
  

Learning to see the tiger

(Insert scary nonstandard 
disclaimer of your choice 
here)

Many ruby programmers 
use ruby as if it were a 
fancy BASIC; they don't 
realize they are riding a 
tiger.

But they are.

Consider this simple patch...



  

Completing the square

We can write things like:

9.divmod 2

and even 

class Fixnum
    def divmod(other)
        Pair.new(super other)
        end
    end

Or even

class Fixnum
    def apples 
        [:mac]*self
        end
    end

And then use it:

9.apples

But we can't write things like:

class Fixnum
    def |+>(other)
        Ket_sum.new(self,other)
        end
    end

And then use:

9 |+> 2

And we can write things like:

9 / 2

and even:

class Fixnum
    def /(other)
        Ratio.new(divmod.other)
        end
    end



  

A grossly oversimplified picture
that may still be too detailed

The real ruby compiler treats all identifiers uniformly, but special cases the operators.

Instead we could treat operators more analogously to identifiers.

This actually simplifies some parts of the compiler, in a sort of DRYer than it maybe 
should be way.

 

tokenizer

Characters

/[a-z][A-Za-z0-9_]*/

tIDENTIFIER

/==|!=|and|.../i

tEQ, tNEQ,
tANDOP...

method goo operator goo

method 
dispatch

tokenizer

Characters

/[a-z][A-Za-z0-9_]*/

tIDENTIFIER

/[:+-=<>|*\/&^%?~!._]{2,6}/

tGENERIC_OP...

method goo operator goo

method 
dispatch

shared
goo



  

Consider this patch...
(2nd Disclamer)

The patch lets you write things like:

def ++/­­?(foo)
    ...
    end

print “oopsy!” unless a ++/­­? b

Matz considered it, and said “thanks, but no thanks” 

Quite a few people tried it, but no one (to my knowledge) ever used it 
in production.

And frankly, I don't blame them.



  

What could we do with this?
Clever little IDLs / SPILs:

A whistle & siren specifier:

(C _# ­­> G)/2.seconds & ( G ­­> C)/2.seconds

Range and Hash analogs:

OrderedHashes

    :key1=>>“value1” || :key2=>>“val2” || :k3=>>“foo”

Fancy ranges:

0 <=..< 7

x ..<+ 20

Executable serialization formats for something YAML-oid

Asynchronous method calls al la Dramatis



  

How we could do this sort of thing

class Object
    def =>>(val)
        result = OrderedHash.new
        result[self] = val
        result

           end
       end

   class OrderedHash
       def ||(other)
           update(other)
           end
       # Ordered Hash goodness goes here
       ⋮
       



  

What trouble could we get into?

Built-ins are optimized—and we might be less inclined to use them, 
making ruby appear slower.

Ambiguous decomposition.  When someone writes “x &&! y” do they 
mean to use some new &&! operator or do they mean “x && !y”?

Precedence (and associativity) would have to be global, but it's not 
clear how these should be assigned.  Oh my dear aunt Sally!

Ruby might become a line noise language.

Some people fear that conflicting uses would arise.  This problem 
isn't really any worse than we already face with method names.



  

Pushing these ideas a little further
(i.e. too far)

Pushing the ideas behind the patch further we could...

 ...eliminate the lexically based distinction between operators and 
methods and simplify the compiler even further

...allow unicode characters in operators (dot and cross product, 
anyone?)

...syntactically unify blocks and either Procs or lambdas with 
method/operators as well (so that the same “{|...| ...}” syntax 
produced a block or either a Proc or a lambda depending on 
context

...and then it's just a short step to having (gack!) anonymous 
operators too: 

:fry {|a,b| do_it_to_it(a,b) } :fish

This sort of unification is like eating peanuts (candied peanuts, with 
lots of syntactic sugar on them).     



  

What, that didn't take well over 
five minutes?

The interesting thing is that free form 
operators are just syntactic sugar.  The 
don't change the semantics of ruby one 
wit.

If you find any aspect of them disturbing, 
just remember you're already riding that 
tiger even if you don't normally look at it.


