST, where S is nonsingular. Let B = T'S.
Show that B is similar to A.

10. Let A and B be n X m matrices. Show that if A is similar to B, then
there exist n X n matrices S and 7, with S nonsingular, such that

A=ST and B=TS

1

=

. Show that if A and B are similar matrices, then

det(A) = det(B).

12. Let A and B be similar matrices. Show that

1. AT and BT are similar.

2. AF and BF are similar for each positive integer k.

13. Show that if A is similar to B and A is nonsingular, then B must
also be nonsingular and A" and B! are similar.

14. Let A and B be similar matrices and let A be any scalar. Show that

1. A — A and B — I are similar.
2. det(A — AI) = det(B — AI).

15. The trace of an n. X n matrix A, denoted tr(A), is the sum of its
diagonal entries; that is,
tr(A) =an +an+...+ amm
Show that
1 tr(AB) = tr(BA)

2. if A is similar to B, then tr(A) = tr(B).



Chapter 4 Exercises

MATLAB Exercises

1. Use MATLAB to generate a matrix W and a vector x by setting
W = triu(ones(5)) and x={[1:5]
The columns of W can be used to form an ordered basis:
F = {w1, Wy, W3, Wy, W5 }
Let L : R® — IR be a linear operator such that
L(wy) = wo, L(ws) =ws, L(ws)=wy
and

L(wy) =4w;+ 3wo+2ws+ wy
L(ws) = wi+ wa+ w3+ 3wy + ws

. Determine the matrix A representing L with respect to F,
and enter it in MATLAB.

[

2. Use MATLAB to compute the coordinate vector
y = W x of x with respect to F.

3. Use A to compute the coordinate vector z of L (x) with
respect to F.

4. W is the transition matrix from F to the standard basis
for R®. Use Wto compute the coordinate vector of L (x)
with respect to the standard basis.

2. Set A = triu(ones(5)) * tril(one s(5)). If L denotes the
linear operator defined by L(x) = Ax for all x in R, then A is
the matrix representing L with respect to the standard basis for
R’. Constructa 5 X 5 matrix U by setting

U = hankel(ones(5,1),1:5)

Use the MATLAB function rank to verify that the column vectors
of U are linearly independent. Thus, E = {uy, u, us, uy, us} is
an ordered basis for R®. The matrix U is the transition matrix
from E to the standard basis.

1. Use MATLAB to compute the matrix B representing L
with respect to E. (The matrix B should be computed in



3. Let

terms of A, U, and U~ 1).

. Generate another matrix by setting

V = toeplitz([1,0,1,1,1])

Use MATLAB to check that V'is nonsingular. It follows
that the column vectors of V are linearly independent
and hence form an ordered basis F for R®. Use MATLAB
to compute the matrix C, which represents L with respect
to F. (The matrix C should be computed in terms of A, V,
and V1)

. The matrices B and C from parts (a) and (b) should be

similar. Why? Explain. Use MATLAB to compute the
transition matrix S from F to E. Compute the matrix Cin
terms of B, S, and S 1. Compare your result with the
result from part (b).

A = toeplitz(1:7),
S = compan(ones(8,1))



Chapter Test A True or False

For each statement that follows, answer true if the

statement is always true and false otherwise. In the case

of a true statement, explain or prove your answer. In

the case of a false statement, give an example to show

that the statement is not always true.

Ju

. Let L : R™ — R" be a linear transformation. If L(x;) = L(x2),

then the vectors x; and X2 must be equal.

. If L1 and Ls are both linear operators on a vector space V, then

Ly + Ly is also a linear operator on V, where Iy + Lo is the
mapping defined by

(L1 + Ly)(v) = Li(v) + Lo(v) forallv € V.

.IfL :V — Visalinear transformation and x € ker(L), then

L(v+x) = L(v)forallv € V.

. If L; rotates each vector x in R? by 60° and then reflects the

resulting vector about the x-axis, and if Lo is a transformation that
does the same two operations, but in the reverse order, then

Ly = L.

. The set of all vectors x used in the homogeneous coordinate

system (see the application on computer graphics and animation
in Section 4.2) forms a subspace of RS,

andset B = S~ * A * S. The matrices A and B are similar. Use
MATLAB to verify that the following properties hold for these two
matrices:

1. det(B) = det(A)

o, BT — STAT(ST)"!
3.B1=8"14"18

4. B = 5714%¢8

5 B—3I=S8%A-3I)S

6. det(B — 3I) = det(A — 3I)

7.tr(B) = tr(A)(Note that the trace of a matrix A can be
computed with the MATLAB command trace.)

These properties will hold in general for any pair of
similar matrices (see Exercises 11-15 of Section 4.3).

6. Let L : R2 — R2be a linear transformation, and let A be the

standard matrix representation of L. If L?is defined by

L%*(x) = L(L(x))for all x € R?



then L? is a linear transformation and its standard matrix
representation is A2.

7.Let E = {X1, X3, ..., X, } be an ordered basis for R™. If
Ly : R* — R™and Ly : R® — R”™ have the same matrix
representation with respect to E, then L1 = Lo.

8. Let L : R™ — R" be a linear transformation. If A is the standard
matrix representation of L, then an n X n matrix B will also be a
matrix representation of L if and only if B is similar to A.

9. Let A, B, and Cbe n X n matrices. If A is similar to B and B is
similar to C, then A is similar to C.

10. Any two matrices with the same trace are similar. [This statement
is the converse of part (b) of Exercise 15 in Section 4.3.]



Chapter Test B

1. Determine whether the following are linear operators on R2:

1. Lis the operator defined by L(x) = (21 4 22, 21)”.

2. L is the operator defined by L(x) = (z122, :Ul)T.

2. Let L be a linear operator on R? and let

o= e [F] =[]

L(v) = [?] and  L(vs) = {_13]

If

find the value of L(vs).

3. Let L be the linear operator on R? defined by

IEz—ml'l
L(x) =1 z3 — xo1
3 — I1

andlet S = Span((l, 0, 1)T>.

1. Find the kernel of L.

2. Determine L (S).

4. Let L be the linear operator on R? defined by

Determine the range of L.
5. Let L : R? — R3be defined by
[ 122
L(X):I Ty — T2 1
|. 3x1 + 2.1,’2J
Find a matrix A such that L(x) = Ax for each x in R2.

6. Let L be the linear operator on R? that rotates a vector by 30°. in
the counterclockwise direction and then reflects the resulting
vector about the y-axis. Find the standard matrix representation
of L.

7. Let L be the translation operator on R? defined by



2
L(x) =x+a, wherea= [5]

Find the matrix representation of L with respect to the
homogeneous coordinate system.

o[-

and let L be the linear operator that rotates vectors in R? by 45°.
in the counterclockwise direction. Find the matrix representation
of L with respect to the ordered basis [uz, ug).

8. Let

9. Let

and

e[

and let L be a linear operator on R? whose matrix representation
with respect to the ordered basis is {uy, us} is

A 21
13 2
1. Determine the transition matrix from the basis {v1, vo}
to the basis {uy, us}.
2. Find the matrix representation of L with respect to

{Vl, VQ}.

10. Let A and B be similar matrices.

1. Show that det(A) = det(B).

2. Show that if A is any scalar, then
det(A — A1) = det(B — AI).



Chapter 5 Orthogonality

NAT b o

Full Alternative Text

We can add to the structure of a vector space by defining
a scalar or inner product. Such a product is not a true
vector multiplication, since to every pair of vectors it
associates a scalar rather than a third vector. For
example, in IR, we can define the scalar product of two
vectors x and y to be xTy. We can think of vectors in R?
as directed line segments beginning at the origin. It is
not difficult to show that the angle between two line
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segments will be a right angle if and only if the scalar
product of the corresponding vectors is zero. In general,
if V'is a vector space with a scalar product, then two
vectors in V are said to be orthogonal if their scalar
product is zero.

We can think of orthogonality as a generalization of the
concept of perpendicularity to any vector space with an
inner product. To see the significance of this, consider
the following problem: Let [ be a line passing through the
origin, and let Q be a point not on /. Find the point P on [
that is closest to Q. The solution P to this problem is
characterized by the condition that QP is perpendicular
to OP (see Figure 5.0.1). If we think of the line [ as
corresponding to a subspace of R?and v = OQ asa
vector in R?, then the problem is to find a vector in the
subspace that is “closest” to v. The solution p will then be
characterized by the property that p is orthogonal to

Vv — P (see Figure 5.0.1). In the setting of a vector space
with an inner product, we are able to consider general
least squares problems. In these problems, we are given
avector vin Vand a subspace W. We wish to find a
vector in W that is “closest” to v. A solution p must be
orthogonal to v — p. This orthogonality condition
provides the key to solving the least squares problem.
Least squares problems occur in many statistical
applications involving data fitting.

Figure 5.0.1.



Figure 5.0.1. Full Alternative Text
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5.1 The Scalar Product in R™

Two vectors x and y in R" may be regarded asn x 1
matrices. We can then form the matrix product xTy.
This productisa 1 X 1 matrix that may be regarded as a
vector in R or, more simply, as a real number. The
product xTy is called the scalar product of x and y. In
particular, if x = (x1,.. ., xn)T and

T
y = (yla o ayn) , then

"y =21y + T2yp + ..+ Ty

Example 1
It

then

y
xTy:(g,_2,1)[3 =3.4-2.3+1-2=8

2

The Scalar Product in R? and
RS

In order to see the geometric significance of the scalar
product, let us begin by restricting our attention to R?
and R3. Vectors in R? and R® can be represented by
directed line segments. Given a vector x in either R? or
R3, its Euclidean length can be defined in terms of the
scalar product.



A1/ [\/w%—l—m% if x € R?
x| = (x'x) " =
Vi +ai+ a2l ifxeR3

Given two nonzero vectors x and y, we can think of them
as directed line segments starting at the same point. The
angle between the two vectors is then defined as the
angle 0 between the line segments. We can measure the
distance between the vectors by measuring the length of
the vector joining the terminal point of x to the terminal
point of y (see Figure 5.1.1). Thus, we have the following
definition.

Figure 5.1.1.

(11, 1)

1)

Figure 5.1.1. Full Alternative Text


file:///tmp/calibre_4.23.0_tmp_z6RZVV/yIhWyX_pdf_out/longalt/la_fig05-01-001.xhtml#la_fig05-01-001

Definition

Let x and y be vectors in either R? or R3. The distance
between x and y is defined to be the number |1 x — y II.

Example 2

ifx = (3,4)  andy = (—1,7)"

between x and y is given by

, then the distance

ly —xIi :\/(—1—3)2+(7—4)2:5

The angle between two vectors can be computed using
the following theorem.

Theorem 5.1.1

Ifx and y are two nonzero vectors in either R? or R®
and 0 is the angle between them, then

xy = ||| [ly]l cos 6
®

Proof

The vectors x, y, and y — X may be used to form a
triangle as in Figure 5.1.1. By the law of cosines, we have

2 2
Iy —x11® = |x||* + [ly|I* — 2l|x[| [ly|| cos 8

and hence it follows that

Ixlliyll cos6 = % (IlxI” + Ilyl> ~ lly - /)
T
= 5 (Il + Iy = (v = )" (v ~ )
= 3 (Il + Iy1? = (¥7y — y"x — xTy + xx))

= xTy



If x and y are nonzero vectors, then we can specify their
directions by forming unit vectors

1
—X vV = —y
el Iyl

If 0 is the angle between x and y, then

T
X'y T

cos=——=u'v
x|y ||

The cosine of the angle between the vectors x and y is the
scalar product of the corresponding direction vectors u
and v.

Example 3

Let x and y be the vectors in Example 2. The directions
of these vectors are given by the unit vectors

3 L
u—Lx—[EI and v—L”y—[ 57\/5}
s | 52 |
The cosine of the angle 8 between the two vectors is

1
cos=ulv=—

V2

T
and hence § = —.

4

Corollary 5.1.2 Cauchy—
Schwarz Inequality

If x and y are vectors in either R? or R3, then

xTy| <= |yl



(2)

with equality holding if and only if one of the vectors is
0 or one vector is a multiple of the other.

Proof

The inequality follows from (1). If one of the vectors is 0,
then both sides of (2) are o. If both vectors are nonzero,
it follows from (1) that equality can hold in (2) if and only
if cos @ = +1. But this would imply that the vectors are
either in the same or opposite directions and hence that
one vector must be a multiple of the other.

If xT'y = 0, it follows from Theorem 5.1.1 that either
one of the vectors is the zero vector or cos 8 = 0. If
cos 0 = 0, the angle between the vectors is a right angle.

Definition

The vectors x and y in R? (or R?) are said to be
orthogonal if x”y = 0.

Example 4

1. The vector o0 is orthogonal to every vector in R2.

3 -4
2. The vectors |: 2} and |: 6 ] are orthogonal in R2.

s 1]
3. The vectors [—3 and | 1! are orthogonal in R3.

(o] [l

Scalar and Vector Projections



The scalar product can be used to find the component of
one vector in the direction of another. Let x and y be
nonzero vectors in either R? or R3. We would like to
write x as a sum of the form p + z, where p is in the
direction of y and z is orthogonal to p (see Figure 5.1.2).
To do this, letu = (1/||y||)y. Thus, u is a unit vector
(Iength 1) in the

Figure 5.1.2.
X ,Z=X-]

Figure 5.1.2. Full Alternative Text

direction of y. We wish to find a such that p = au is
orthogonal to zZ = X — au. For p and z to be
orthogonal, the scalar o must satisfy
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a = Illxll cos@
NxIlllyll cosf

[yl

The scalar a is called the scalar projection of x onto y,
and the vector p is called the vector projection of x onto

y.
Scalar projection of x onto y:

xTy
oa=—
[yl

Vector projection of x onto y:

XTy
p=au=a—y= y
lyll yTy

Example 5

The point Q in Figure 5.1.3 is the point on the line
Y= %:I: that is closest to the point (1, 4). Determine the

coordinates of Q.

Figure 5.1.3.



Figure 5.1.3. Full Alternative Text

SOLUTION

The vector w = (3,1)” is a vector in the direction of
theliney = +z.Letv = (1, 4)T . 1f Q is the desired
point, then Q7 is the vector projection of v onto w.

= (== o

Thus, @ = (2.1, 0.7) is the closest point.

Notation
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If P; and P, are two points in 3-space, we will denote

—
the vector from P; to P by P, P5.

If N is a nonzero vector and P, is a fixed point, the set of

points P such that ﬂ’ is orthogonal to N forms a plane
7t in 3-space that passes through Pj. The vector N and
the plane 7 are said to be normal to each other. A point
P = (x,y, z) will lie on 7t if and only if

AT
(P0P> N=0
IfN = (a, b, C)T and Py = (zg, Yo, 20 ), this equation
can be written in the form

a(z — o) +b(y — yo) + c(z — 20) =0

Example 6

Find the equation of the plane passing through the point
(2, —1, 3) and normal to the vector N = (2, 3, 4)T.

SOLUTION

o b T o
PyP = (x —2,y+ 1,z — 3)". The equation is

H T
(P0P> N =0,or

2(x—-2)+3(y+1)4(2—3)=0

The span of two linearly independent vectors x and y in
R3 corresponds to a plane through the origin in 3-space.
To determine the equation of the plane, we must find a
vector normal to the plane. In Section 2.3, it was shown
that the cross product of the two vectors is orthogonal to
each vector. If we take N = X X y as our normal
vector, then the equation of the plane is given by

T +ngy +n3z =0



Example 7

Find the equation of the plane that passes through the
points

Pi(1,1,2), P,=(2,3,3), P3=(3,-3,3)

SOLUTION

Let

1 2
A o] Ao |l
XIP1P2: 2 and y:P1P3: —4

1 1]

The normal vector N must be orthogonal to both x and y.
If we set

then N will be a normal vector to the plane that passes
through the given points. We can then use any one of the
points to determine the equation of the plane. Using the
point Pj, we see that the equation of the plane is

6(z—1)+(@y—1)—8(z—2)=0

Example 8

Find the distance from the point (2, 0, 0) to the plane
x+2y+22=0.

SOLUTION

The vector N = (1, 2, 2)T is normal to the plane and

the plane passes through the origin. Let v = (2, 0, 0)
The distance d from (2, 0, 0) to the plane is simply the

T

absolute value of the scalar projection of v onto N. Thus,



[VIN]
N

d:

2
3

If x and y are nonzero vectors in R3 and 6 is the angle
between the vectors, then

T
cosf = Xy
1y
It then follows that
2
Ty x|?(y |2 —
sme—m_ (x \/H H [yl]? = (xTy)
IXII HyH2 Hxll||y||
and hence

[1[[[ly[lsin6 = \/HXHQIIyH2 - (xTy)?

= /(@ + 23+ a) (4 + 93+ 92) — @y + 22w + wss)?

= \/(wzys — 23y0)” + (T3yr — T1y3)” + (T192 — 22y1)?
= llxxXyll

Thus, we have, for any nonzero vectors x and y in R3,
llx x yll = ||x|||ly] siné

If either x or y is the zero vector, then x X y = 0 and
hence the norm of x X y will be 0.

Orthogonality in R"

The definitions that have been given for R? and R? can
all be generalized to R". Indeed, if x € R", then the
Euclidean length of x is defined by

x| = (x x)l/Q: (m%—b—m%—k...—i—mi)lﬂ

If x and y are two vectors in R", then the distance
between the vectorsis Iy — xII.

The Cauchy—Schwarz inequality holds in R™. (We will
prove this in Section 5.4.) Consequently,



"
Xy
oxiflyll T

(3)

for any nonzero vectors x and y in R™. In view of (3), the
definition of the angle between two vectors that was used
for R? can be generalized to R™. Thus, the angle 6
between two nonzero vectors x and y in R™ is given by

,0<0<n

In talking about angles between vectors, it is usually
more convenient to scale the vectors so as to make them
unit vectors. If we set

1

u and v=—y
Iyl

= —x

x|
then the angle 6 between u and v is clearly the same as
the angle between x and y, and its cosine can be
computed simply by taking the scalar product of the two
unit vectors:

T
X'y T

cos=——=u'v
x|y ||

The vectors x and y are said to be orthogonal if

xT'y = 0. Often the symbol L is used to indicate
orthogonality. Thus, if x and y are orthogonal, we will
write X | y. Vector and scalar projections are defined in
R™ in the same way that they were defined for R2.

If x and y are vectors in R"”, then

T 2 2
Ix+yll*=(x+y) (x+y)=[x|*+2x"y + ||y||
@

In the case that x and y are orthogonal, equation (4)
becomes the Pythagorean law

1x+yi? = x|* + |ly)?



The Pythagorean law is a generalization of the
Pythagorean theorem. When x and y are nonzero
orthogonal vectors in IR?, we can use these vectors and
their sum x + y to form a right triangle as in Figure
5.1.4. The Pythagorean law relates the lengths of the
sides of the triangle. Indeed, if we set

a=xl, b= lyl,e= 1x+yl

Figure 5.1.4.

c=Ix+yll

a = lIxll

Figure 5.1.4. Full Alternative Text

then

¢® = a® + b*(the famous Pythagorean theorem)

In many applications, the cosine of the angle between
two nonzero vectors is used as a measure of how closely
the directions of the vectors match up. If cos 6 is near 1,
then the angle between the vectors is small and hence the
vectors are in nearly the same direction. A cosine value
near zero would indicate that the angle between the
vectors is nearly a right angle.
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Application 1

Information Retrieval Revisited

In Section 1.3, we considered the problem of searching a
database for documents that contain certain keywords. If
there are m possible key search words and a total of n
documents in the collection, then the database can be
represented by an m x n matrix A. Each column of A
represents a document in the database. The entries of the
Jjth column correspond to the relative frequencies of the
keywords in the jth document.

Refined search techniques must deal with vocabulary
disparities and the complexities of language. Two of the
main problems are polysemy (words having multiple
meanings) and synonymy (multiple words having the
same meaning). On the one hand, some of the words that
you are searching for may have multiple meanings and
could appear in contexts that are completely irrelevant to
your particular search. For example, the word calculus
would occur frequently in both mathematical papers and
in dentistry papers. On the other hand, most words have
synonyms, and it is possible that many of the documents
may use the synonyms rather than the specified search
words. For example, you could search for an article on
rabies using the keyword dogs; however, the author of
the article may have preferred to use the word canines
throughout the paper. To handle these problems, we
need a technique to find the documents that best match
the list of search words without necessarily matching
every word on the list. We want to pick out the column
vectors of the database matrix that most closely match a
given search vector. To do this, we use the cosine of the
angle between two vectors as a measure of how closely
the vectors match up.

In practice, both m and n are quite large, as there are
many possible keywords and many documents to search.



For simplicity, let us consider an example where

m = 10 and n = 8. Suppose that a Web site has eight
modules for learning linear algebra and each module is
located on a separate Web page. Our list of possible
search words consists of

« determinants, eigenvalues, linear, matrices, numerical,
orthogonality, spaces, systems, transformations, vector

(This list of keywords was compiled from the chapter
headings for this book.) Table 5.1.1 shows the frequencies
of the keywords in each of the modules. The (2, 6) entry
of the table is 5, which indicates that the keyword
eigenvalues appears five times in the sixth module.

Table 5.1.1 Frequency of
Keywords

Modules
Keywordsy, 1 Mam3mamsmem7ms

determinants o 6 3 0 1 o 1 1
eigenvalues O O O o O 5 3 2
linear 5 4 4 5 4 o 3 3
matrices 6 5 3 3 4 4 3 2
numerical o o o o 3 o 4 3
orthogonality O O O o0 4 6 o0 2
spaces o o 5 2 3 3 o0 1
systems 5 3 3 2 4 2 1 1

transformations o o 0O 5 1 3 1 0

vector 0] 4 4 3 4 1 0] 3



The database matrix is formed by scaling each column of
the table so that all column vectors are unit vectors.
Thus, if A is the matrix corresponding to Table 5.1.1, then
the columns of the database matrix Q are determined by
setting

1

llay i

q; = a; j=1,..,8
To do a search for the keywords orthogonality, spaces,
and vector, we form a search vector x whose entries are

all o except for the three rows corresponding to the
1
V3

in each of the rows corresponding to the search words.

search rows. To obtain a unit search vector, we put

For this example, the database matrix Q and search
vector x (with entries rounded to three decimal places)
are given by

0.000 0.594 0.327 0.000 0.100 0.000 0.147 0.154
0.000 0.000 0.000 0.000 0.000 0.500 0.442 0.309
0.539 0.396 0.436 0.574 0.400 0.000 0.442 0.463
0.647 0.495 0.327 0.344 0.400 0.400 0.442 0.309
0.000 0.000 0.000 0.000 0.300 0.000 0.590 0.463
0.000 0.000 0.000 0.000 0.400 0.600 0.000 0.309
0.000 0.000 0.546 0.229 0.300 0.300 0.000 0.154
0.539 0.297 0.327 0.229 0.400 0.200 0.147 0.154
0.000 0.000 0.000 0.574 0.100 0.300 0.147 0.000
0.000 0.396 0.436 0.344 0.400 0.100 0.000 0.463

Ifwesety = QTx, then
Yi = q; x = cos b;

where 0; is the angle between the unit vectors x and q;.
For our example,

y = (0.000, 0.229,0.567, 0.331, 0.635, 0.577, 0.000, 0.535)"

Since y5 = 0.635 is the entry of y that is closest to 1, the
direction of the search vector x is closest to the direction
of g5 and hence module 5 is the one that best matches
our search criteria. The next-best matches come from

modules 6 (yg = 0.577) and 3(y3 = 0.567).Ifa

0.000
0.000
0.000
0.000
0.000
0.577
0.577
0.000
0.000

0.577




document doesn’t contain any of the search words, then
the corresponding column vector of the database matrix
will be orthogonal to the search vector. Note that
modules 1 and 7 do not have any of the three search
words and consequently

y1=qlx=0 and yr=qlx=0

This example illustrates some of the basic ideas behind
database searches. Using modern matrix techniques, we
can improve the search process significantly. We can
speed up searches and at the same time correct for errors
due to polysemy and synonymy. These advanced
techniques are referred to as latent semantic indexing
(LSI) and depend on a matrix factorization, the singular
value decomposition, which we will discuss in Section
6.5.

There are many other important applications involving
angles between vectors. In particular, statisticians use
the cosine of the angle between two vectors as a measure
of how closely the two vectors are correlated.

Application 2

Statistics—Correlation and Covariance Matrices

Suppose that we wanted to compare how closely exam
scores for a class correlate with scores on homework
assignments. As an example, we consider the total scores
on assignments and tests of a mathematics class at the
University of Massachusetts Dartmouth. The total scores
for homework assignments during the semester for the
class are given in the second column of Table 5.1.2. The
third column represents the total scores for the two
exams given during the semester, and the last column
contains the scores on the final exam. In each case, a
perfect score would be 200 points. The last row of the
table summarizes the class averages.



Table 5.1.2 Math Scores Fall
1996

Scores

StUdentAssignmentsExams Final

S1 198 200 196
S2 160 165 165
S3 158 158 133
S4 150 165 91
S5 175 182 151
S6 134 135 101
S7 152 136 80

Average 161 163 131

We would like to measure how student performance
compares between each set of exam or assignment
scores. To see how closely the two sets of scores are
correlated and allow for any differences in difficulty, we
need to adjust the scores so that each test has a mean of
0. If, in each column, we subtract the average score from
each of the test scores, then the translated scores will
each have an average of 0. Let us store these translated
scores in a matrix:

[ 37 37 65]

-1 2 34

-3 -5 2
X=|-11 2 —40
14 19 20

—27 —28 —30

—9 —27 -51

The column vectors of X represent the deviations from
the mean for each of the three sets of scores. The three



sets of translated data specified by the column vectors of
X all have mean 0, and all sum to 0. To compare two sets
of scores, we compute the cosine of the angle between
the corresponding column vectors of X. A cosine value
near 1 indicates that the two sets of scores are highly
correlated. For example, correlation between the
assignment scores and the exam scores is given by

T
Xl X9

~ 0.92
[eSTliE

cosf =
A perfect correlation of 1 would correspond to the case
where the two sets of translated scores are proportional.
Thus, for a perfect correlation, the translated vectors
would satisfy

Xy =ax; (a>0)

and if the corresponding coordinates of x; and x5 were
paired off, then each ordered pair would lie on the line
Yy = ax. Although the vectors x; and X in our example
are not perfectly correlated, the coefficient of 0.92 does
indicate that the two sets of scores are highly correlated.
Figure 5.1.5 shows how close the actual pairs are to lying
on aline y = ax. The slope of the line in the figure was
determined by setting

X{x1 2625

a=—F—=-——~ 1.05
X] X1 2506

Figure 5.1.5.
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Figure 5.1.5. Full Alternative Text
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This choice of slope yields an optimal least squares fit to
the data points. (See Exercise 7 of Section 5.3.)

If we scale x71 and X9 to make them unit vectors

uy = ———

u; = X1 2
[ | %2l

then the cosine of the angle between the vectors will
remain unchanged, and it can be computed simply by
taking the scalar product u{u2. Let us scale all three
sets of translated scores in this way and store the results
in a matrix:

[ 074 065 0.62]
—0.02 003 0.33
~0.06 —0.09 0.02
U=|-022 003 —038
~0.28 033 0.19
—0.54 —0.49 —0.29
~0.18 —0.47 —0.49

Ifweset C = UTU, then

[ 1 092 0.83-‘
c=1092 1 0.83

lo83 083 1 |

and the (i, j) entry of C represents the correlation
between the ith and jth sets of scores. The matrix C'is
referred to as a correlation matrix.

The three sets of scores in our example are all positively
correlated, since the correlation coefficients are all
positive. A negative coefficient would indicate that two
data sets were negatively correlated, and a coefficient of
0 would indicate that they were uncorrelated. Thus, two
sets of test scores would be uncorrelated if the
corresponding vectors of deviations from the mean were
orthogonal.

Another statistically important quantity that is closely
related to the correlation matrix is the covariance



matrix. Given a collection of n data points representing
values of some variable x, we compute the mean T of the
data points and form a vector x of the deviations from
the mean. The variance, s2, is defined by

1 n xT'x
s = n—1 zlzwf: n—l6
and the standard deviation s is the square root of the
variance. If we have two data sets X1 and X», each
containing n values of a variable, we can form vectors X3
and x2 of deviations from the mean for both sets. The
covariance is defined by

cov(Xq, Xo) = p—
If we have more than two data sets, we can form a matrix
X whose columns represent the deviations from the
mean for each data set and then form a covariance
matrix S by setting

1
n—1

S = XTx

The covariance matrix for the three sets of mathematics

scores is
37 37 65
-1 2 34
37 -1 -3 —11 14 -27 -9 -3 -5 2
S =—-137 2 —5H 2 19 —-28 27| |-11 2 —40
65 34 2 —40 20 -30 -51 14 19 20
—27 —-28 =30
-9 -27 -51

417.7 4375 725.7
= [437.5 546.0 830.0
725.7 830.0 1814.3

The diagonal entries of S are the variances for the three
sets of scores, and the off-diagonal entries are the
covariances.



To illustrate the importance of the correlation and
covariance matrices, we will consider an application to
the field of psychology.

Application 3

Psychology—Factor Analysis and Principal Component
Analysis

Factor analysis had its start at the beginning of the 20th
century with the efforts of psychologists to identify the
factor or factors that make up intelligence. The person
most responsible for pioneering this field was the
psychologist Charles Spearman. In a 1904 paper,
Spearman analyzed a series of exam scores at a
preparatory school. The exams were taken by a class of
23 pupils in a number of standard subject areas and also
in pitch discrimination. The correlation matrix reported
by Spearman is summarized in Table 5.1.3.

Table 5.1.3 Spearman’s
Correlation Matrix

ClassicsFrenchEnglishMathDiscrim.Music

Classics 1 0.83 0.78 0.70 0.66 0.63
French 083 1 0.67 0.67 0.65 0.57
English 0.78 0.67 1 0.64 0.54 0.51
Math 0.70 0.67 0.64 1 0.45 0.51
Discrim. 0.66 0.65 0.54 0.45 1 0.40

Music 0.63 0.57 0.51 0.51 0.40 1



Using this and other sets of data, Spearman observed a
hierarchy of correlations among the test scores for the
various disciplines. This led him to conclude that “all
branches of intellectual activity have in common one
fundamental function (or group of fundamental
functions), ...” Although Spearman did not assign names
to these functions, others have used terms such as verbal
comprehension, spatial, perceptual, and associative
memory to describe the hypothetical factors.

The hypothetical factors can be isolated mathematically
using a method known as principal component analysis.
The basic idea is to form a matrix X of deviations from
the mean and then factor it into a product UW, where the
columns of U correspond to the hypothetical factors.
While in practice the columns of X are positively
correlated, the hypothetical factors should be
uncorrelated. Thus, the column vectors of U should be
lruj = 0 whenever i # 7).
The entries in each column of U measure how well the

mutually orthogonal (i.e., u

individual students exhibit the particular intellectual
ability represented by that column. The matrix W
measures to what extent each test depends on the
hypothetical factors.

The construction of the principal component vectors
L XTX. Since
n —
it depends on the eigenvalues and eigenvectors of S, we
will defer the details of the method until Chapter 6. In
Section 6.5, we will revisit this application and learn an

relies on the covariance matrix S =

important factorization called the singular value
decomposition, which is the main tool of principal
component analysis.
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Section 5.1Exercises

1. Find the angle between the vectors v and w in each of the
following:

Lv=(21,3" w= (6,397
2.v=(2,-3)",w=(32)7"
3.v=(41)"w=(32)"
av=(-231"w=(1,24"

2. For each pair of vectors in Exercise 1, find the scalar projection of
v onto w. Also find the vector projection of v onto w.

3. For each of the following pairs of vectors x and y, find the vector
projection p of x onto y and verify that p and x — p are
orthogonal:

Lx=(3,4)",y=(1,0"
2.x=(3,5)",y = (1,1)"
3. X = (27 4, 3)Ta y= (1’ 1, 1)T
4.X= (27 _57 4)Ta y= (17 27 _1)T
4. Let x and y be linearly independent vectors in R?. If || x|| = 2 and

|ly|| = 3, what, if anything, can we conclude about the possible

values of xTy | ?

5. Find the point on the line y = 2z that is closest to the point (5, 2).

6. Find the point on the line y = 2z + 1 that is closest to the point
(5,2).

7. Find the distance from the point (1, 2) to the line 4z — 3y = 0.

8. In each of the following, find the equation of the plane normal to
the given vector N and passing through the point Py:

LN = (2,4,3)", P, = (0,0,0)

2. N = (-3,6,2)", Py = (4,2, —5)
3. N =(0,0,1)", P, = (3,2,4)

9. Find the equation of the plane that passes through the points

P =(2,3,1) P=(54,3) P;=(3,4,4)



10. Find the distance from the point (1, 1, 1) to the plane
2¢ +2y+ 2z = 0.

11. Find the distance from the point (2, 1, —2) to the plane
6(z—1)+2(y—3)+3(z+4)=0

T T T
12.Ifx = (z1,22) ,¥y = (y1,%2) ,and z = (21, 22)" are
arbitrary vectors in R?, prove that
LxTx >0
2.xTy =y'x

3.x (y+2z) =xTy+x"y

13. Show that if u and v are any vectors in R2, then
[u+v|* < (Ju]| + ||v]])* and hence |[u + v|| < llull VI,
When does equality hold? Give a geometric interpretation of the
inequality.

14. Let X1, X9, and X3 be vectors in R3.1fx; L x9and x5 L x3, is
it necessarily true that x; | X9 ?Prove your answer.

15. Let Abe a 2 X 2 matrix with linearly independent column vectors
aj and ay. If a; and ay are used to form a parallelogram P with
altitude h (see the figure), show that

2 2 2 2
L2 |las|” = [lai]|"[laz]|” — (a7 az)

2. Area of P = |det(A)|

—v )
o

5.2-4 Full Alternative Text

16. If x and y are linearly independent vectors in R3, then they can be
used to form a parallelogram P in the plane through the origin
corresponding to Span(x, y). Show that

Areaof P= llx x yll
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17. Let

[ 4 f;]
and y:|2|

L4l L 1]

1. Determine the angle between x and y.

2. Determine the distance between x and y.

18. Let x and y be vectors in R™ and define

xTy
p=——y and z=x—p
xTy

1. Show that p L z. Thus, p is the vector projection of x
onto y; thatis, x = p + 2, where p and z are
orthogonal components of x, and p is a scalar multiple of
y.

2. If ||p|| = 6 and ||z|| = 8, determine the value of ||x]|.

19. Use the database matrix U from Application 1 and search for the
keywords orthogonality, spaces, vector; only this time, give the
keyword orthogonality twice the weight of the other two key
search vector words. Which of the eight modules best matches the
search criteria? [Hint: Form the search vector using the weights 2,
1, 1in the rows corresponding to the search words and then scale
the vector to make it a unit vector.]

20. Five students in an elementary school take aptitude tests in
English, mathematics, and science. Their scores are given in the
following table. Determine the correlation matrix and describe
how the three sets of scores are correlated.

Scores
StudentEnglishMathematics Science

S1 61 53 53
S2 63 73 78
S3 78 61 82
Sq4 65 84 96
S5 63 59 71

Average 66 66 76



21. Let t be a fixed real number and let

c=cost, s=sin t,

N T
x = (c,cs,c5%,...cs" 1, s™)

Show that x is a unit vector in R" 1,

Hint:

2n
22 _ 1—s

1+82+st+... +
1— g2



5.2 Orthogonal Subspaces

Let Abeanm X nmatrixandletx € N (A), the null
space of A. Since Ax = 0, we have

a;1x1 + apxs + ...+ ajpr, =0
€y

foriz = 1, ..., m. Equation (1) says that x is orthogonal
to the ith column vector of AT fori = 1, ..., m. Since x
is orthogonal to each column vector of AT, it is
orthogonal to any linear combination of the column
vectors of AT. So if y is any vector in the column space of
AT then xT'y = 0. Thus, each vector in N(A) is
orthogonal to every vector in the column space of AT
When two subspaces of R™ have this property, we say
that they are orthogonal.

Definition

Two subspaces X and Y of R" are said to be orthogonal
if xTy = O foreveryx € X andeveryy € Y. If X and
Y are orthogonal, we write X 1 Y.

Example 1

Let X be the subspace of R3 spanned by €1, and let Y be
the subspace spanned by e2. If x € X, these vectors
must be of the form

[ 1] [0]
x=1 01 and y=11%yl
l o] L ol

Thus,



x'y=21-04+0-4924+0-0=0

Therefore, X L Y.

The concept of orthogonal subspaces does not always
agree with our intuitive idea of perpendicularity. For
example, the floor and wall of the classroom “look”
orthogonal, but the xy-plane and the yz-plane are not
orthogonal subspaces. Indeed, we can think of the
vectors x; = (1,1,0)" and x, = (0,1,0)7 aslying in
the xy- and yz-planes, respectively. Since

xIxp=1-04+41-140-1=1

the subspaces are not orthogonal. The next example
shows that the subspace corresponding to the z-axis is
orthogonal to the subspace corresponding to the xy-
plane.

Example 2

Let X be the subspace of R3 spanned by e1 and ez, and
let Y be the subspace spanned by e3. If x € X and
y € Y, then

xly=21-0+22-0+0-y3=0

Thus, X _L Y. Furthermore, if z is any vector in R3 that
is orthogonal to every vector in Y, then z | e3, and
hence

23 = zTe3 =0

But if z3 = 0, then z € X. Therefore, X is the set of all
vectors in R® that are orthogonal to every vector in Y
(see Figure 5.2.1).

Figure 5.2.1.



Figure 5.2.1. Full Alternative Text

Definition

Let Y be a subspace of R". The set of all vectors in R"
that are orthogonal to every vector in Y will be denoted
Y -+, Thus,

Yyt = {x € R"‘xTy =0 foreveryy € Y}

The set Y is called the orthogonal complement of
Y.

Note
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The subspaces X = Span(e;) and X = Span(e;) of
IR3 given in Example 1 are orthogonal, but they are not
orthogonal complements. Indeed,

X+ = Span(ey,e3) and Y = Span(e,es)

Remarks

+ 1.If X and Y are orthogonal subspaces of R”, then X N Y = {0}.

. 2.If Yisa subspace of R”, then Y is also a subspace of R".
Proof of (1)

Ifx € XNYand X LY, then||x||* = xTx = 0 and
hence x = 0.

Proof of (2)

Ifx € Y'andaisa scalar, then foranyy € Y,
(ax)ly = a(x'y) =a-0=0

Therefore, ax C Y. If x; and X3 are elements of Y,
then

(x1+%2) y =x{y+x]y=0+0=0

foreachy € Y. Hence, X; + X3 € Y . Therefore, Y -
is a subspace of R™.

Fundamental Subspaces

Let A be an ™ X n matrix. We saw in Chapter 3 that a
vector b € R™ is in the column space of A if and only if
b = Ax for some x € R"™. If we think of A as a linear



transformation mapping R" into R™, then the column
space of A is the same as the range of A. Let us denote
the range of A by R(A). Thus,

R(A) ={b eR"b= Ax forsomex € R"}
= the column space of A

The column space of AT, R(A)T), is a subspace of R":
R(AT) ={y e R“‘y = ATx for some x € R™}

The column space of R (AT) is essentially the same as
the row space of A, except that it consists of vectors in
R™ (n x 1 matrices) rather than n-tuples. Thus,
y<ER (AT)) if and only if yT is in the row space of A.
We have seen that R(AT) L N(A). The following
theorem shows that N(A) is actually the orthogonal
complement of R (AT) .

Theorem 5.2.1 Fundamental
Subspaces Theorem

If A is an m X n matrix, then

N(A) = R(AT)"andN (AT) = R(A)*.
Proof

On the one hand, we have already seen that
N(A) L R(AT), and this implies that

i
N(A) C R(AT) . On the other hand, if x is any vector
inR (AT) L, then x is orthogonal to each of the column
vectors of AT and, consequently, Ax = 0. Thus, x must

1

be an element of N(A) and hence N(A) = R(AT)™.
This proof does not depend on the dimensions of A. In
particular, the result will also hold for the matrix
B = AT Consequently,

N(AT) = N(B) = R(B")" = R(4)*



Example 3

Let

¥

The column space of A consists of all vectors of the form

o] =<

Note that if x is any vector in R? and b = Ax, then

2= Lo of (2] - [an] == 3
2 0] |x2 211 2

The null space of A consists of all vectors of the form
B(—2,1). Since (1, Z)T and (—2, l)T are orthogonal, it
follows that every vector in R(A) will be orthogonal to
every vector in N (AT) . The same relationship holds
between R, (AT) and N(4). R (AT) consists of vectors
of the form aceq, and N(A) consists of all vectors of the
form [es. Since €1 and e, are orthogonal, it follows that
each vector in R (AT) is orthogonal to every vector in
N(A).

Theorem 5.2.1 is one of the most important theorems in
this chapter. In Section 5.3, we will see that the result
N (AT) — R(A)" provides a key to solving least
squares problems. For the present, we will use Theorem
5.2.1 to prove the following theorem, which, in turn, will
be used to establish two more important results about
orthogonal subspaces.

Theorem 5.2.2



IfSis a subspace of R", then S 4 dim S+ = n.

Furthermore, if {X1, . .., X, } is a basis for S and
{Xyi1,- -y X,} is a basis for S+, then
{xX1,..yXp, Xp11,. .., X, } is a basis for R™.
Proof

If S = {0}, then S* = R™ and

dim S+dimSt=0+n=n

If S # {0}, then let {x1, . .., X, }, be a basis for S and
define X to be an 7 X n matrix whose ith row is XzT for
each i. By construction, the matrix X has rank r and

R(XT) = S. By Theorem 5.2.1,
st = R(X")" = N(X)
It follows from Theorem 3.6.5 that
dim §* =dim N(X)=n—r

To show that {x1, ..., X;, X,11, - . ., X, } is a basis for
R™, it suffices to show that the n vectors are linearly
independent. Suppose that

caxy+...+oX Xy F 1 Xer1 + .o Xy =0
Lety = c1x; + ...+ ¢.X, and

Z = Cpy1Xps1 + ...+ CyX,. We then have

y+z =0
y =%z

Thus, y and z are both elements of S N S+ But
SN S+ = {0}. Therefore,

caxi+...+ex. =0
Cri1Xpt1 ...t Xy =0

Since X1, . . ., X, are linearly independent,
61262:“‘:C1~:0
Similarly, X, 1, . . ., X, are linearly independent and

hence



Cri1=Ca=-+=¢, =0

So X1, Xa, ..., X, are linearly independent and form a
basis for R".

Given a subspace S of R", we will use Theorem 5.2.2 to
prove that each x € R" can be expressed uniquely as a
sumy + z, wherey € Sandz € S-.

Definition

If U and V are subspaces of a vector space W and each
w € W can be written uniquely as a sum u + v, where
u € U and v € V, then we say that Wis a direct sum
of Uand V,andwewrite W = U @ V.

Theorem 5.2.3

If S is a subspace of R™, then

Rt'=S@ S+

Proof

The result is trivial if either S = {0} or S = R". In the
case where dim S = 7,0 < r < n, it follows from
Theorem 5.2.2 that each vector x € R" can be
represented in the form

X=cCX1+t...1tCX + X1+ ..o F Xy

where {x1, ..., X, } is a basis for S and {Xy{1,...,Xn}
is a basis for S*. If we let

u=cx;+...+¢x, and v=c1Xe1+ ...+ Xy

thenu € S,v € S+, and x = u + v. To show
uniqueness, suppose that x can also be written as a sum
y + z,wherey € Sandz € S.Thus,



u+v = x=y++z
u—v = z—V

Butu —y € Sandz — v € S*,soeachisin § N S~ .
Since

SnS+={0}
it follows that

u=y and v=2=z

Theorem 5.2.4
If S is a subspace of R™, then (SL)L =S.
Proof

On the one hand, if x € .S, then x is orthogonal to each

1
yin S*. Therefore, x € (SL) and hence S C (SL)
. On the other hand, suppose that z is an arbitrary

L

1 .
element of (S L) . By Theorem 5.2.3, we can write z as

asumu + v, whereu € Sandv € S+, Sincev € S+,
it is orthogonal to both u and z. It then follows that

T T

0=vliz=viu+viv=vTy

and, consequently, v = 0. Therefore, z = u € S and

hence S = (SL)l.

It follows from Theorem 5.2.4 that if T'is the orthogonal
complement of a subspace S, then S is the orthogonal
complement of T, and we may say simply that Sand T
are orthogonal complements. In particular, it follows
from Theorem 5.2.1 that N(A) and R, (AT) are
orthogonal complements of each other and that [N (AT)



and R(A) are orthogonal complements. Hence, we may
write

N(A)" = R(AT) and N(AT)" = R(A)

Recall that the system Ax = b is consistent if and only
ifb € R(A). Since R(A) = N(AT) L, we have the
following result, which may be considered a corollary to
Theorem 5.2.1.

Corollary 5.2.5

IfAisanm X n matrixand b € R™, then either there
is a vector X € R" such that Ax = b or thereis a
vectory € R™ such that ATy = 0 and y'b # 0.

Corollary 5.2.5 is illustrated in Figure 5.2.2 for the case
where R(A) is a two-dimensional subspace of R3. The
angle 6 in the figure will be a right angle if and only if

b € R(A).

Figure 5.2.2.



Example 4

Let
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Find the bases for N(4), R (AT) , N (AT) ,and R(A).
SOLUTION

We can find bases for N(A) and R(AT) by transforming
A into reduced row echelon form:

|'1 12'| |'1 12] |'10 1'|
101 1v—>:01 1 —10 1 1.
l1 34 Lloz22 Lloo ol

Since (1, 0, 1) and (0, 1, 1) form a basis for the row space
of A, it follows that (1,0, 1)T and (0,1, 1)T form a
basis for R(AT).1fx € N(A), it follows from the

reduced row echelon form of A that

Al + T3 = O

Ty + T3 = 0
Thus,

1 — L9 — — X3

Setting €3 = «, we see that N(A) consists of all vectors
of the form a/(—1, —1,1)". Note that (—1, —1,1)” is
orthogonal to (1, 0, 1)T and (0,1, 1)T.

To find bases for R(A) and N (AT), transform AT to
reduced row echelon form.

|'1 0 1'| |'1 0 1'| |'1 0 1'|
11 3r 510 1 20 10 1 2
l2 14/ lo12 Lloo ol

Thus, (1,0, l)T and (0, 1, 2)T form a basis for R(A). If
X € N(AT),then r1 = —x3,x2 = —2x3. Hence,
N(AT) is the subspace of R3 spanned by (—1, —2, l)T
. Note that (—1, —2, 1)T is orthogonal to (1, 0, 1)T
(0,1,2)7.

and

We saw in Chapter 3 that the row space and the column
space have the same dimension. If A has rank r, then



dim R(A) =dim R(A") =r

Actually, A can be used to establish a one-to-one
correspondence between R (AT) and R(A).

We can think of an ™ X m matrix A as a linear
transformation from R"” to R"":

xcR" - Ax € R™

Since R (AT) and N(A) are orthogonal complements in
R™,
R" = R(A") @ N(A)

Each vector x € R™ can be written as a sum

x=y+z, ycR(47), zeN(4)
It follows that

Ax = Ay + Az = Ay foreachx € R”
and hence
R(A) = {Ax |xR"} = {Ay |y ¢ R(4"}
Thus, if we restrict the domain of A to R (AT) ,then A
maps R(AT) onto R(A). Furthermore, the mapping is
one-to-one. Indeed, if X1, Xy € R(AT) and
Ax; = Axy
then
A(x1 —%2) = 0
and hence
x; — X2 € R(AT) N N(A)

Since R(A") N N(A) = {0}, it follows that x; = Xa.
Therefore, we can think of A as determining a one-to-one
correspondence between R(AT) and R(A). Since each
b € R(A) corresponds to exactly oney € R(AT), we
can define an inverse transformation from R(A) to



R (AT) . Indeed, every m X m matrix A is invertible

when viewed as a linear transformation from R (AT) to
R(A).

Example 5
Let A = [(2) g 8] .R(AT) is spanned by €7 and e,

and N(A) is spanned by e3. Any vector x € R3 can be
written as a sum

X=y+z
where
y= (ml,x2,O)T € R(AT) and z=(0,0,23)" € N(A)

If we restrict ourselves to vectors y € R(AT) , then

[#1] [ 22,1

yzlmzl—)Ayzl 1

L o] | 322]

In this case, R(A) — RR? and the inverse transformation
from R(A) to R(AT) is defined by

by
by

wl— o=

bl]
by |

[
b=|
[ 0 |

[
| |
Il



Section 5.2 Exercises

1. For each of the following matrices, determine a basis for each of
the subspaces R(AT) , N(A), R(A), and N(AD).

3 4
1 A= [6 8]

1 31
240

]
|
J

2.A:[

|'4 —2
1
3.A—|2
[ 3

NGRS

o
= o R o
N = = O

=

2. Let § be the subspace of R? spanned by x = (1, —1, 1)T.

1. Find a basis for .

2. Give a geometrical description of S and S*.

3. 1. Let S be the subspace of R3 spanned by the vectors
T T
X= (xl’ L2, .763) and y= (yla Y2 y3) - Let

A= |:$1 T9 333:|
Y1 Y2 Y3
Show that S+ = N(A).

2. Find the orthogonal complement of the subspace of R3
spanned by (1,2,1)% and (1, —1,2)7.

4. Let S be the subspace of R spanned by x; = (1,0,-2, 1)T and
x5 = (0,1,3,—2)7. Find a basis for S*.

5. Let Abe a3 X 2 matrix with rank 2. Give geometric descriptions
of R(A) and N (AT) , and describe geometrically how the
subspaces are related.

6. Is it possible for a matrix to have the vector (3, 1, 2) in its row

space and (2,1, 1)T in its null space? Explain.



7. Let a; be a nonzero column vector of an m X n matrix A. Is it
possible for a; to be in N (AT) ? Explain.

8. Let S be the subspace of R" spanned by the vectors X1, Xa, . . ., Xj,
.Show thaty € S*tifand onlyify L x;fori =1,...,k.

9. If Ais an m X n matrix of rank r, what are the dimensions of
N(A) and N (AT) ? Explain.

10. Prove Corollary 5.2.5.

11. Prove: If A is an m X m matrix and x € R", then either Ax = 0
or there exists y € R(AT) such that xT'y # 0. Draw a picture

similar to Figure 5.2.2 to illustrate this result geometrically for the
case where N(A) is a two-dimensional subspace of R3,

12. Let A be an m X m matrix. Explain why the following are true.

1. Any vector x in R can be uniquely written as a sum

Yy + 2, wherey € N(A)andz € R(AT).

2. Any vector b € R can be uniquely written as a sum
u+ v, whereu € N(AT) and v € R(A4).

13. Let A be an m X 7 matrix. Show that

1ifxe N (ATA) , then Ax is in both R(A) and NV (AT).
2, N(ATA) = N(4).
3. A and AT A have the same rank.

4. if A has linearly independent columns, then AT A is
nonsingular.

14. Let Abe an m X m matrix, Bann X r matrix, and C = AB.
Show that

1. N(B) is a subspace of N(C).

2. N(C)™ is a subspace of N(B)™ and, consequently,
R(C)* is a subspace of R(B)™.

15. Let U and V be subspaces of a vector space W. Show that if
W=Ua®V,thenUNV = {0}.

16. Let A be an m X m matrix of rank r and let {x;, ..., X, } bea
basis for R(AT) . Show that { Ax1, . . ., AX,} is a basis for R(A).

17. Let x and y be linearly independent vectors in R™ and let
S = Span(x,y). We can use x and y to define a matrix A by
setting

A =xy? +yxT

1. Show that A is symmetric.



2. Show that N(A) = S+,

3. Show that the rank of A must be 2.



5.3 Least Squares Problems

A standard technique in mathematical and statistical
modeling is to find a least squares fit to a set of data
points in the plane. The least squares curve is usually the
graph of a standard type of function, such as a linear
function, a polynomial, or a trigonometric polynomial.
Since the data may include errors in measurement or
experiment-related inaccuracies, we do not require the
curve to pass through all the data points. Instead, we
require the curve to provide an optimal approximation in
the sense that the sum of squares of errors between the y
values of the data points and the corresponding y values
of the approximating curve are minimized.

The technique of least squares was developed
independently by Adrien-Marie Legendre and Carl
Friedrich Gauss. The first paper on the subject was
published by Legendre in 1806, although there is clear
evidence that Gauss had discovered it as a student nine
years prior to Legendre’s paper and had used the method
to do astronomical calculations. Figure 5.3.1 is a portrait
of Gauss.

Figure 5.3.1.



Pearson Education, Inc.

Figure 5.3.1. Full Alternative Text

Application 1

Astronomy—The Ceres Orbit of Gauss

On January 1, 1801, the Italian astronomer Giuseppe
Piazzi discovered the asteroid Ceres. He was able to track
the asteroid for six weeks, but it was lost due to
interference caused by the sun. A number of leading
astronomers published papers predicting the orbit of the
asteroid. Gauss also published a forecast, but his
predicted orbit differed considerably from the others.
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Ceres was relocated by one observer on December 7 and
by another on January 1, 1802. In both cases, the
position was very close to that predicted by Gauss. Gauss
won instant fame in astronomical circles and for a time
was more well known as an astronomer than as a
mathematician. The key to his success was the use of the
method of least squares.

Least Squares Solutions of
Overdetermined Systems

A least squares problem can generally be formulated as
an overdetermined linear system of equations. Recall
that an overdetermined system is one involving more
equations than unknowns. Such systems are usually
inconsistent. Thus, given an m X n system Ax = b
with m > n, we cannot expect in general to find a vector
x € R” for which Ax equals b. Instead, we can look for
a vector x for which Ax is “closest” to b. As you might
expect, orthogonality plays an important role in finding
such an x.

If we are given a system of equations Ax = b, where A
isan m X m matrix withm >nand b € R™, then, for
each x € R", we can form a residual

r(x) =b = Ax
The distance between b and Ax is given by
b — Ax Il = Il r(x) Il

We wish to find a vector x € R"™ for which Il 7(x) Il
will be a minimum. Minimizing Il (x) Il is equivalent
to minimizing Il 7(x) Il 2, Avector X that accomplishes
this is said to be a least squares solution of the system

Ax = b.



If X is a least squares solution of the system Ax = b
and p = AX, then p is a vector in the column space of A
that is closest to b. The next theorem guarantees that
such a closest vector p not only exists, but is unique.
Additionally, it provides an important characterization of
the closest vector.

Theorem 5.3.1

Let S be a subspace of R™. For each b € R™, there is a
unique element p of S that is closest to b; that is,

Ib—yll > llb—pll

for any y # p in S. Furthermore, a given vector p in S
will be closest to a given vector b € R™ if and only if

b—pcSt
Proof

Since R™ = § @ S+, each element b in R™ can be
expressed uniquely as a sum

b=p-+z

where p € Sandz € S*. Ify is any other element of S,
then

Ib—yi2=1(b-p)+(pP-y)I’

Sincep —y € Sandb — p = z € S, it follows from
the Pythagorean law that

Ilb—yl?2=1b—pl?+ip—yl?
Therefore,

lb—yll > IIb—pll

Thus, if p € Sand b — p € S+, then p is the element
of S that is closest to b. Conversely, if q € S and



b — q & S+, then q # p, and it follows from the
preceding argument (with y = q) that

lb—gqll > llb—pll

In the special case that b is in the subspace S to begin
with, we have

b=p+z pcS zcSt
and
b=b+0
By the uniqueness of the direct sum representation,
p=Db and z=0

A vector X will be a solution of the least squares problem
Ax = bifand only if p = AX is the vector in R(A) that
is closest to b. The vector p is said to be the projection of
b onto R(A). It follows from Theorem 5.3.1 that

b—p=b=A4% = r(X)

must be an element of R (AL) . Thus, X is a solution of
the least squares problem if and only if

r() € R(A%)
(€]
(see Figure 5.3.2).

Figure 5.3.2.
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Figure 5.3.2. Full Alternative Text
How do we find a vector X satisfying (1)? The key to
solving the least squares problem is provided by
Theorem 5.2.1, which states that
R(A") = N(4A")

A vector X will be a least squares solution to the system
Ax = b if and only if

() € N(A")
or, equivalently,

0=ATr(®) = AT(b - 4A%)

Thus, to solve the least squares problem Ax = b, we
must solve

ATAx = A"
(2)

Equation (2) represents an 1 X n system of linear
equations. These equations are called the normal
equations. In general, it is possible to have more than
one solution of the normal equations; however, if X and
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¥ are both solutions, then, since the projection p of b
onto R(A) is unique,
AX=Ay=p

The following theorem characterizes the conditions
under which the least squares problem Ax = b will
have a unique solution.

Theorem 5.3.2

If Ais an m X m matrix of rank n, the normal equations
ATAx = A™b

have a unique solution
% = (AT4) '4™b

and X is the unique least squares solution of the system

Ax = b.
Proof

We will first show that AT A is nonsingular. To prove
this, let z be a solution of

ATAx =0
(3)
Then Az € N(AT). Clearly, Az € R(A) = ]\T(AT)L
.Since N (AT) N N(AT)L = {0}, it follows that
Az = 0. If A has rank n, the column vectors of A are
linearly independent and, consequently, Ax = 0 has

only the trivial solution. Thus, z = 0 and (3) has only
the trivial solution. Therefore, by Theorem 1.5.2, AT A is

nonsingular. It follows that X = (ATA) AT is the
unique solution of the normal equations and,
consequently, the unique least squares solution of the
system Ax = b.



The projection vector
p =A% = A(ATA) '4™b

is the element of R(A) that is closest to b in the least

-1
squares sense. The matrix P = A (ATA) AT is called
the projection matrix.

Application 2

Spring Constants

Hooke’s law states that the force applied to a spring is
proportional to the distance that the spring is stretched.
Thus, if Fis the force applied and x is the distance that
the spring has been stretched, then F' = kx. The
proportionality constant k is called the spring constant.

Some physics students want to determine the spring
constant for a given spring. They apply forces of 3, 5, and
8 pounds, which have the effect of stretching the spring
4,7, and 11 inches, respectively. Using Hooke’s law, they
derive the following system of equations:

4k = 3
Tk =5
11k = 8

The system is clearly inconsistent, since each equation
yields a different value of k. Rather than use any one of
these values, the students decide to compute the least
squares solution of the system.

4] [ 3]
(4,7,11) 71 (k) = (4,7,11) 5
[ 11] | 8]
186k =135
E ~0.726



Example 1

Find the least squares solution of the system

T+ =3
—2x1+ 3z, =1
2.’E1 — Ty = 2

SOLUTION

The normal equations for this system are

This simplifies to the 2 X 2 system

(2] 1
=7 11| |z9 4
The solution of the 2 X 2 system is (%, %)T
Scientists often collect data and try to find a functional
relationship among the variables. For example, the data
may involve temperatures 1g, 17, . . ., T}, of a liquid
measured at times ¢, 1, - . ., t,,, respectively. If the
temperature T can be represented as a function of the
time t, this function can be used to predict the
temperatures at future times. If the data consist of n + 1
points in the plane, it is possible to find a polynomial of
degree n or less passing through all the points. Such a
polynomial is called an interpolating polynomial.
Actually, since the data usually involve experimental
error, there is no reason to require that the function pass
through all the points. Indeed, lower degree polynomials
that do not pass through the points exactly usually give a
truer description of the relationship between the
variables. If, for example, the relationship between the
variables is actually linear and the data involve slight
errors, it would be disastrous to use an interpolating
polynomial (see Figure 5.3.3).



Figure 5.3.3.

:
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Figure 5.3.3. Full Alternative Text

Given a table of data

we wish to find a linear function
Yy=cy+cx

that best fits the data in the least squares sense. If we
require that

yi=co+cz; for i=1,....m

we get a system of m equations in two unknowns.

[1 z;] ) fz;]
|. : [cﬂ:|z
1 IEmJ |_me

4)

The linear function whose coefficients are the least
squares solution of (4) is said to be the best least squares
fit to the data by a linear function.

Example 2

Given the data
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find the best least squares fit by a linear function.
SOLUTION

For this example, the system (4) becomes

Ac=y
where
1 0'| . |' 1'|
A=11 3i,c= [O},and y =1 4
L1 el “ | 5]
The normal equations
ATAc = ATy

simplify to
3 9 Co - 10
9 45| |c;| |42

The solution of this system is (%, %) Thus, the best
linear least squares fit is given by

(5)

42
y=3 73"

Example 2 could also have been solved using calculus.
The residual r(c) is given by

r(c) =y — Ac
and

lir(e) 1?2 = lly — Acll?
=1[1—(co+ 061)]2 +[4—(co+ 361)]2 +[5—(co+ 601)]2
= f(co, 1)

Thus, 11 7(c) 112 can be thought of as a function of two
variables, f(cg, ¢1). The minimum of this function will
occur when its partial derivatives are zero:



a
8_c]:) — —2(10 — 3¢y — 9¢1) = 0

f)
&é — 6(14 — 3¢y — 15¢1) = 0

Dividing both equations through by —2 gives the same
system as (5) (see Figure 5.3.4).

Figure 5.3.4.

V=0t O

Ir(Q)lF = d7+ 43+ 03

Figure 5.3.4. Full Alternative Text

If the data do not resemble a linear function, we could
use a higher degree polynomial. To find the coefficients
Cp, C1, - - -, Cp, Of the best least squares fit to the data
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by a polynomial of degree n, we must find the least
squares solution the system:

[1 = m% :c?'“’co] [ 91]
‘1 Ty T3 zh || e :‘yz
11 a2 o ol )led Lyl
(6)
Example 3

Find the best quadratic least squares fit to the data

SOLUTION

For this example, the system (6) becomes

(10 0 B
11 1,19 o
|1 24|'Cl':|4|
l1 3 ol |4

Thus, the normal equations are

111 1 [i 2 [1]][c0 rio1l 1]f;’1
10 12 3||1 ) 4||c1|:|0 12 3||4|
lo 1 4 9JL1 3 ol lo 1 4 9J[4J



These simplify to

4 6 14] [ <o] [ 13]
6 14 36lI61I =1 22
L14 36 98lec,] |54l

The solution of this system is (2.75, —0.25, 0.25). The
quadratic polynomial that gives the best least squares fit
to the data is

p(x) = 2.75 — 0.25z + 0.252>

Application 3

Coordinate Metrology

Many manufactured goods, such as rods, disks, and
pipes, are circular in shape. A company will often employ
quality control engineers to test whether items produced
on the production line are meeting industrial standards.
Sensing machines are used to record the coordinates of
points on the perimeter of the manufactured products.
To determinehow close these points are to being circular,
we can fit a least squares circle to the data and check to
see how close the measured points are to the circle. (See

Figure 5.3.5.)

Figure 5.3.5.
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(—c)' +(y—c) =1
)

to n sample pairs of coordinates

(z1,y1), (X2,¥2), - - -, (T, Yn ), we must determine the
center (c1, ¢o) and the radius r. Rewriting equation (7),
we get

2xcy + 2ycy + (1"2 — - 02) =22+
If wesetcg = 2 — c% — C%, then the equation takes the
form

2zc; + 2ycy + c3 = x + o

Substituting each of the data points into this equation,
we obtain the overdetermined system

[ 221 2y 1] [ 22 + 3]
‘2962 2y, 1‘[01] 3 + 13
. . IC2I — .
. I.C3J
|.2wn 2Yn 1 Lm%—}—yi]

Once we find the least squares solution ¢, the center of
the least squares circle is (c1, ¢2), and the radius is
determined by setting

r:\/03+c%+c§

To measure how close the sampled points are to the
circle, we can form a residual vector r by setting

2 2

=1 — (- c) = (Y — ) i=1,..,m

We can then use ||r|| as a measure of how close the
points are to the circle.

Application 4

Management Science: The Analytic Hierarchy Process
Revisited



In Section 1.3, we looked at an example of how one can
use the analytic hierarchy process from management
science as a tool for making hiring decisions in a
mathematics department. The process involves selecting
the criteria upon which the decision is based and
assigning weights to the criteria. In the example, hiring
decisions were based on rating the candidates in the
areas of Research, Teaching, and Professional Activities.
For each of these areas, the committee assigned weights
to all of candidates. The weights are measurements of the
relative strengths of the candidates in each area. Once all
of the weights have been assigned, the overall ranking of
the candidates can be determined by multiplying a
matrix times a vector.

The key to the whole process is the assignment of
weights. In our example, the evaluation of teaching will
involve qualitative judgments by the search committee.
These judgments must then be translated into weights.
The evaluation of research can be both quantitative
based on the number of pages the candidates have
published in journals and qualitative based on the
quality of the papers published. A standard technique for
determining weights based on qualitative judgments is to
first make pairwise comparisons between the candidates,
and then use those comparisons to determine weights.
The method we describe here leads to an overdetermined
linear system. We will compute the weights by finding
the least squares solution to the system.

Later in Chapter 6 (Section 8), we will examine an
alternative “eigenvector” method that is commonly used
to determine weights based on pairwise comparisons. In
that method, one forms a comparison matrix C whose (i,
J) entry represents the weight of the ith characteristic or
alternative relative to the jth characteristic or alternative.
The method depends upon an important theorem about
positive matrices (i.e., matrices whose entries are all
positive real numbers) that we will study in Section 6.8.



The “eigenvector” method was recommended by T. L.
Saaty, the developer of the analytic hierarchy process
theory.

For our search example, the committee assigned weights
for the three criteria based on the qualitative judgments
that Teaching and Research were equally important and
that both were twice as important as Professional
Activities. To reflect these judgments the weights

w1, w2, w3 for Research, Teaching, and Professional
Activities must satisfy,

w; = w2, W1 = 2w3, wo = 2w3

Additionally, the weights must all add up to 1. Thus, the
weights must be solutions to the system

w; —wy + 0wz =0

w1 4+ Owy — 2wy =

Owi; +wy — 2wz =0
wy +wy +wz =1

Although the system is overdetermined, it does have a
unique solution w = (0.4, 0.4, 0.2)”. Usually,
overdetermined systems turn out to be inconsistent. In
fact, had the committee used four criteria and made
pairwise comparisons based on their human judgments,
it is quite likely that the system they would end up with
(seven equations and four unknowns) would be
inconsistent. For an inconsistent system, one could
determine weights that add up to 1 by finding the least
squares solution to a linear system. We illustrate how
this is done in the next example.

Example 4

Suppose the search committee for the mathematics
position has narrowed the field down to four candidates:
Dr. Gauss, Dr. Ipsen, Dr. O’Leary, and Dr. Taussky. To
determine the weights for research, the committee



decides to evaluate both the quantity and quality of the
publications. The committee feels that quality is more
important than quantity so in comparing the two, they
give quantity of publications a weight of 0.4 and quality a
weight of 0.6. The hierarchy structure of the decision
process is shown in Figure 5.3.6. All of the weights
computed by the committee are included in the figure.
We will examine how the weights for quantity and
quality of publications were determined and then
combine all of the weights in the figure to calculate a
vector r containing the overall ratings of the candidates.

Figure 5.3.6.

Pick a Candidate
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Figure 5.3.6. Full Alternative Text

The quantitative research weights are computed by
taking the number of pages published by a candidate and
dividing by the total number of pages published by all
candidates combined. These weights are given in Table
5.3.1.

Table 5.3.1 Quantity of
Research Weights

CandidatePages Weights

Gauss 700 0.35
Ipsen 400 0.20
O’Leary 500 0.25
Taussky 400 0.20

Total 2000 1.00
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To rate the quality of research, the committee did
comparisons of the quality of publications for each pair
of candidates. If for a particular pair the quality was
rated equal, then the candidates were given equal
weights. It was agreed that no candidate would receive a
quality weight that was more than twice the rate of
another candidate. Thus, if candidate i had more
impressive publications than candidate j, then weights
would be assigned so that

1
w; = fw; or ijBwi where 1 < < 2

After studying the publications of all the candidates, the
committee agreed upon the following pairwise
comparisons of the weights:

w1 = 1.75wq, wi = 1.5ws, wi = 1.25wy, we = 0.75ws, we = 0.50w,, w3 = 0.75wy

These conditions lead to the linear system

lwy — 1.75ws + Ows + Owy
1wy + Ows — 1.5w3 + Owy
1wy + Ows + Ows — 1.25wy
Ow;y + 1wy — 0.75ws3 + Owy
Owy + 1wy + w3 — 0.50wy
Owy + Owsy + 1wz — 0.75wy

O O O O o o

For our solution w to be a weight vector, its entries must
add up to 1.

w1 +wy+w3+wyg =1

Given that the AHP weights must satisfy this last

equation exactly, we can solve for wy:
w4:1—w1—w2—w3

®

and rewrite the other equations to form a 6 X 3 system



lw; — 1.75wy + Ows

1wy + Owsy — 1.5w3
2.25wq + 1.25wy + 1.25ws3
Owy + 1wy — 0.75ws
0.5w; + 1.5wy + 0.5ws =
0.75wy + 0.75ws + 1.75ws

I
©Socor oo
o o
ot

.75
Although this system is inconsistent, it does have a
unique least squares solution

w1 = 0.3289, wy = 0.1739, w3z = 0.2188. It follows
from equation (8) that wy = 0.2784.

The final step in our decision process is to combine the
rating vectors from the categories and subcategories of
evaluation. We multiply each of these vectors by the
appropriate weight given in the chart and then combine
them to form the overall rating vector r.

[ [0.35] [ 0.32897] [0.21] [0.23]
0.20 0.1739 0.29 0.28
r= 0'4O| 0'40| 0.25| +0'60| 0.2188| | +O‘4O| o.33| +0‘2O| 0.28
| L o.20] [ 0.2784] | | 0.17] [ 0.21]
[ 0.3373] [0.21) [0.23] [ 0.2649]
0.1843 0.29 0.28 0.2457
— 0.40 0.40 0.20 —
| 023131 T | 0.33| + | 0.28| | 0.2805
| 0.2470] [ 0.17] [0.21] [ o0.2088]

The candidate with the highest rating is O’Leary. Gauss
comes in second. Ipsen and Taussky are third and fourth,
respectively.



Section 5.3 Exercises

1. Find the least squares solution of each of the following systems:

T +xy =3
L 2.’151 — 3$2 =1
Oz; +0x2 =2

—x1+x2 =10
2. 21 +x9 =5
1 — 222 =20

1 t+zotzy =4

—x1 + T2 + T3
—T9 + T3

T + x3

I
O = O

2. For each of your solutions X in Exercise 1:

1. determine the projection p = AX.

2. calculate the residual T'(ﬁ)

3. verify that 7(X) € N (AT).

3. For each of the following systems Ax = b, find all least squares

solutions:
(1 2 -‘ "3
A= , b=
B R

_2“
0
8

|

4. For each of the systems in Exercise 3, determine the projection p
of b onto R(A) and verify that b — p is orthogonal to each of the
column vectors of A.

11 3}
2 A=1-1 3 lJ,b:

| —

5. 1. Find the best least squares fit by a linear function to the
data
x -1 o 1 =2



2. Plot your linear function from part (a) along with the
data on a coordinate system.

6. Find the best least squares fit to the data in Exercise 5 by a
quadratic polynomial. Plot the points z = 1,0, 1, 2 for your
function and sketch the graph.

7. Given a collection of points (1, Y1), (Z2,Y2), - - 5 (Tn, Yn), let

X = (5131,.’172,. . 'awn)T y = (ylay27' . '7yn)T
1 n 1o
¥y =Xy

T ; —
n i=1 ™ i=1

I
I
4
8

and let y = cg + c1 be the linear function that gives the best
least squares fit to the points. Show that if £ = 0, then

XT

¢ =7 and clzTy
X X

8. The point (Z, §) is the center of mass for the collection of points
in Exercise 7. Show that the least squares line must pass through
the center of mass. [Hint: Use a change of variables z =  — T to
translate the problem so that the new independent variable has
mean 0.]

1

9. Let A be an m X m matrix of rank n and let P = A(ATA) AT,

1. Show that Pb = b for every b € R(A). Explain this
property in terms of projections.
2.1fb € R(A)", show that Pb = 0.

3. Give a geometric illustration of parts (a) and (b) if R(A)
is a plane through the origin in R3.

10. Let Abe an 8 X 5 matrix of rank 3, and let b be a nonzero vector
in N (AT).
1. Show that the system Ax = b must be inconsistent.

2. How many least squares solutions will the system
Ax = b have? Explain.

-1
11. Let P = A(ATA) AT where A is an m X n matrix of rank n.

1. Show that P2 = P.
2. Prove that P* = Pfork =1,2,....

3. Show that P is symmetric. [Hint:If B is nonsingular, then
T -1
(B1) =(B") ]



12. Show that if

o ]

X
r

-0

then X is a least squares solution of the system Ax = b and ris

the residual vector.

13. Let A € R™*™ and let X be a solution of the least squares
problem Ax = b. Show that a vectory € R"™ will also be a
solution if and only if y = X + 2, for some vector z € N(A).
[Hint: N(ATA) = N(A)1]

14. Find the equation of the circle that gives the best least squares
circle fit to the points (—1, —2), (0, 2.4), (1.1, —4), and
(2.4,-1.6).

15. Suppose that in the search procedure described in Example 4, the
search committee made the following judgments in evaluating the
teaching credentials of the candidates:

Ju

=

. Gauss and Taussky have equal teaching credentials.

. O’Leary’s teaching credentials should be given 1.25 times

the weight of Ipsen’s credentials and 1.75 times the
weight given to the credentials of both Gauss and
Taussky.

. Ipsen’s teaching credentials should be given 1.25 times

the weight given to the credentials of both Gauss and
Taussky.

Use the method given in Application 4 to determine a
weight vector for rating the teaching credentials of the
candidates.

. Use the weight vector from part (a) to obtain overall

ratings of the candidates.



5.4 Inner Product Spaces

Scalar products are useful not only in R", but also in a
wide variety of contexts. To generalize this concept to
other vector spaces, we introduce the following
definition.

Definition and Examples

Definition

An inner product on a vector space V'is an operation
on V'that assigns, to each pair of vectors x and y in V, a
real number (X, y) satisfying the following conditions:

1 (x,x) > 0 with equality if and only if x = 0

3. (ax + By, z) = a(x,z) + B(y, z) forallx,y, zin Vand all

(

2.(x,y) = (y,x) forallxand yin V

(
scalars o and 8

A vector space V with an inner product is called an
inner product space.

The Vector Space R"

The standard inner product for R" is the scalar product

(x,y) =x"y

Given a vector w with positive entries, we could also
define an inner product on R" by



n
(x,y) = Z TiYiw;
i=1

®

The entries w; are referred to as weights.

The Vector Space R™*"

Given A and B in R™*™, we can define an inner product
by

(4,B) = Z aijbij

i=1 j=1

We leave it to the reader to verify that (2) does indeed
define an inner product on R™*".

The Vector Space C[a, b]

We may define an inner product on C[a, b] by

b
(f,9) = / f() g(a)de

3)
Note that

b
(fi f)= / (f(x))*dz >0

If f(x¢) # O for some g in [a, b], then, since (f(z))*
is continuous, there exists a subinterval I of [a, b]
containing x¢ such that (f(a?))2 > (f(xo))2/2 for all x
in I. If we let p represent the length of I, then it follows
that

b . 9
(£, 1) :/ (f(2))*de > /I(f(m)fdx > M <0

Soif (f, f) = 0, then f (x) must be identically zero on
[a, b]. We leave it to the reader to verify that (3) satisfies



the other two conditions specified in the definition of an
inner product.

If w(x) is a positive continuous function on [a, b], then

b
mwz/fwwmmmm

(@)

also defines an inner product on C[a, b]. The function
w(x) is called a weight function. Thus, it is possible to
define many different inner products on C[a, b].

The Vector Space P,

Let x1, X9, . .., T, be distinct real numbers. For each
pair of polynomials in P,,, define

p.0) = Y Pla) olx,)

(5)

It is easily seen that (5) satisfies conditions (ii) and (iii)
of the definition of an inner product. To show that (i)
holds, note that

.0 =S () > 0

i=1

If (p, p) = 0, then 1, x2, . . ., T, must be roots of
p(x) = 0. Since p(x) is of degree less than n, it must be
the zero polynomial.

If w(x) is a positive function, then

pra) = Y Plaa(e)u(z)

also defines an inner product on P,,.



Basic Properties of Inner
Product Spaces

The results presented in Section 5.1 for scalar products in
R™ all generalize to inner product spaces. In particular, if
v is a vector in an inner product space V, the length, or
norm of v is given by

[vll =4/ {vsv)

Two vectors u and v are said to be orthogonal if
(u,v) = 0. As in R", a pair of orthogonal vectors will
satisfy the Pythagorean law.

Theorem 5.4.1 The
Pythagorean Law

Ifu and v are orthogonal vectors in an inner product
space V, then

2 2 2
[u+v|[” = [[ul|* + ||v]
Proof

Jutvl? =+ v,u+v)
= (u,u) + 2(u,v) + (v,v)
2 2
= [luf” + vl

Interpreted in ]R2, this is just the familiar Pythagorean
theorem as shown in Figure 5.4.1.

Figure 5.4.1.



u+v

Figure 5.4.1. Full Alternative Text

Example 1

Consider the vector space C'[—1, 1] with an inner
product defined by (3). The vectors 1 and x are
orthogonal, since

1
<1,w>:/ 1-zdx=0

1

To determine the lengths of these vectors, we compute

1L,1) =fY1-1de=2

2
(z,z) = fjl r2dx = 3

It follows that
Il = (@, = v2
lell = (@, )" = ?

Since 1 and x are orthogonal, they satisfy the
Pythagorean law:
2

8
+zi?2= 12+ |z’ =2+ ===
1)1+ = 3= 3

The reader may verify that

1

II1—|—wII2:<1—|—m,1+x>=/ (1+ac)2dac=§
-1
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Example 2

For the vector space C' [—71', 71‘] , if we use a constant
weight function w(z) = 1/7 to define an inner product

19 =1 [ gy

(6)

then
(cosz,sinz) = % J7 cosz sinz dz =0
(cosz,cosT) = %ffﬂ cosz cosz dr =1
(sinz,sinz) = % J . sinz sinzdz =1

Thus, cos x and sin x are orthogonal unit vectors with
respect to this inner product. It follows from the
Pythagorean law that

llcosz +sinxll = \/5

The inner product (6) plays a key role in Fourier analysis
applications involving a trigonometric approximation of
functions. We will look at some of these applications in
Section 5.5.

For the vector space R™*", the norm derived from the

inner product (2) is called the Frobenius norm and is
denoted by || - || 7. Thus, if A € R™*", then

m n 12
1AIF = ((A,A)? = (Z a%)

Example 3
If




then
(A,B)=1-—-1+1-1+1-3+2-0+3--3+3-4=6

Hence, A is not orthogonal to B. The norms of these
matrices are given by

Al =(14+1+141+9+9)Y2=5
IBllp =(1+1+9+0+9+16)">=6

Example 4

In P, define an inner product by (5) with
xz; = (i —1)/4fori = 1,2,...,5. The length of the
function P(x) = 4x is given by

5 1/2 5 1/2
Izl = ((4z,4z))"* = <Z 163;?) = (Z (i — 1)2) = V30

i=1

Definition

If u and v are vectors in an inner product space V and
v # 0, then the scalar projection of u onto v is given
by

@)

Observations

If v # 0 and p is the vector projection of u onto v, then

1. u — p and p are orthogonal.



2. u = p if and only if u is a scalar multiple of v.

Proof of Observation I

Since

o= (i) () -

and

it follows that

(u—p,p) = (u,p) — (p,p) =’ —a® =0

Therefore, u — p and p are orthogonal.

Proof of Observation IT

If u = Bv, then the vector projection of u onto v is
given by

v=pv=u

Conversely, if u = p, it follows from (7) that

u=pBv Wwhere ﬁ:i

I

Observations I and II are useful for establishing the
following theorem.

Theorem 5.4.2 The Cauchy—
Schwarz Inequality



Ifu and v are any two vectors in an inner product space
V, then

[{w, V)| < [laf vl
®

Equality holds if and only if u and v are linearly
dependent.

Proof

If v = 0, then
[(u,v)| =0=[lu [v]

If v # 0, then let p be the vector projection of u onto v.
Since p is orthogonal to u — P, it follows from the
Pythagorean law that

Ipl* + 1hu = p1i* = [|u|?

Thus,
((u V>)2 2 2
——— =p|" = [[ul]* = Hu—pu?
vl
and hence
2 2 2 2 2
(u,v))* = [a|*v]]* = tu—=p?|v|" < [lul[v]
Therefore,

[{u, v)[ < Thall [[v]]

Equality holds in (9) if and only if u = p. It follows from
observation II that equality will hold in (8) if and only if
Vv = p or uis a multiple of v. More simply stated,
equality will hold if and only if u and v are linearly
dependent.

One consequence of the Cauchy—Schwarz inequality is
that if u and v are nonzero vectors, then

(u,v)

= llflvl



and hence there is a unique angle 6 in [0, 1] such that

(u,v)
cosf = ————
Hall||v]]

(10)

Thus, equation (10) can be used to define the angle 0
between two nonzero vectors u and v.

Norms

The word norm in mathematics has its own meaning that
is independent of an inner product and its use here
should be justified.

Definition

A vector space Vis said to be a normed linear space
if, to each vector v € V, there is associated a real number
||v||, called the norm of v, satisfying

1. ||v]| > 0 with equality if and only if v = O.
2. ||av|| = |al||v|| for any scalar a.

3. v+ wl| < ||v] + ||w] forallv,w € V.

The third condition is called the triangle inequality (see
Figure 5.4.2).

Figure 5.4.2.



V+W

v

Figure 5.4.2. Full Alternative Text

Theorem 5.4.3

If Vis an inner product space, then the equation

vl = v/{v,v) forall veV

defines anormonV.
Proof

It is easily seen that conditions I and IT of the definition
are satisfied. We leave this for the reader to verify and
proceed to show that condition III is satisfied.

o+ v|? = (utv,utv)
= (u,u) +2(u,v) + (v,v)
< |ul®*+21an |v|+|[v]?* (Cauchy — Schwarz)
= (lall + [IvI)?
Thus,

u+ v < l[al| +[v]|

It is possible to define many different norms on a given
vector space. For example, in R" we could define
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n
Il =D il

i=1

for every x = (x1, @o, . . ., wn)T. It is easily verified that
|| - ||; defines a norm on R™. Another important norm
on R" is the uniform norm or infinity norm, which is
defined by

I = e

More generally, we could define a norm on R" by

n 1/p
%], = (ZIHBiI”)
i=1

for any real number p > 1. In particular, if p = 2, then

N 1/2
1]l = (ZI%’IZ) = \/<X,X>

i=1

The norm || - H2 is the norm on R" derived from the
inner product. If p # 2, || - || » does not correspond to

any inner product. In the case of a norm that is not
derived from an inner product, the Pythagorean law will
not hold. For example,

1 —4
2] and xzz{z]

are orthogonal; however,

X1 =

x| + [|x2]’, = 4+ 16 = 20

while

x4+ %2112, =16

If, however, || - H2 is used, then

113 + [all3 = 5 + 20 = 25 = %1 + %2113

Example 5



Let x be the vector (4, —5, 3)T in R3. Compute
1%[l15 [l and [[x]] o

1x[lr = [4]+]|-5[+[3] =12

x|z = /16 +25+9 =52

[%[loo = max(|4],[-5],3]) =5

It is also possible to define different matrix norms for
R™*™ In Chapter 7, we will study other types of matrix
norms that are useful in determining the sensitivity of
linear systems.

In general, a norm provides a way of measuring the
distance between vectors.

Definition

Let x and y be vectors in a normed linear space. The
distance between x and y is defined to be the number
Ny — xII.

Many applications involve finding a unique closest vector
in a subspace S to a given vector v in a vector space V. If
the norm used for V'is derived from an inner product,
then the closest vector can be computed as a vector
projection of v onto the subspace S. This type of
approximation problem is discussed further in the next
section.



Section 5.4 Exercises

1 Letx = (—1,-1,1, 1)T andy = (1, 1,5, —3)T. Show that
x L y. Calculate ||x||,, ||y||5, Il X + ¥y Il ; and verify that the
Pythagorean law holds.

2.Letx = (1,1,1,1)  andy = (8,2,2,0)%.

1. Determine the angle 6 between x and y.
2. Find the vector projection p of x onto y.
3. Verify that x — p is orthogonal to p.

4. Compute |1x — pll g, ||P|ly, [|X]|, and verify that the
Pythagorean law is satisfied.

3. Use equation (1) with weight vector w = (%, % %) to define
an inner product for R3, and let x = (1,1, l)T and

T
y =(-5,1,3)".
1. Show that x and y are orthogonal with respect to this
inner product.

2. Compute the values of ||x|| and ||y|| with respect to this
inner product.
4. Given

1 2 2 -4 1 1
A=1(1 0 2|andB=|-3 3 2
311 1 -2 -2

determine the value of each of the following:

1 (A, B)
2. 1 Allp
3. 1Bl g
4. 1A+ Bllp

5. Show that equation (2) defines an inner product on R"*".

6. Show that the inner product defined by equation (3) satisfies the
last two conditions of the definition of an inner product.

7. In C[o, 1], with inner product defined by (3), compute



1 (e® e )
2. (z,sin7z)

3. <a:2,x3>

8. In C[o0, 1], with inner product defined by (3), consider the vectors 1
and x.

1. Find the angle 0 between 1 and x.

2. Determine the vector projection p of 1 onto x and verify
that 1 — p is orthogonal to p.

3. Compute |1 — plI, ||p]|, ||1]| and verify that the
Pythagorean law holds.

9. In C[—, 7] with inner product defined by (6), show that cos mx
and sin nx are orthogonal and that both are unit vectors.
Determine the distance between the two vectors.

10. Show that the functions x and 2 are orthogonal in P5 with the
inner product defined by (5), where ; = (z — 3) /2 for
1=1,...,5.

11. In P with the inner product as in Exercise 10 and the norm
defined by

1/2

A— 5

Ipll = /@.p) = {3 ()’

1=

compute
L]
2. [1z? 1l

3. the distance between x and x?

12. If Vis an inner product space, show that
[vIl = 4/ (v, V)

satisfies the first two conditions in the definition of a norm.

13. Show that

n

Il = la]
i=1
defines a norm on R".

14. Show that

I, = pmasx o



defines a norm on R™.

15. Compute ||x||1, X Il 3 and ||X|| o for each of the following
vectors in R3:

1x = (—3,4,0)"
2.x=(-1,-1,2)"

3.x=(1,1,1)"

16. Letx = (5,2,4)T andy = (3,3,2)". Compute
lx—yll{, Ix—yll{,and lIx — y Il .. Under which norm
are the two vectors closest together? Under which norm are they
farthest apart?

17. Let x and y be vectors in an inner product space. Show that if
x | y, then the distance between x and y is

1/2
(Il + 1v1°)

18. Show that if u and v are vectors in an inner product space that
satisfy the Pythagorean law

o+ v =l + v

then u and v must be orthogonal.

19. In R™ with inner product

x,y)=x"y

derive a formula for the distance between two vectors
. T . T
X = (21, . Zp) andy = (Y1,-. -y Yn) -

20. Let A be a nonsingular n X m matrix and for each vector x in R"
define

Ix]|4 = 1AxIIy
(11)
Show that (11) defines a norm on R"™.
21. Let x € R™. Show that ||x|| < ||x][,.

22. Letx € R2. Show that || x|, < ||x||;. [Hint: Write x in the form
x1€;1 + Toeo and use the triangle inequality.]

23. Give an example of a nonzero vector X € R? for which
1%/l = [1xlly = 1l
24. Show that in any vector space with a norm,
=l =vl

25. Show that for any u and v in a normed vector space,



26.

27.

28.

29.

30.

31.

32.

a+v|[ = [[ul] —[|v]]
Prove that, for any u and v in an inner product space V,
2 2 2 2
a4 v[[" + [[u—v[]" = 2[[u]” + 2||v||

Give a geometric interpretation of this result for the vector space

R2,

The result of Exercise 26 is not valid for norms other than the
norm derived from the inner product. Give an example of this in
R? using || - [|;.

Determine whether the following define norms on C[a, b]:
LI fir=1[f(a)| + [£(b)]
2 11l = [°|f(2)dz

3. I fIl = max |f(z)|

Let x € R"™ and show that

L lx]l; < nlix(lo

2 [[x[l, < v/nllxl

Give examples of vectors in R” for which equality holds in parts
(a) and (b).

Sketch the set of points (1, £2) = x* in R? such that

L[}y =1
2 x|, =1

3 [Ixllo =1

Let Kbe an n X m matrix of the form

1 —-c —C ... —c¢C —c 1
s —sc ... —sc —sc
0 0 s ... —s%¢ s’
K =
0 0 0 - s"2 —s"2
0 0 0 ... O sl

where ¢? + s = 1. Show that [| K Il p = /7.

The trace of an n X n matrix C, denoted tr(C), is the sum of its
diagonal entries; that is,

tI‘(C) =cj1+Cxo+ ...+ Cun

If A and B are m X n matrices, show that



1 1A% = tr(ATA)
2. lA+ Bl% = 1A} + 2tr(ATB) + 11 BIl%

33. Consider the vector space R"™ with inner product (x,y) = xTy.
Show that for any n X n matrix A4,

1L (Ax,y) = <x, ATy>
2. (AT Ax,x) = || Ax||



5.5 Orthonormal Sets

In R?, it is generally more convenient to use the
standard basis {e1, €, } than to use some other basis,

such as {(2, 17, (3, 5)T}. For example, it would be

easier to find the coordinates of (1, #5)” with respect
to the standard basis. The elements of the standard basis
are orthogonal unit vectors. In working with an inner
product space V, it is generally desirable to have a basis
of mutually orthogonal unit vectors. Such a basis is
convenient not only in finding coordinates of vectors, but
also in solving least squares problems.

Definition

Let vy, Vo, ..., V, be nonzero vectors in an inner
product space V. If (v;, v;) = 0 whenever i # j, then
{v1,Vs,...,V,}issaid to be an orthogonal set of
vectors.

Example 1

The set {(1, 1, l)T, (2,1, —3)T, (4, -5, l)T} is an
orthogonal set in R3, since
(1,1,1)(2,1,-3)7 =0

(1,1,1)(4,-5,1)7 =0
(2,1,-3)(4,-5,1)7 =0

Theorem 5.5.1



If{v1,Va,..., v, } is an orthogonal set of nonzero
vectors in an inner product space V, then

Vi, Va,..., vV, are linearly independent.
Proof
Suppose that vy, vo, . . ., v, are mutually orthogonal

nonzero vectors and

civi+cve+...+¢c,v, =0

®

If 1 < j < n, then, taking the inner product of v; with
both sides of equation (1), we see that

c1(vj, vi) +ca(vj, va) + ...+ cu(vj, V) =0
cillvill? =0

and hence all the scalars ¢y, ¢, . . ., ¢, must be 0.

Definition

An orthonormal set of vectors is an orthogonal set of
unit vectors.

The set {uy, ug, . . ., u, } will be orthonormal if and
only if

(Wi, u;) = 6;;

where

5o (1=
Y0 if i A£G
Given any orthogonal set of nonzero vectors

{Vv1,V2,...vyp},itis possible to form an orthonormal
set by defining

1
ui:( )vi for 1 =1,2,...,n
[[vill




The reader may verify that {uy, uy, . . ., u, } will be an
orthonormal set.

Example 2

We saw in Example 1 that if

vi=(1,1,1)",va = (2,1,-3)", and

vy = (4,5, l)T, then {v, Vo, v3} is an orthogonal
set in R3. To form an orthonormal set, let

1 1 T
w = — ) v=-21(@,1,1
' (IIV1II> 1=l )

Uy _< - ) V2:;1(2’]_,73)T

[[vall 1
w = (o) ve= s
Example 3

In C|—r, 7] with inner product

(9=~ [ f@g)iz

(2

the set {1, cos x, cos 2x, ..., cos nx} is an orthogonal set of
vectors, since for any positive integers j and k

(1,coskz) = L J7 cos kxdz =0

s

(cos jz,coskz) = L ffﬂ cosjz cos kxdr =0 (j#k)
T

The functions cos x, cos 2x, ..., cos nx are already unit
vectors since

1
(cos kz, coskzx) = p [l cos?kzdr=1 for k=1,2,...,n

To form an orthonormal set, we need only find a unit
vector in the direction of 1.



1 s
P == [ 1de=

™

Thus, 1/ /2 is a unit vector, and hence
{1/\/5, cosx,cos 2z, . ..,CoS n:c} is an ortho-

normal set of vectors.

It follows from Theorem 5.5.1 that if

B = {uj,uy,...,u;} is an orthonormal set in an
inner product space V, then B is a basis for the subspace
S = Span(uy, uy, . .., uy). We say that Bis an
orthonormal basis for S. It is generally much easier to
work with an orthonormal basis than with an ordinary
basis. In particular, it is much easier to calculate the
coordinates of a given vector v with respect to an
orthonormal basis. Once these coordinates have been
determined, they can be used to compute ||v||.

Theorem 5.5.2

Let {ui, s, ..., uy} be an orthonormal basis for an
n
inner product space V. If v = ,Elc,-ui, then
1=

ci = (v,u;).

Proof

n n n
(vow) = (Y quiu ) = ci(wjw) =Y b =
= ; =1

J=1

As a consequence of Theorem 5.5.2, we can state two
more important results.

Corollary 5.5.3



Let {uy, s, ..., u,} be an orthonormal basis for an
n n

inner product space V. Ifu = Y a;u; and v = X b;u;
=1 =1

then

<ll, V> = Z aibi

i=1
Proof
By Theorem 5.5.2,
(v,u,-) = bi 1= 1,...,n

Therefore,

(u,v) = <i a,»ui,v> = Zai<ui,v) = Za,(v, w;) = Zaibi

Corollary 5.5.4 Parseval’s
Formula

If{uy,...,u,} is an orthonormal basis for an inner

n
product space Vand v = Zlciui, then
1=

n

vIP=)"¢

=1

Proof

n
Ifv = ‘Elci u;, then, by Corollary 5.5.3,
1=

9 n
2
VI° = (v,v) = ¢
i=1

Example 4



The vectors

o= (L) e (LY

form an orthonormal basis for R2. If x € R2, then

—+ 9 T 1 — T2
xTu; = 1 and x'uy = ———
V2 V2
It follows from Theorem 5.5.2 that
< $1+.’E2u+$1—$2u
= 1 2
V2 V2

and It follows from Corollary 5.5.4 that

2 2
W= () (B52) et
V2 V2

Example 5

Given that { 1/ v 5, cos 2:c} is an orthonormal set in

C[—m, | (with an inner product as in Example 3),
determine the value of f fﬂ sin? zdx without computing

antiderivatives.
SOLUTION

Since

5 1 —cos 2z 1 1 ( 1)
sing = ——— = —— | cos2x

2 vz U2

it follows from Parseval’s formula that

" 1 1 3
[Wsin4mdx:wll sin2m||2:7r(5+z) = Tﬂ

Orthogonal Matrices



Of particular importance are 1 X T matrices whose
column vectors form an orthonormal set in R".

Definition

Ann X n matrix Q is said to be an orthogonal matrix
if the column vectors of Q form an orthonormal set in R"

Theorem 5.5.5

Anm X m matrix Q is orthogonal if and only if

RTIQ=1
Proof

It follows from the definition that an 1 X n matrix Q is
orthogonal if and only if its column vectors satisfy

q; q; = 0

However, qZqu is the (i, j) entry of the matrix Q7 Q.
Thus, Q is orthogonal if and only if QT Q = 1I.

It follows from the theorem that if Q is an orthogonal
matrix, then Q is invertible and Q! = Q7.

Example 6

For any fixed 6, the matrix

sinf cos@

B [cos 6 —sin 0}

is orthogonal and



Q=0 = [ cos 0 sine]

—sinf cos@

The matrix Q in Example 6 can be thought of as a linear
transformation from R” onto R? that has the effect of
rotating each vector by an angle 6 while leaving the
length of the vector unchanged (see Example 2 in Section
4.2). Similarly, Q! can be thought of as a rotation by
the angle —6 (see Figure 5.5.1).

Figure 5.5.1.

(x f

fl )

Figure 5.5.1. Full Alternative Text

In general, inner products are preserved under
multiplication by an orthogonal matrix [i.e.,

(x,y) = (@%, Qy) 1. Indeed,
(@x,Qy) = (Qy)'@x = yTQTx = yTx = (x,y)

In particular, if x = y, then Il Qx 112 = ||XH2 and
hence || @x |l = ||x||. Multiplication by an orthogonal
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matrix preserves the lengths of vectors.

Properties of Orthogonal
Matrices

If Qis an n X m orthogonal matrix, then

1. the column vectors of Q form an orthonormal basis for R"
2.QTQ=1

3Q"=Q"

4.(@x,Qy) = (x,y)

5 1QxIy = x|,

Permutation Matrices

A permutation matrix is a matrix formed from the
identity matrix by reordering its columns. Clearly, then,
permutation matrices are orthogonal matrices. If P is the
permutation matrix formed by reordering the columns of
I'in the order (k1, ..., k,),then P = (€1, ..., €,). If
Ais an m X m matrix, then

AP = (Aekl, ceey Ae;m) = (akl, ceey akn)

Postmultiplication of A by P reorders the columns of A in
the order (K, . . ., ky ). For example, if

L2 [1 00
then
3 1 2
AP = [3 1 2]
Since P = (€j1, .- .. .. , €kn ) is orthogonal, it follows

that



e£1
pl=p7| :

ez |

The k; column of PT will be ey, the ko column will be
€9, and so on. Thus, PTisa permutation matrix. The
matrix PT can be formed directly from I by reordering
its rows in the order (kq, k2, . . ., k). In general, a
permutation matrix can be formed from I by reordering
either its rows or its columns.

If Q is the permutation matrix formed by reordering the
rows of I in the order (kq, ks, ..., k,) and Bisann X r
matrix, then

efl ele
QB = [ : }B = [ : :
[e{nJ [egnBJ Bkn

Thus, QB is the matrix formed by reordering the rows of

Bin the order (k1 ko, . . ., ky,). For example, if

0 01 11
Q=110 0| and B= |2 2
010 3 3
then
33
QB=111
2 2

In general, if Pis an n X n permutation matrix,
premultiplication of an 72 X 7 matrix B by P reorders the
rows of B and postmultiplication of an m X n matrix A
by P reorders the columns of A.

Orthonormal Sets and Least
Squares



Orthogonality plays an important role in solving least
squares problems. Recall that if A is an m X n matrix of
rank n, then the least squares problem Ax = b hasa
unique solution X that is determined by solving the
normal equations AT Ax = ATb. The projection

p = AX s the vector in R(A) that is closest to b. The
least squares problem is especially easy to solve in the
case where the column vectors of A form an orthonormal
setin R™,

Theorem 5.5.6

If the column vectors of A form an orthonormal set of
vectors in R™, then AT A = I and the solution to the
least squares problem is

x=ATb

Proof

The (i, ) entry of AT A is formed from the ith row of AT
and the jth column of A. Thus, the (i, j) entry is actually
the scalar product of the ith and jth columns of A. Since
the column vectors of A are orthonormal, it follows that

ATA = (65 =1
Consequently, the normal equations simplify to

x=ATb

What if the columns of A are not orthonormal? In the
next section, we will learn a method for finding an
orthonormal basis for R(A). From this method, we will
obtain a factorization of A into a product QR, where Q
has an orthonormal set of column vectors and R is upper
triangular. With this factorization, the least squares
problem is easily solved.



If we have an orthonormal basis for R(A), the projection
p = AX can be determined in terms of the basis elements.
Indeed, this is a special case of the more general least
squares problem of finding the element p in a subspace S
of an inner product space V that is closest to a given
element x in V. This problem is easily solved if S has an
orthonormal basis. We first prove the following theorem.

Theorem 5.5.7

Let S be a subspace of an inner product space V and let
x € V. Let {uy, uy,, ..., u,} be an orthonormal basis

for S. If

n
P= E G,
i=1

3)

where

¢ = (x,u;) foreachi
(4)
thenp — x € S+ (see Figure 5.5.2).

Figure 5.5.2.

X p-X

Figure 5.5.2. Full Alternative Text
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Proof

We will show first that (p — x) L w; for each i.

—~

(ujp—x) = (u;,p) — (w;,x)

n

u;, E cju]-> — C;

j=1

M=

cj(ui, uj) —¢;
1

So p — X is orthogonal to all the u;/s. If y € S, then

n
y= Z a;u;
i=1

and hence

n

p—xy) = <p—x,i:aiui> =Y ailp-xu) =0

i=1

If x € S, the preceding result is trivial, since by
Theorem 5.5.2, p — x = 0.If x ¢ S, then p is the
element in S closest to x.

Theorem 5.5.8

Under the hypothesis of Theorem 5.5.7, p is the element
of S that is closest to x; that is,

Ny —xIl > lIp —xll

foranyy # pinS.

Proof
Ify € Sandy # p, then

ly—xi>=1li(y—p)+(p—x)I°



Sincey — p € S, it follows from Theorem 5.5.7 and the
Pythagorean law that

ly —xl1?=lly—pli’+lip—xl’> lIp—x1?

Therefore, Ily — xIl > llp —xII.

The vector p defined by (3) and (4) is said to be the
projection of x onto S.

Corollary 5.5.9

Let S be a nonzero subspace of R™ and letb € R™. If

{u1,uy,...,ux} is an orthonormal basis for S and
U = (u1,us,.. ., u), then the projection p of b onto S
is given by
p=UUTb
Proof

It follows from Theorem 5.5.7 that the projection p of b
onto S is given by

p =ciu; +coug + -+, = U

where
c ulb
.o co _ ugb U™
Ck [u%bJ
Therefore,

p=UU"Db



The matrix UUT in Corollary 5.5.9 is the projection
matrix corresponding to the subspace S of R™. To
project any vector b € R™ onto S, we need only find an
orthonormal basis {uy, uy, . .., uy} for S, form the
matrix UU T, and then multiply UU T times b.

If P is a projection matrix corresponding to a subspace S
of R™, then, for any b € R™, the projection p of b onto
S is unique. If Q is also a projection matrix
corresponding to S, then

Ob=p=Pb
It then follows that
q]:Qe]:Pe]:Pej:pj fOI'j:].,...,m

and hence () = P. Thus, the projection matrix for a
subspace S of R is unique.

Example 7

Let S be the set of all vectors in R? of the form (z, y, 0)
. Find the vector p in S that is closest to w = (5, 3, 4)T
(see Figure 5.5.3).

T

Figure 5.5.3.



(3,3, 4)

(3,3,0)

Figure 5.5.3. Full Alternative Text

SOLUTION

Letu; = (1,0,0)” anduy = (0,1,0)". Clearly, u;
and us form an orthonormal basis for S. Now

ci = WTu1 =5

c; = wlup =3
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The vector p turns out to be exactly what we would
expect:

p = 5u; + 3uy = (5,3,0)”

Alternatively, p could have been calculated using the
projection matrix UU L.

o—uvrw— |0 1 0| |3 - |1

Approximation of Functions

In many applications, it is necessary to approximate a
continuous function in terms of functions from some
special type of approximating set. Most commonly, we
approximate by a polynomial of degree n or less. We can
use Theorem 5.5.8 to obtain the best least squares
approximation.

Example 8

Find the best least squares approximation to e” on the
interval [0, 1] by a linear function.

SOLUTION

Let S be the subspace of all linear functions in C[o, 1].
Although the functions 1 and x span S, they are not
orthogonal. We seek a function of the form « — a that is
orthogonal to 1.

(1,m—a>:/0 (:c—a)d:c:%—a

Thus, @ = . Since ||z — 5 || = 1/4/12, it follows that

ui(z) =1 and uy(z) = \/ﬁ(m — L)

2



form an orthonormal basis for S.

Let

c1 = fol u(z)e*de =e—1

ca = [, uwa(z)edr = V3(3 —e)
The projection

P(z) = cui(z)+ coui(z)
= (efl)-1+\/§(376)[\/ﬁ(:cf%)]
= (4e—10)+6(3 —e)x

is the best linear least squares approximation to €* on
[0, 1] (see Figure 5.5.4).

Figure 5.5.4.
y=e'

251 y=px)




1.0

0.5 1.0

Figure 5.5.4. Full Alternative Text

Approximation by
Trigonometric Polynomials

Trigonometric polynomials are used to approximate
periodic functions. By a trigonometric polynomial of
degree n, we mean a function of the form

ao

tn(z) 5

n
+ ) (ag coskzx + by sinkz)
k=1

We have already seen that the collection of functions

1

——,cosx,cos 2x,...,COSNT

V2
forms an orthonormal set with respect to the inner
product (2). We leave it to the reader to verify that if the
functions
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sin x, sin 2z, . . ., sinne

are added to the collection, it will still be an orthonormal
set. Thus, we can use Theorem 5.5.8 to find the best least
squares approximation to a continuous 2 periodic
function f (x) by a trigonometric polynomial of degree n
or less. Note that

so that if

1 s
apg=(f,1) = ;[ f(z)dz
and

1
ar = (f,coskz) == [T f(x)cos kx dz
™
1
by = (f,sinkz) == [" f(z)sinkz dz
T
fork = 1,2,...,n,then these coefficients determine
the best least squares approximation to f. The a;’s and
the by, s turn out to be the well-known Fourier
coefficients that occur in many applications involving
trigonometric series approximations of functions.

Let us think of f (x) as representing the position at time x
of an object moving along a line, and let £,, be the Fourier
approximation of degree n to f. If we set

rh =4/a? +b} and 6 =Tan™' (Z—k)
k

then

. ag br .
apcoskxr + by, sinkx = ryp| —coskx + —sinkx
Tk Tk

= rpcos(kz — O)

Thus, the motion f (x) is being represented as a sum of
simple harmonic motions.



For signal-processing applications, it is useful to express
the trigonometric approximation in complex form. To
this end, we define complex Fourier coefficients ¢, in
terms of the real Fourier coefficients ay, and by

cp = %(ak —iby) = % J7 f(x)(coskx — i sinkx)dz
_ % ™ f(z)e*=dz (k> 0)
The latter equality follows from the identity

e = cos@+1i sinf

We also define the coefficient C'_j, to be the complex
conjugate of C}. Thus,

- 1
CL=C, = E(ak + ibk) (k > 0)
Alternatively, if we solve for aj, and by, then

ar =cp+c_p and b, = i(ck — C_k)

From these identities, it follows that

cre ¥ 4 e peihe (e + c_i) coskx + i(cy — c_) sin kz

= aycoskx + bysinkx

and hence the trigonometric polynomial

tn(z) = % + Z (ak coskz + by, sinkz)
k=1

can be rewritten in complex form as

Application 1

Signal Processing



The Discrete Fourier
Transform

The function f (x) pictured in Figure 5.5.5(a) corresponds
to a noisy signal. Here, the independent variable x
represents time and the signal values are plotted as a
function of time. In this context, it is convenient to start
with time 0. Thus, we will choose [0, 27], rather than
[—r, 7], as the interval for our inner product.

Figure 5.5.5.




() Fitered Sgna

Figure 5.5.5. Full Alternative Text

Let us approximate f (x) by a trigonometric polynomial

to(z) = Z cre'™®
k=n

As noted in the previous discussion, the trigonometric
approximation allows us to represent the function as a
sum of simple harmonics. The kth harmonic can be
written as r cos(kz —0). It is said to have angular
frequency k. A signal is smooth if the coefficients cy,
approach o rapidly as k increases. If some of the
coefficients corresponding to larger frequencies are not
small, the graph will appear to be noisy as in Figure
5.5.5(a). We can filter the signal by setting these
coefficients equal to 0. Figure 5.5.5(b) shows the smooth
function obtained by suppressing some of the higher
frequencies from the original signal.

In actual signal-processing applications, we do not have
a mathematical formula for the signal function f (x);
rather, the signal is sampled over a sequence of times
Zp, X1, - .., LN, Where T; = 2%,\;7 The function fis
represented by the N sample values
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vo = f(zo),v1 = f(z1),-. - ynv-1 = f(zn_1)

[Note: yy = f(2m) = f(0) = yo.] In this case, it is not
possible to compute the Fourier coefficients as integrals.
Instead of using
.

cL = o /. T)e T
we use a numerical integration method, the trapezoid
rule, to approximate the integral. The approximation is
given by

(5)

The d}, coefficients are approximations to the Fourier
coefficients. The larger the sample size N, the closer dj,
will be to cg.

If we set

_% 27 .. 2w
wNy =¢€ = Cc0s — — 1 sin —
N N

then equation (5) can be rewritten in the form

=

dk = ijg\];

1
N

Il
o

J
The finite sequence {dy, d1, . . ., d_1} is said to be the
discrete Fourier transform of {yo, Y1, - - -, Yn_1}- The
discrete Fourier transform can be determined by a single
matrix vector multiplication. For example, if N = 4, the
coefficients are given by

1

dy = Z(yo +y1+ 2 +u3)

di — 1 2 3

1=y (yo + wayr + wiys + wiys)

1

dy = Z(yo + wiyl + wiyz + wiys)
1

d3 = Z(yo + wiyr + wiys + wiys)



If we set

1

1 T
Z=—y=— sy Y1,
R4 4(yo Y1,93)

then the vector d = (dy, d1, d2, d3)” is determined by
multiplying z by the matrix

1 1 1 1 1 1 1 1
L owy wf wf| |1 =i -1 i
1w owf wi| 1 -1 1 -1

i B | N

Fy=

The matrix F} is called a Fourier matrix.

In the case of N sample values, Yo, y1, . . ., Yynv_1, the
coefficients are computed by setting

1
= — d d=F
Z Ny an NZ

where y = (Yo, Y1, - - - yN,l)T and Flyisthe N x N
matrix whose (j, k) entry is given by f; = w%ﬁl)(kfl).
The method of computing the discrete Fourier transform
d by multiplying F'y times z will be referred to as the
DFT algorithm. The DFT computation requires a
multiple of N2 arithmetic operations (roughly 8N 2,

since complex arithmetic is used).

In signal-processing applications, N is generally very
large and consequently the DFT computation of the
discrete Fourier transform can be prohibitively slow and
costly even on modern high-powered computers. A
revolution in signal processing occurred in 1965 with the
introduction by James W. Cooley and John W. Tukey of a
dramatically more efficient method for computing the
discrete Fourier transform. Actually, it turns out that the
1965 Cooley—Tukey paper is a rediscovery of a method
that was known to Gauss in 1805.



The Fast Fourier Transform

The method of Cooley and Tukey, known as the fast
Fourier transform or simply the FFT, is an efficient
algorithm for computing the discrete Fourier transform.
It takes advantage of the special structure of the Fourier
matrices. We illustrate this method in the case N = 4.
To see the special structure, we rearrange the columns of
F; so that its odd-numbered columns all come before the
even-numbered columns. This rearrangement is
equivalent to postmultiplying F); by the permutation
matrix

Py

I
oo o=
o= o o
oo = o
— o o o

If we setw = P4T z, then

F,z = F,P,Pl'z = F,Pyw

Partitioning F4 Py into 2 X 2 blocks, we get

I 1)
-1 =1 1
-1 -1
-1 1 =i

FyPy =

4
5.9-6 Full Alternative Text

The (1,1) and (2,1) blocks are both equal to the Fourier
matrix F5, and if we set

1 0
Da = [0 —i]
then the (1,2) and (2,2) blocks are D2 F5 and — D32 F5,
respectively. The computation of the Fourier transform
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can now be carried out as a block multiplication.

d [F2 Dy F, ] |:Wl:| [szl +D2F2W2]
4 p— p—

F2 _D2F2 Wo F2W1 — D2F2W2

The computation reduces to computing two Fourier
transforms of length 2. If we set q; = Fyw and
qs = D2 (Fng), then

d, — [(h-*-(h}
4=
q; +d

The procedure we have just described will work in
general whenever the number of sample points is even.
If, say, N = 2m, and we permute the columns of Foy,
so that the odd columns are first, then the reordered
Fourier matrix F%;, Pon,, can be partitioned into m X m
blocks

F, D, F,
F2mP2m:|:m mm:|

F, —DpF,

where D,,, is a diagonal matrix whose (j, j) entry is w%;f
The discrete Fourier transform can then be computed in
terms of two transforms of length m. Furthermore, if m
is even, then each length m transform can be computed
in terms of two transforms of length %, and so on.

If, initially, N is a power of 2, say, N = 2¥, then we can
apply this procedure recursively through k levels of
recursion. The amount of arithmetic required to compute
the FFT is proportional to Nk = IN log, V. In fact, the
actual amount of arithmetic operations required for the
FFT is approximately 5/V log, /N. How dramatic of a
speedup is this? If we consider, for example, the case
where N = 229 = 1,048.576, then the DFT algorithm
requires SN2 = 8 - 240 operations, that is,
approximately 8.8 trillion operations. On the other hand,
the FFT algorithm requires only 100N = 100 - 220, or
approximately 100 million, operations. The ratio of these
two operations counts is



8N?

" BN log,N

= 0.08-1,048,576 = 83, 886

In this case, the FFT algorithm is approximately 84,000
times faster than the DFT algorithm.



Section 5.5 Exercises

1. Which of the following sets of vectors form an orthonormal basis
for R??

{107, (0,17}

SCORCES

3- {(1’ _1)T’ (1’ 1)T}

vi 1\ [ 1 v3\'
4. 775 ) _577

2. Let

u; = 3v2 |

w
—_
S
=]
no
|
—
Wl | el
—_—T
=
w
|
1
|
o ﬁll)_l o=
—_—T

[
\
JR—

1. Show that {uy, ug, uz} is an orthonormal basis for R?.

2. Letx = (1,1, )T. Write x as a linear combination of
uj, Uy, and ug using Theorem 5.5.2 and use Parseval’s
formula to compute ||x||.

3. Let S be the subspace of R3 spanned by the vectors up and us of

Exercise 2. Let x = (1, 2, 2)T. Find the projection p of x onto S.
Show that (p — x) L ug and (p — x) L us.

4. Let O be a fixed real number and let

[cos 0] [ sin 6]
X = and Xo =

sin 6 cos 6

1. Show that {x;, X5} is an orthonormal basis for R2.

2. Given a vector y in IR?, write it as a linear combination
C1X1 + CaXo.

3. Verify that

2
d+a=|yl'=v+v



5. Let uy and us form an orthonormal basis for R2 and letube a
unit vector in R2. If uTul = %, determine the value of |uTu2 |

6. Let {uy, uz, us} be an orthonormal basis for an inner product
space Vand let

u=1u; +2u; +2uz3 and v =u;+ 7ug

Determine the value of each of the following:

1 (u,v)
2. [[uf and |[v]|

3. The angle 6 between u and v

7. Let {ul, us, 113} be an orthonormal basis for an inner product
space V. If X = cju; + caug + csus is a vector with the
properties |x|| = 5, (u1,x) = 4,and x L uy, then what are the
possible values of ¢y, ¢2, €3?

8. The functions cos x and sin x form an orthonormal set in
Cl—m,n]. I

f(z) =3 cosz +2 sinz and g(z) = cosz —sinzx

use Corollary 5.5.3 to determine the value of
1 ™
9=~ [ fe)gla)de
T J x

9. The set

1
S = {—_, cos x, cos 2z, cos 3, cos 43:}
V2

is an orthonormal set of vectors in C[—r, 7] with the inner
product defined by (2).

1. Use trigonometric identities to write the function sin®

as a linear combination of elements of S.

2. Use part (a) and Theorem 5.5.2 to find the values of the
following integrals:

ey .
1 [7 sin*zcosz dzx
—T

4

™ .
2, f sin® x cos 2z dx
—T

4

3. ["_sin® z cos 3z dz

T .4
4. ffﬁ sin® z cos4x dx

10. Write out the Fourier matrix Fg. Show that F3 Pg can be
partitioned into block form:



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

F4 D4F4
F4 _D4F4

Prove that the transpose of an orthogonal matrix is an orthogonal

matrix.

If Qis an . X m orthogonal matrix and x and y are nonzero
vectors in R™, then how does the angle between Qx and Qy
compare with the angle between x and y? Prove your answer.

Let Q be an n X n orthogonal matrix. Use mathematical induction
to prove each of the following:

L (Q™) ' = (QT)™ = (Q™)" for any positive integer
m

2. 1Q"x Il = ||x|| forany x € R

Let u be a unit vector in R” and let H = I — 2uu’. Show that H
is both orthogonal and symmetric and hence is its own inverse.

Let Q be an orthogonal matrix and let d = det(Q). Show that
|d| = 1.

Show that the product of two orthogonal matrices is also an
orthogonal matrix. Is the product of two permutation matrices a
permutation matrix? Explain.

How many 1 X m permutation matrices are there?

Show that if P is a symmetric permutation matrix, then P2 = I
and P%+1 = p.

Show that if Uis an n X n orthogonal matrix, then
uluf—l—uQUg—l—---—l—unuf:I

Use mathematical induction to show that if @ € R™*" is both
upper triangular and orthogonal, then q; = *e;,j = 1,...,n.

Let

o= | = )= o=

E—

h S
|
[N W] P O PR ]

—

1. Show that the column vectors of A form an orthonormal
setin R%.

2. Solve the least squares problem Ax = b for each of the
following choices of b:

1b=(4,0,0,0)"
2.b=(1,2,3,4)"



3.b=(1,1,2,2)"

22. Let A be the matrix given in Exercise 21.

1. Find the projection matrix P that projects vectors in R?
onto R(A).

2. For each of your solutions x to Exercise 21(b), compute
Ax and compare it with Pb.

23. Let A be the matrix given in Exercise 21.

1. Find an orthonormal basis for N (AT).
2. Determine the projection matrix Q that projects vectors

in R* onto N(AT).

24. Let A be an m X m matrix, let P be the projection matrix that
projects vectors in R™ onto R(A), and let Q be the projection
matrix that projects vectors in R” onto R(AT). Show that

1. I — P is the projection matrix from R™ onto IV (AT).

2. I — @ is the projection matrix from R"™ onto N(A).

25. Let P be the projection matrix corresponding to a subspace S of
R™. Show that

LP2=P
2. PT=p
26. Let A be an ™ X n matrix whose column vectors are mutually

orthogonal and let b € R™. Show that if y is the least squares
solution of the system Ax = b, then

bT a;

T
a; a;

Y = 1=1,...,n

27. Let v be a vector in an inner product space V and let p be the
projection of v onto an n-dimensional subspace S of V. Show that
[lp|| < ||v||- Under what conditions does equality occur?

28. Let v be a vector in an inner product space V and let p be the
projection of v onto an n-dimensional subspace S of V. Show that

Ipl* < (p, ).

29. Given the vector space C[—1, 1] with inner product

(f9) = / fe)g(e) da

and norm



30.

31.

32.

33

34.

35

Hfi=((f, /)

1. show that the vectors 1 and x are orthogonal.
2. compute ||1|| and ||z||.

3. find the best least squares approximation to 2/ on
[—1,1] by alinear function I(z) = ¢11 + cox.

Consider the inner product space C[0, 1] with the inner product
defined by

(f,9) = /O f(2)g(z)de

Let S be the subspace spanned by the vectors 1 and 2z — 1.

1. Show that 1 and 2z — 1 are orthogonal.

2. Determine /17 and |2z — 1|.

3. Find the best least squares approximation to 4/z by a
function from the subspace S.

Let

S ={1/4/2,cos z,cos2z,...,cos n,
sinz,sin2z,...,sinnz}

Show that S is an orthonormal set in C[—r, 7| with the inner
product defined by (2).

Find the best least squares approximation to f(z) = |z| on
[—r, 7] by a trigonometric polynomial of degree less than or equal
to 2.

Let {X1,X2, ..., Xk, Xk11, - - -, X } be an orthonormal basis for
an inner product space V. Let S be the subspace of V spanned by
X1, ..., Xg, and let S5 be the subspace spanned by

Xpi1, Xkt2, - - -, Xp. Show that S1 L Ss.

Let x be an element of t